48 research outputs found

    Intravesical combination therapies for non-muscle invasive bladder cancer: Recent advances and future directions

    Get PDF
    Bladder cancer is the 10th most frequently diagnosed cancer worldwide with 5-year survival rate around 70%. The current first-line treatment for non-muscle invasive bladder cancer is transurethral resection of bladder tumours followed by intravesical Mycobacterium Bovis Bacillus Calmette-Guérin (BCG) immunotherapy. However, tumor recurrence rate is still high ranging from 31% to 78% within five years. To avoid radical cystectomy, intravesical combination therapies have been developed as salvage treatments to overcome BCG failure. Recent advances in diagnostics thanks to tumor molecular profiling and in treatment such as development of immunotherapies provides more treatment options beyond BCG treatment. This also goes hand-in hand with formulation advances to deliver these new therapies where traditional drug delivery systems might not be suitable, which in turn is completed by challenges to deliver drugs via the intravesical route. In this article the aim was to provide an in-depth analysis of the current developments of intravesical combination therapies, ranging from relatively simple combinations of mixing existed intravesical therapeutic agents (immunotherapies and chemotherapies) to the combined formulations containing advanced gene therapies and targeted therapies, with special focus on therapies that have made it to the clinical trial stage. In addition, recent attempts to utilize device-assisted treatments and novel drug delivery platforms are included. This review also highlights the limitations that still need to be overcome such as the inadequate studies on newly explored drug carriers and proposes potential directions for future work to overcome BCG-failure

    High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies

    Get PDF
    Peach (Prunus persica) and almond (Prunus dulcis) are two sexually compatible species that produce fertile offspring. Almond, a highly polymorphic species, is a potential source of new genes for peach that has a strongly eroded gene pool. Here we describe the genetics of a male sterile phenotype that segregated in two almond ('Texas') × peach ('Earlygold') progenies: an F2 (T×E) and a backcross one (T1E) to the 'Earlygold' parent. High-density maps were developed using a 9k peach SNP chip and 135 simple-sequence repeats. Three highly syntenic and collinear maps were obtained: one for the F2 (T×E) and two for the backcross, T1E (for the hybrid) and E (for 'Earlygold'). A major reduction of recombination was observed in the interspecific maps (T×E and T1E) compared to the intraspecific parent (E). The E map also had extensive monomorphic genomic regions suggesting the presence of large DNA fragments identical by descent. Our data for the male sterility character were consistent with the existence of cytoplasmic male sterility, where individuals having the almond cytoplasm required the almond allele in at least one of two independent restorer genes, Rf1 and Rf2, to be fertile. The restorer genes were located in a 3.4 Mbp fragment of linkage group 2 (Rf1) and 1.4 Mbp of linkage group 6 (Rf2). Both fragments contained several genes coding for pentatricopeptide proteins, demonstrated to be responsible for restoring fertility in other species. The implications of these results for using almond as a source of novel variability in peach are discussed

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Determination of pollen viability, germination ratios and morphology of eight apricot genotypes

    Get PDF
    Turkey is a leading apricot producing country, with the majority of dried apricot production centered in Malatya. Currently, there are breeding programs to develop superior apricot cultivars for severaldifferent utilizations. Determining the components of reproduction biology is critical for optimizing yields from apricot orchards and is therefore important for breeding programs. In this study, thepollen viability and germination ratios were determined for eight apricot cultivars. The genotypes tested included a local cultivar (Kabaaý), foreign-origin cultivars (Roksana and Canino), and selections from the nönü University program (Levent, Özal, Akyürek, 44-2005-01, 44 K 07). The results indicated that viable, semi-viable and dead pollen rates differed among cultivars, where Roksana had the least amount of viable pollen (41.5%). The genotypes had their highest germination rates at 20°C, whereas Roksana and Levent had the lowest germination rates (46.8 and 48.5%). The germination rates were also affected by sucrose concentrations, and media containing a 15% sucroseconcentration had the highest germination rates, while Roksana again had the lowest germination rate (36.4%). While the differences in anther number/flower were not significantly different among genotypes, there were significant differences in pollen number for both anther and flower bases. 44- 2005-01 and Canino had the highest pollen numbers. Pollen morphology was also evaluated using a Scanning Electron Microscope (SEM). Although some size and index differences were measured, thepollen of the genotypes was generally similar in morphology. The findings provide important insight into improving our understanding of apricot reproduction biology

    Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin

    No full text
    Background: Domestication generally implies a loss of diversity in crop species relative to their wild ancestors because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into Mediterranean areas such as apricot (Prunus armeniacaL.), which was probably primarily domesticated in China. By comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin. Results: According to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean apricot (207 genotypes) was structured into three main gene pools: ‘Irano-Caucasian’, ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’. Among the 25 microsatellite markers used, only one displayed deviations from the frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the ‘Irano-Caucasian’ gene pool, considered as a secondary centre of diversification, to the northern and south western Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing gene pools from the ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’ to the secondary centre of diversification. Conclusions: A marked domestication bottleneck was detected with microsatellite markers in the Mediterranean apricot material, depicting a global image of two diffusion routes from the ‘Irano-Caucasian’ gene pool: North Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits

    Genetic structure of mediterranean apricots by ssr fingerprinting

    No full text
    Apricot (Prunus armeniaca L.) is an important fruit species especially in the Mediterranean basin area. The genetic structure of apricot cultivars in this region was studied in order to shed light on the evolutionary history of this species. A sample of 207 patrimonial accessions was collected from different Mediterranean countries: Algeria, France, Italy, Morocco, Tunisia, Turkey, and Spain. Molecular characterization was performed using 25 SSR markers, selected according to high level of polymorphism, transferability between Prunus species, and localisation over the eight linkage groups of the Prunus genome. Statistical treatment of the dataset was undertaken using a model-based Bayesian clustering analysis implemented in the STRUCTURE program. It allowed assignment of the studied accessions into four distinct genetic clusters (Fst=0.122). A gradient of decreasing genetic diversity from the east to the south-west of the Mediterranean area was also evidenced. An interesting new pattern based on the discrimination of a ‘Maghreb’ cluster was revealed for the first time. These results clearly open new research lines dealing with the establishment of a nested core collection at the Mediterranean level, and with the prospective development of genetic association studies
    corecore