60 research outputs found

    A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma

    Get PDF
    Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas.This study was supported by the Department of Defense Con- gressionally Directed Medical Research Programs (DOD CDMRP, CA120318 to Y. Huang), Elizabeth’s Hope (J. Greenfield), the Starr Foundation, the Paduano Foundation, the Champalimaud Foun- dation, the Malcolm Hewitt Wiener Foundation, the POETIC Foundation, the Sohn Foundation, the Hartwell Foundation, and the Children’s Cancer and Blood Foundation (all to D. Lyden). Address correspondence to: David Lyden, Department of Pediatrics, Weill Medical Medicine, 413 E. 69th Street, Box 284, New York, New York 10021, USA. Phone: 646.962.6238; E-mail: [email protected]. Or to: Jeffrey P. Greenfield, Department of Neurological Surgery, Weill Cornell Medicine, 525 E 68th Street, Box 99, New York, New York 10065, USA. Phone: 212.746.2363; E-mail: [email protected]. HP’s present address is: Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain.S

    Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set

    Get PDF
    A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of s=1.96TeV, and correspond to an integrated luminosity of 9.45fb-1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state

    Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil

    Get PDF
    An approach for assessing the inhalation bioaccessibility of Pb in the PM10 size fraction is presented, using an in vitro simulated epithelial lung fluid to represent the extracellular environment of the lung. The developed inhalation bioaccessibility method (IBM) is applied to a range of urban surface soils and mining wastes obtained from Mitrovica, Kosovo, a site where impacts upon human health following exposure to Pb have been internationally publicised. All Pb determinations were undertaken by inductively coupled plasma mass spectrometry (ICP-MS). The pseudo-total concentration of Pb (microwave acid digestion using aqua-regia) varied between matrices: smelter (20,900–72,800 mg kg− 1), topsoil (274–13,700 mg kg− 1), and tailings (2990 mg kg− 1–25,300 mg kg− 1). The in vitro inhalation bioaccessibility was typically several orders of magnitude lower: smelter (7.0–965 mg kg− 1), topsoil (9.8–1060 mg kg− 1), and tailings (0.7 mg kg− 1–49.2 mg kg− 1). The % inhalation bioaccessibility ranged from 0.02 to 11.0%, with the higher inhalation bioaccessible Pb concentrations being observed for samples from the Bosniak Mahalla area of Mitrovica (an area proposed for the relocation of internally displaced peoples). The estimated inhalation dose (for adults) calculated from the PM10 pseudo-total Pb concentration ranged from 0.369 to 1.284 μg kg− 1BW day− 1 (smelter), 0.005–0.242 μg kg− 1BW day− 1 (topsoil), and 0.053–0.446 μg kg− 1BW day− 1 (tailings). When daily inhalation doses were calculated using the bioaccessible Pb concentration the modelled exposure doses were much lower: smelter (0.0001–0.0170 μg kg− 1BW day− 1), topsoil (0.0002–0.0187 μg kg− 1BW day− 1) and tailings (0.0001–0.0009 μg kg− 1BW day− 1). Modelled for the neutral pH conditions of the interstitial lung environment, the results indicate a low potential inhalation bioaccessibility for Pb in these samples. Given the already elevated environmental Pb burden experienced by the local population, where significant prolonged dust or particulate generating activities are taking place, or where the inhaled particles are phagocytized, then inhalation exposure has the potential to significantly add to the overall Pb burden. Such data are important for local policy makers to better enable them to assess risk, especially in areas where soils/dusts have elevated levels of contamination
    corecore