118 research outputs found
Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum
The weathering of meteorites found on Mars involves chemical and physical processes that can provide clues to climate conditions at the location of their discovery. Beginning on sol 1961, the Opportunity rover encountered three large iron meteorites within a few hundred meters of each other. In order of discovery, these rocks have been assigned the unofficial names Block Island, Shelter Island, and Mackinac Island. Each rock presents a unique but complimentary set of features that increase our understanding of weathering processes at Meridiani Planum. Significant morphologic characteristics interpretable as weathering features include (1) a large pit in Block Island, lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; (2) differentially eroded kamacite and taenite lamellae in Block Island and Shelter Island, providing relative timing through crosscutting relationships with deposition of (3) an iron oxide–rich dark coating; (4) regmaglypted surfaces testifying to regions of minimal surface modification, with other regions in the same meteorites exhibiting (5) large‐scale, cavernous weathering (in Shelter Island and Mackinac Island). We conclude that the current size of the rocks is approximate to their original postfall contours. Their morphology thus likely results from a combination of atmospheric interaction and postfall weathering effects. Among our specific findings is evidence supporting (1) at least one possible episode of aqueous acidic exposure for Block Island; (2) ripple migration over portions of the meteorites; (3) a minimum of two separate episodes of wind abrasion; alternating with (4) at least one episode of coating‐forming chemical alteration, most likely at subzero temperatures
Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity
Numerous loose rocks with dimensions of a few centimeters to tens of centimeters and with no obvious physical relationship to outcrop rocks have been observed along the traverse of the Mars Exploration Rover Opportunity. To date, about a dozen of these rocks have been analyzed with Opportunity’s contact instruments, providing information about elemental chemistry (Alpha Particle X‐ray Spectrometer), iron mineralogy and oxidation states (Mössbauer Spectrometer) and texture (Microscopic Imager). These “cobbles” appear to be impact related, and three distinct groups can be identified on the basis of chemistry and mineralogy. The first group comprises bright fragments of the sulfate‐rich bedrock that are compositionally and texturally indistinguishable from outcrop rocks. All other cobbles are dark and are divided into two groups, referred to as the “Barberton group” and the “Arkansas group,” after the first specimen of each that was encountered by Opportunity. Barberton group cobbles are interpreted as meteorites with an overall chemistry and mineralogy consistent with a mesosiderite silicate clast composition. Arkansas group cobbles appear to be related to Meridiani outcrop and contain an additional basaltic component. They have brecciated textures, pointing to an impact‐related origin during which local bedrock and basaltic material were mixed
Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater
Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony‐iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional‐scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour’s rim that will be markedly different from anything examined to date.Additional co-authors: RM Haberle, KE Herkenhoff, JA Herman, KD Iagnemma, BL Jolliff, JR Johnson, G Klingelhöfer, AH Knoll, AT Knudson, R Li, SM McLennan, DW Mittlefehldt, RV Morris, TJ Parker, MS Rice, LA Soderblom, SW Squyres, RJ Sullivan, MJ Wolf
Climate change implications for tidal marshes and food web linkages to estuarine and coastal nekton
Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
Meteorites on Mars observed with the Mars Exploration Rovers
Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. Chondrites have not been identified to date, which may be a result of their lower strengths and probability to survive impact at current atmospheric pressures. Impact craters directly associated with Heat Shield Rock, Barberton, or Santa Catarina have not been observed, but such craters could have been erased by eolian-driven erosion.Additional co-authors: DW Ming, RV Morris, PA de Souza Jr, SW Squyres, C Weitz, AS Yen, J Zipfel, T Economo
- …