119 research outputs found

    The solubility of helium in lead–lithium eutectic alloy

    Get PDF
    The helium production rates in liquid metals (Pb-Li eutectic alloy, LLE and others) Blanket Breeders (BB) are nearly mol-to-mol linked to tritium and intimately associated with the compulsory requirement of high tritium self-sufficiency of next fusion reactors. When LLE is oversaturated and the helium solubility limit is exceeded, helium atoms can nucleate in the form of bubbles. The presence of helium bubbles within LLE channels could have severe impact on the diverse BB designs, in particular on tritium transport permeation and its recovery. Even though He is an inert gas assumed to be insoluble, the helium Henry’s constant (KH) in a liquid metal is not zero. The very low KH and difficulties to measure it has historically driven to the absence of basic data. A semi-empirical correlation is proposed providing the helium solubility (i.e.: the helium Henry’s constant) based on Kumar’s cohesion model using the available thermo-physical experimental solubility data for lithium, sodium, potassium, mercury. The proposed expression for eutectic lead–lithium is: being KH the Henry’s constant; T [K], R [8.314 10-3 kJ mol-1 K-1] and dk the Kumar’s cohesive parameter. From a dk justified value of 18.2 MPa1/2 in LLE the values for KH range from 1.14·10-17 to 1.35·10 -15 at.fr.Pa-1 for temperatures between 350 and 870C. The helium solubility should integrate the lead–lithium eutectic nuclear material database for fusion systems design.Peer ReviewedPostprint (published version

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∟25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    The Pierre Auger Observatory Status And Latest Results

    Get PDF
    13

    Astrophysical Interpretation Of Pierre Auger Observatory Measurements Of The Uhecr Energy Spectrum And Mass Composition

    Get PDF
    13

    Evidence For A Mixed Mass Composition At The ‘ankle’ In The Cosmic-ray Spectrum

    Get PDF
    76228829

    Search for a low-mass pseudoscalar Higgs boson produced in association with a bb⁻ pair in pp collisions at √s=8 TeV

    Get PDF
    A search is reported for a light pseudoscalar Higgs boson decaying to a pair of tau leptons, produced in association with a b (b) over bar pair, in the context of two-Higgs-doublet models. The results are based on pp collision data at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and corresponding to an integrated luminosity of 19.7 fb(-1). Pseudoscalar boson masses between 25 and 80 GeV are probed. No evidence for a pseudoscalar boson is found and upper limits are set on the product of cross section and branching fraction to tau pairs between 7 and 39 pb at the 95% confidence level. This excludes pseudoscalar A bosons with masses between 25 and 80 GeV, with SM-like Higgs boson negative couplings to down-type fermions, produced in association with bb pairs, in Type II, two-Higgs-doublet models. (C) 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommonnorg/licensesiby/4.01)

    Search for microscopic black hole signatures at the Large Hadron Collider

    Get PDF
    This is the Pre-Print version of the Article. The official published paper can be accessed from the link below - Copyright @ 2011 ElsevierA search for microscopic black hole production and decay in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 inverse picobarns. Events with large total transverse energy are analyzed for the presence of multiple high-energy jets, leptons, and photons, typical of a signal expected from a microscopic black hole. Good agreement with the expected standard model backgrounds, dominated by QCD multijet production, is observed for various final-state multiplicities. Limits on the minimum black hole mass are set, in the range 3.5 -- 4.5 TeV, for a variety of parameters in a model with large extra dimensions, along with model-independent limits on new physics in these final states. These are the first direct limits on black hole production at a particle accelerator.This work is supported by the FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Search for a heavy bottom-like quark in pp collisions at √s =7 TeV

    Get PDF
    This is the Pre-Print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2011 Elsevier.A search for pair-produced bottom-like quarks in pp collisions at sqrt(s) = 7 TeV is conducted with the CMS experiment at the LHC. The decay b' to tW is considered in this search. The b' b'-bar to tW^- t-bar W^+ process can be identified by the distinctive signature of trileptons and same-sign dileptons. With a data sample corresponding to an integrated luminosity of 34 inverse picobarns, no excess above the standard model background predictions is observed and a b' quark with a mass between 255 and 361 GeV/c^2 is excluded at the 95% confidence level.This work is supported by the FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore