48 research outputs found

    Deeper knowledge of shallow waters: reviewing the invertebrate fauna of southern African temporary wetlands

    Get PDF
    Temporary lentic wetlands are becoming increasingly recognised for their collective role in contributing to biodiversity at the landscape scale. In southern Africa, a region with a high density of such wetlands, information characterising the fauna of these systems is disparate and often obscurely published. Here we provide a collation and synthesis of published research on the aquatic invertebrate fauna inhabiting temporary lentic wetlands of the region. We expose the poor taxonomic knowledge of most groups, which makes it difficult to comment on patterns of richness and endemism

    In the dedicated pursuit of dedicated capital: restoring an indigenous investment ethic to British capitalism

    Get PDF
    Tony Blair’s landslide electoral victory on May 1 (New Labour Day?) presents the party in power with a rare, perhaps even unprecedented, opportunity to revitalise and modernise Britain’s ailing and antiquated manufacturing economy.* If it is to do so, it must remain true to its long-standing (indeed, historic) commitment to restore an indigenous investment ethic to British capitalism. In this paper we argue that this in turn requires that the party reject the very neo-liberal orthodoxies which it offered to the electorate as evidence of its competence, moderation and ‘modernisation’, which is has internalised, and which it apparently now views as circumscribing the parameters of the politically and economically possible

    Troponin elevation in acute ischemic stroke (TRELAS) - protocol of a prospective observational trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Levels of the cardiac muscle regulatory protein troponin T (cTnT) are frequently elevated in patients with acute ischemic stroke and elevated cTnT predicts poor outcome and mortality. The pathomechanism of troponin release may relate to co-morbid coronary artery disease and myocardial ischemia or, alternatively, to neurogenic cardiac damage due to autonomic activation after acute ischemic stroke. Therefore, there is uncertainty about how acute ischemic stroke patients with increased cTnT levels should be managed regarding diagnostic and therapeutic workup.</p> <p>Methods/Design</p> <p>The primary objective of the prospective observational trial TRELAS (TRoponin ELevation in Acute ischemic Stroke) is to investigate the frequency and underlying pathomechanism of cTnT elevation in acute ischemic stroke patients in order to give guidance for clinical practice. All consecutive patients with acute ischemic stroke admitted within 72 hours after symptom onset to the Department of Neurology at the Campus Benjamin Franklin of the University Hospital Charité will be screened for cTnT elevations (i.e. >= 0.05 μg/l) on admission and again on the following day. Patients with increased cTnT will undergo coronary angiography within 72 hours. Diagnostic findings of coronary angiograms will be compared with age- and gender-matched patients presenting with Non-ST-Elevation myocardial infarction to the Department of Cardiology. The primary endpoint of the study will be the occurrence of culprit lesions in the coronary angiogram indicating underlying co-morbid obstructive coronary artery disease. Secondary endpoints will be the localization of stroke in the cerebral imaging and left ventriculographic findings of wall motion abnormalities suggestive of stroke-induced global cardiac dysfunction.</p> <p>Discussion</p> <p>TRELAS will prospectively determine the frequency and possible etiology of troponin elevation in a large cohort of ischemic stroke patients. The findings are expected to contribute to clarify pathophysiologic concepts of co-morbid cardiac damage in ischemic stroke patients and also to provide a basis for clinical recommendations for cardiac workup of such patients.</p> <p>Trial registration</p> <p>clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01263964">NCT01263964</a></p

    Species History Masks the Effects of Human-Induced Range Loss – Unexpected Genetic Diversity in the Endangered Giant Mayfly Palingenia longicauda

    Get PDF
    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic diversity and its significance for future potential reintroduction of the long-tailed mayfly Palingenia longicauda (Olivier), which experienced approximately 98% range loss during the past century. Analysis of 936 bp of mitochondrial DNA of 245 extant specimens across the current range revealed a surprisingly large number of haplotypes (87), and a high level of haplotype diversity (). In contrast, historic specimens (6) from the lost range (Rhine catchment) were not differentiated from the extant Rába population (, ), despite considerable geographic distance separating the two rivers. These observations can be explained by an overlap of the current with the historic (Pleistocene) refugia of the species. Most likely, the massive recent range loss mainly affected the range which was occupied by rapid post-glacial dispersal. We conclude that massive range losses do not necessarily coincide with genetic impoverishment and that a species' history must be considered when estimating loss of genetic diversity. The assessment of spatial genetic structures and prior phylogeographic information seems essential to conserve once widespread species

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Gene expression variability across cells and species shapes innate immunity.

    Get PDF
    As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response
    corecore