587 research outputs found

    Deep active learning for autonomous navigation.

    Get PDF
    Imitation learning refers to an agent's ability to mimic a desired behavior by learning from observations. A major challenge facing learning from demonstrations is to represent the demonstrations in a manner that is adequate for learning and efficient for real time decisions. Creating feature representations is especially challenging when extracted from high dimensional visual data. In this paper, we present a method for imitation learning from raw visual data. The proposed method is applied to a popular imitation learning domain that is relevant to a variety of real life applications; namely navigation. To create a training set, a teacher uses an optimal policy to perform a navigation task, and the actions taken are recorded along with visual footage from the first person perspective. Features are automatically extracted and used to learn a policy that mimics the teacher via a deep convolutional neural network. A trained agent can then predict an action to perform based on the scene it finds itself in. This method is generic, and the network is trained without knowledge of the task, targets or environment in which it is acting. Another common challenge in imitation learning is generalizing a policy over unseen situation in training data. To address this challenge, the learned policy is subsequently improved by employing active learning. While the agent is executing a task, it can query the teacher for the correct action to take in situations where it has low confidence. The active samples are added to the training set and used to update the initial policy. The proposed approach is demonstrated on 4 different tasks in a 3D simulated environment. The experiments show that an agent can effectively perform imitation learning from raw visual data for navigation tasks and that active learning can significantly improve the initial policy using a small number of samples. The simulated test bed facilitates reproduction of these results and comparison with other approaches

    Robust Multimodal Image Registration Using Deep Recurrent Reinforcement Learning

    Full text link
    The crucial components of a conventional image registration method are the choice of the right feature representations and similarity measures. These two components, although elaborately designed, are somewhat handcrafted using human knowledge. To this end, these two components are tackled in an end-to-end manner via reinforcement learning in this work. Specifically, an artificial agent, which is composed of a combined policy and value network, is trained to adjust the moving image toward the right direction. We train this network using an asynchronous reinforcement learning algorithm, where a customized reward function is also leveraged to encourage robust image registration. This trained network is further incorporated with a lookahead inference to improve the registration capability. The advantage of this algorithm is fully demonstrated by our superior performance on clinical MR and CT image pairs to other state-of-the-art medical image registration methods

    Mental health: A cause or consequence of injury? A population-based matched cohort study

    Get PDF
    BACKGROUND: While a number of studies report high prevalence of mental health problems among injured people, the temporal relationship between injury and mental health service use has not been established. This study aimed to quantify this relationship using 10 years of follow-up on a population-based cohort of hospitalised injured adults. METHODS: The Manitoba Injury Outcome Study is a retrospective population-based matched cohort study that utilised linked administrative data from Manitoba, Canada, to identify an inception cohort (1988–1991) of hospitalised injured cases (ICD-9-CM 800–995) aged 18–64 years (n = 21,032), which was matched to a non-injured population-based comparison group (n = 21,032). Pre-injury comorbidity and post-injury mental health data were obtained from hospital and physician claims records. Negative Binomial regression was used to estimate adjusted rate ratios (RRs) to measure associations between injury and mental health service use. RESULTS: Statistically significant differences in the rates of mental health service use were observed between the injured and non-injured, for the pre-injury year and every year of the follow-up period. The injured cohort had 6.56 times the rate of post-injury mental health hospitalisations (95% CI 5.87, 7.34) and 2.65 times the rate of post-injury mental health physician claims (95% CI 2.53, 2.77). Adjusting for comorbidities and pre-existing mental health service use reduced the hospitalisations RR to 3.24 (95% CI 2.92, 3.60) and the physician claims RR to 1.53 (95% CI 1.47, 1.59). CONCLUSION: These findings indicate the presence of pre-existing mental health conditions is a potential confounder when investigating injury as a risk factor for subsequent mental health problems. Collaboration with mental health professionals is important for injury prevention and care, with ongoing mental health support being a clearly indicated service need by injured people and their families. Public health policy relating to injury prevention and control needs to consider mental health strategies at the primary, secondary and tertiary level

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    • 

    corecore