440 research outputs found

    Numerical simulations of the magnetorotational instability in protoneutron stars: I. Influence of buoyancy

    Full text link
    The magneto-rotational instability (MRI) is considered to be a promising mechanism to amplify the magnetic field in fast rotating protoneutron stars. In contrast to accretion disks, radial buoyancy driven by entropy and lepton fraction gradients is expected to have a dynamical role as important as rotation and shear. We investigate the poorly known impact of buoyancy on the non-linear phase of the MRI, by means of three dimensional numerical simulations of a local model in the equatorial plane of a protoneutron star. The use of the Boussinesq approximation allows us to utilise a shearing box model with clean shearing periodic boundary conditions, while taking into account the buoyancy driven by radial entropy and composition gradients. We find significantly stronger turbulence and magnetic fields in buoyantly unstable flows. On the other hand, buoyancy has only a limited impact on the strength of turbulence and magnetic field amplification for buoyantly stable flows in the presence of a realistic thermal diffusion. The properties of the turbulence are, however, significantly affected in the latter case. In particular, the toroidal components of the magnetic field and of the velocity become even more dominant with respect to the poloidal ones. Furthermore, we observed in the regime of stable buoyancy the formation of long lived coherent structures such as channel flows and zonal flows. Overall, our results support the ability of the MRI to amplify the magnetic field significantly even in stably stratified regions of protoneutron stars.Comment: 22 pages, 15 figures, accepted for publication in MNRA

    Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems

    Full text link
    The strength and structure of the large-scale magnetic field in protoplanetary discs are still unknown, although they could have important consequences for the dynamics and evolution of the disc. Using a mean-field approach in which we model the effects of turbulence through enhanced diffusion coefficients, we study the time-evolution of the large-scale poloidal magnetic field in a global model of a thin accretion disc, with particular attention to protoplanetary discs. With the transport coefficients usually assumed, the magnetic field strength does not significantly increase radially inwards, leading to a relatively weak magnetic field in the inner part of the disc. We show that with more realistic transport coefficients that take into account the vertical structure of the disc and the back-reaction of the magnetic field on the flow as obtained by Guilet & Ogilvie (2012), the magnetic field can significantly increase radially inwards. The magnetic-field profile adjusts to reach an equilibrium value of the plasma β\beta parameter (the ratio of midplane thermal pressure to magnetic pressure) in the inner part of the disc. This value of β\beta depends strongly on the aspect ratio of the disc and on the turbulent magnetic Prandtl number, and lies in the range 10410710^4-10^7 for protoplanetary discs. Such a magnetic field is expected to affect significantly the dynamics of protoplanetary discs by increasing the strength of MHD turbulence and launching an outflow. We discuss the implications of our results for the evolution of protoplanetary discs and for the formation of powerful jets as observed in T-Tauri star systems.Comment: 19 pages, 12 figures, accepted for publication in MNRA

    A Shallow Water Analogue of the Standing Accretion Shock Instability: Experimental Demonstration and Two-Dimensional Model

    Full text link
    Despite the sphericity of the collapsing stellar core, the birth conditions of neutron stars can be highly non spherical due to a hydrodynamical instability of the shocked accretion flow. Here we report the first laboratory experiment of a shallow water analogue, based on the physics of hydraulic jumps. Both the experiment and its shallow water modeling demonstrate a robust linear instability and nonlinear properties of symmetry breaking, in a system which is one million times smaller and about hundred times slower than its astrophysical analogue.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Letters. Supplementary Material (6 movies) available at http://irfu.cea.fr/Projets/SN2NS/outreach.htm

    Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”

    Get PDF
    As a result of the recent bovine spongiform encephalopathy (BSE) crisis in the European beef industry, the use of animal by-product is now severely controlled. Meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. Main disposal option is incineration, producing huge amounts of ashes the valorisation of which becomes a major concern. The aim of this work is to characterise MBM combustion residue in order to evaluate their physical and chemical properties to propose new valorisation avenues. The thermal behaviour of crude meat and bone meal was followed by thermogravimetric analysis (TGA) and (24 wt.%) inorganic residue was collected. The resulting ashes were characterised by powder X-ray diffraction (XRD), particle size distribution, specific surface area (BET), scanning electron microscopy (SEM) couple with energy disperse X-ray analysis (EDX). Elemental analysis revealed the presence of chloride, sodium, potassium, magnesium with high level of phosphate (56 wt.%) and calcium (31 wt.%), two major constituents of bone, mainly as a mixture of Ca10(PO4)6(OH)2 and Ca3(PO4)2 phases. The impact of combustion temperature (from 550 to 1000 °C) on the constitution of ashes was followed by TGA, XRD and specific surface measurements. We observed a strong decrease of surface area for the ashes with crystallisation of calcium phosphates phases without major changes of chemical compositio

    Toward a magnetohydrodynamic theory of the stationary accretion shock: toy model of the advective-acoustic cycle in a magnetized flow

    Full text link
    The effect of a magnetic field on the linear phase of the advective-acoustic instability is investigated, as a first step toward a magnetohydrodynamic (MHD) theory of the stationary accretion shock instability taking place during stellar core collapse. We study a toy model where the flow behind a planar stationary accretion shock is adiabatically decelerated by an external potential. Two magnetic field geometries are considered: parallel or perpendicular to the shock. The entropy-vorticity wave, which is simply advected in the unmagnetized limit, separates into five different waves: the entropy perturbations are advected, while the vorticity can propagate along the field lines through two Alfven waves and two slow magnetosonic waves. The two cycles existing in the unmagnetized limit, advective-acoustic and purely acoustic, are replaced by up to six distinct MHD cycles. The phase differences among the cycles play an important role in determining the total cycle efficiency and hence the growth rate. Oscillations in the growth rate as a function of the magnetic field strength are due to this varying phase shift. A vertical magnetic field hardly affects the cycle efficiency in the regime of super-Alfvenic accretion that is considered. In contrast, we find that a horizontal magnetic field strongly increases the efficiencies of the vorticity cycles that bend the field lines, resulting in a significant increase of the growth rate if the different cycles are in phase. These magnetic effects are significant for large-scale modes if the Alfven velocity is a sizable fraction of the flow velocity.Comment: 13 pages, 9 figures, accepted for publication in ApJ. Cosmetic changes after proof reading corrections

    Dynamics of an Alfven surface in core collapse supernovae

    Full text link
    We investigate the dynamics of an Alfven surface (where the Alfven speed equals the advection velocity) in the context of core collapse supernovae during the phase of accretion on the proto-neutron star. Such a surface should exist even for weak magnetic fields because the advection velocity decreases to zero at the center of the collapsing core. In this decelerated flow, Alfven waves created by the standing accretion shock instability (SASI) or convection accumulate and amplify while approaching the Alfven surface. We study this amplification using one dimensional MHD simulations with explicit physical dissipation. In the linear regime, the amplification continues until the Alfven wavelength becomes as small as the dissipative scale. A pressure feedback that increases the pressure in the upstream flow is created via a non linear coupling. We derive analytic formulae for the maximum amplification and the non linear coupling and check them with numerical simulations to a very good accuracy. We also characterize the non linear saturation of this amplification when compression effects become important, leading to either a change of the velocity gradient, or a steepening of the Alfven wave. Applying these results to core collapse supernovae shows that the amplification can be fast enough to affect the dynamics, if the magnetic field is strong enough for the Alfven surface to lie in the region of strong velocity gradient just above the neutrinosphere. This requires the presence of a strong magnetic field in the progenitor star, which would correspond to the formation of a magnetar under the assumption of magnetic flux conservation. An extrapolation of our analytic formula (taking into account the nonlinear saturation) suggests that the Alfven wave could reach an amplitude of B ~ 10^15 G, and that the pressure feedback could significantly contribute to the pressure below the shock.Comment: 18 pages, 14 figures, accepted for publication in ApJ. Added a discussion of the energy budget in subsection 7.

    On the linear growth mechanism driving the stationary accretion shock instability

    Full text link
    During stellar core collapse, which eventually leads to a supernovae explosion, the stalled shock is unstable due to the standing accretion shock instability (SASI). This instability induces large-scale non spherical oscillations of the shock, which have crucial consequences on the dynamics and the geometry of the explosion. While the existence of this instability has been firmly established, its physical origin remains somewhat uncertain. Two mechanisms have indeed been proposed to explain its linear growth. The first is an advective-acoustic cycle, where the instability results from the interplay between advected perturbations (entropy and vorticity) and an acoustic wave. The second mechanism is purely acoustic and assumes that the shock is able to amplify trapped acoustic waves. Several arguments favouring the advective-acoustic cycle have already been proposed, however none was entirely conclusive for realistic flow parameters. In this article we give two new arguments which unambiguously show that the instability is not purely acoustic, and should be attributed to the advective-acoustic cycle. First, we extract a radial propagation timescale by comparing the frequencies of several unstable harmonics that differ only by their radial structure. The extracted time matches the advective-acoustic time but strongly disagrees with a purely acoustic interpretation. Second, we present a method to compute purely acoustic modes, by artificially removing advected perturbations below the shock. All these purely acoustic modes are found to be stable, showing that the advected wave is essential to the instability mechanism.Comment: 17 pages, 10 figures, accepted for publication in MNRA
    corecore