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Abstract
Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe.
Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional
changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific
decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of
climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and
management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary
research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between
coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology
(e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life
history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on
tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a
significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with
an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration
in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and
into the future.
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Introduction

Tidal marshes are vegetated intertidal habitats that occur at the
land-sea interface and thus serve as critical transition zones
linking marine, freshwater, and terrestrial processes (Boström
et al. 2011). Recent research demonstrates the urgent need to
understand both short- and long-term impacts of climate
change and sea level rise (SLR) on tidal marsh ecosystem
function, food webs, and fisheries support (Able this issue;

Baker et al. 2020; Gilby et al. 2020). The cumulative impacts
of multiple interacting stressors, and whether the net effects
are additive, synergistic, or antagonistic, are receiving in-
creased attention in the ecological literature (Crain et al.
2008; Przeslawski et al. 2015; Jackson et al. 2016; Lauchlan
and Nagelkerken 2020). To further advance this area of re-
search, we revisit established concepts published in Concepts
and Controversies in Tidal Marsh Ecology (Weinstein and
Kreeger 2000) through the lens of climate change and the
multiple stressor framework. We explore the question: how
is climate change expected to impact the trophic linkages be-
tween marsh production and estuarine and coastal nekton
(free-swimming fishes and invertebrates), now and into the
future?

Tidal marshes evolved in dynamic coastal and estuarine
settings, and their position at the land-sea interface exposes
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them to a variety of environmental drivers (e.g., ocean cur-
rents, watershed hydrology) and environmental gradients
(e.g., salinity, temperature, dissolved oxygen; Lauchlan and
Nagelkerken 2020). Mounting evidence suggests that some
directional, periodic, and stochastic variation in environmental
conditions is intensifying under climate change [e.g., global or
regional SLR, sea surface temperature (SST), and anomalous
droughts, floods, or heatwaves, respectively; Trenberth 2011;
Boyd et al. 2015; Nerem et al. 2018]. While coastal and estu-
arine ecosystems can resist and recover from minor to moder-
ate natural disturbances, multiple stressors interacting syner-
gistically, whereby the combined effects are greater than the
sum of the individual (additive) effects, may lead to novel
ecological responses (Crain et al. 2008; Jackson et al. 2016)
or exceed critical ecological thresholds that result in funda-
mental state changes (Boström et al. 2011). Quantifying the
combined effects of climate-related stressors on costal and
estuarine nekton, and their associated fisheries, is of great
conservation, restoration, and socio-economic concern (zu
Ermgassen et al. this issue; Waltham et al. 2021; Baker et al.

2020; Gilby et al. 2020). Yet disentangling the drivers of
change and ecological outcomes remains a major challenge
to researchers and managers.We highlight key climate change
implications for tidal marshes and food web linkages to estu-
arine and coastal nekton to inform future studies.

Climate Change Impacts at the Land-Sea
Interface

Coastal Oceans and Watersheds

Broad-scale climatic changes are already shifting the timing,
magnitude, and duration of naturally fluctuating environmental
conditions (e.g., SLR, SST, ocean currents, waves, tides, pre-
cipitation) in marine, estuarine, and freshwater environments
(see Table 1; Pörtner et al. 2014; Haigh et al. 2020; Konapala
et al. 2020; Laufkötter et al. 2020). While natural variability is
often directional or periodic with an element of stochasticity,
climate change can increase the rate of change, amplify extreme

Table 1 Broad-scale environmental drivers to consider for studies
addressing the questions: How do climate change–induced shifts in
environmental drivers across the marine-freshwater gradient

potentially interact? How do these individual drivers or their
interactions alter tidal marsh structure, hydrodynamics, water quality,
nutrients, vegetation, and ultimately nekton and food webs?

Coastal ocean Watershed/ estuary

Broad-scale
environmental
drivers altered
by climate
change

Ocean currents, waves,
tides, upwelling

Weather, precipitation,
wind, storminess

Sea surface
temperature
(SST), marine
heatwaves

Relative sea level rise
(RSLR)

Weather,
precipitation,
storminess

Freshwater
flows,
drought vs.
flood

Nature of
variation

Periodic, stochastic Periodic, stochastic Directional,
periodic,
stochastic

Directional Periodic,
stochastic

Periodic,
stochas-
tic

Marsh structure,
hydrodynami-
cs, water
quality,
nutrients,
vegetation

Hydroperiod, sedimentation,
accretion, erosion,
subsidence, scouring,
vegetation community,
structure, biomass,
growth, temperature,
salinity, turbidity,
dissolved oxygen, pH,
acidification, nutrient
loading

Hydroperiod, coastal
flooding, marsh pore
water exchange,
sediment delivery and
exchange, accretion,
erosion, subsidence,
scouring, temperature,
salinity, turbidity,
dissolved oxygen, pH,
acidification, nutrient
delivery and exchange,
vegetation community,
structure, biomass,
growth

Temperature,
dissolved
oxygen,
vegetation
community,
structure,
biomass,
growth

Hydroperiod, coastal
flooding, sediment
delivery, accretion,
erosion, subsidence,
scouring, vegetation
community, structure,
biomass, growth

Hydroperiod, river
flooding, surface water
runoff, groundwater and
marsh pore water
exchange, sediment
delivery and exchange,
accretion, erosion,
scouring, temperature,
salinity, turbidity,
dissolved oxygen,
hypoxia, deoxygenation,
nutrient delivery and
exchange,
eutrophication, harmful
algal blooms, vegetation
community, structure,
biomass, growth

Marsh nekton
communities
and food web
dynamics

Species distribution, abundance, biomass, community composition, life history, diversity, species invasions, physiology, phenology,
ontogenetic shifts, migrations, foraging, growth, survival, recruitment, spawning, competition, primary production, food web
pathways, outwelling, secondary production, predator-prey interactions, trophic relays
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events, and shift the timing of variability. As a result, climate
change impacts on coastal oceans and watersheds, which influ-
ence marshes from seaward and landward directions, respec-
tively, may not only shift in timing individually but also gener-
ate simultaneous or consecutive applications of multiple
stressors (Crain et al. 2008; Jackson et al. 2016).

Ocean climate variability regulates SST trends, which nat-
urally vary in amplitude and frequency on annual and decadal
scales (e.g., Atlantic and Pacific decadal oscillations; Xie and
Tanimoto 1998; Mantua and Hare 2002). When viewed over
decades, increasing SST is a progressive, directional process;
however, departures from long-term averages (i.e., marine
heatwaves) occur on daily, monthly, or seasonal timescales
(Laufkötter et al. 2020). Coastal watershed hydrology is also
regulated by atmospheric climate variability, which influences
the timing and magnitude of precipitation, evapotranspiration,
and groundwater interactions (Williamson et al. 2009). While
long-term averages may be trending in one direction (e.g.,
drier conditions overall in Mediterranean climates), periodic
extremes may also occur (e.g., severe droughts and floods due
to changes in seasonal rainfall and snowpack in California,
USA; Belmecheri et al. 2016).

Overall, the combined effects of climate change on ocean
and watershed processes are connected and poised to interact
with each other. This is especially the case in tidal marshes,
which are dynamic and structurally complex biogenic habitats
that are shaped by tidal and fluvial processes (e.g., tides, sur-
face water runoff, groundwater and marsh porewater ex-
change; Davis and Dalrymple 2011). Several scenarios sug-
gest that multiple interacting stressors may result in marsh
conversion to open water or mudflat (Fagherazzi 2013). For
example, the co-occurrence of accelerating regional SLR with
increasing frequencies and/or magnitudes of high amplitude
“king” tides and storm surges may synergistically worsen
flooding and eventually result in marsh drowning (Cayan
et al. 2008; Marsooli et al. 2019; Dominicis et al. 2020).
Similarly, accelerating regional SLR and seasonal drought
interactions may increase the frequency and/or magnitude of
salinity intrusion into freshwater/brackish zones in estuaries
which has been shown to threaten less salt-tolerant vegetation
(Parker et al. 2011; Lauchlan and Nagelkerken 2020).
Globally, more frequent and intense deviations from long-
term averages and ranges, whether occurring on daily, season-
al, annual, or decadal scales, are likely to lead to novel chang-
es in ecosystem dynamics.

Tidal Marsh Hydrogeomorphology

Elevation and sedimentMarsh surface elevation is the prima-
ry factor influencing whether marshes can tolerate and recover
from accelerating global or regional SLR impacts due to feed-
back mechanisms between tidal inundation, above- and be-
lowground plant biomass, and sediment trapping and

accretion (Morris et al. 2002; Cahoon et al. 2020). Marshes
situated at a higher position within the potential vegetation
growth range possess greater “elevation capital” and have a
higher capacity to persist under accelerated SLR (Morris et al.
2002; Reed 2002; Cahoon and Guntenspergen 2010; Cahoon
et al. 2020). Elevation capital can be maintained if vertical
sediment and organic matter accretion rates match or exceed
the rate of relative SLR (RSLR), a region-specific measure-
ment of SLR that incorporates vertical land motion (Cahoon
2015). Elevation deficits can occur if marshes experience sub-
sidence, soil erosion, or low sediment supply or plant produc-
tion, and can be further exacerbated when RSLR exceeds
sediment accretion rates (Kirwan and Megonigal 2013).
While marshes with high elevation capital can tolerate deficits
for long periods (e.g., decades to centuries), marshes with low
elevation capital are more vulnerable to threshold effects (or
‘tipping points’; see Table 2). That is, theymay only be able to
persist with deficits for a short period before they deteriorate
due to channel expansion, marsh-edge erosion, runaway pond
expansion, and/or drowning (Cahoon 2015; Mariotti 2016;
Mariotti 2020; Schepers et al. 2020). If accretion rates cannot
keep pace with RSLR, marsh migration (or “transgression”)
into adjacent uplands is the remaining mechanism for the nat-
ural maintenance of marsh habitat (Brinson et al. 1995;
Kirwan et al. 2016; Schuerch et al. 2018; Kirwan and Gedan
2019). However, marsh migration depends on accommoda-
tion space, upland topography, slope, and connectivity, and
can be greatly reduced due to shoreline armoring and urban-
ization, resulting in “coastal squeeze” (see Fig. 1, as well as
Pontee 2013; Waltham et al. 2021).

Nutrient dynamics Tidal marsh hydrogeomorphology regu-
lates the exchange of water, sediment, and nutrients across
the land-water interface (Davis and Dalrymple 2011), and as
a result, multiple interacting stressors may alter organic matter
processing, nutrient cycling, and primary productivity
(O’Meara et al. 2017). For example, increased rainfall may
interact with topography, sediment grain size, and sediment
organic matter content to influence the rate and amount of
surface water runoff, groundwater and marsh porewater ex-
change, and ultimately, delivery of upland sediment (Sparks
et al. 2014; Sparks et al. 2015). Increased sediment delivery to
marshes may then combine with resuspended marsh sediment
due to erosion from wave energy to enhance vertical accretion
and emergent marsh sustainability (Mudd 2011). However,
increased nutrient delivery may counteract this process. For
example, nutrient enrichment may alter above- and below-
ground biomass of saltmarsh cordgrass (Spartina
alterniflora; Darby and Turner 2008; Deegan et al. 2012;
Hanson et al. 2016) and accelerate microbial decomposition
of soil organic matter (Drake et al. 2009; Bulseco et al. 2019).
Collectively, these effects can interact synergistically with
RSLR and storm surges to physically weaken edges of tidal
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creeks and increase erosion (Deegan et al. 2012) or to increase
the amount of openwater due to an increase in the number and
size of ponds on the marsh platform (Able this issue). In ad-
dition, interactions between nutrients, residence time or tidal
flushing, and warming may lead to harmful algal blooms,
deoxygenation, and hypoxia (Bricker et al. 2008).

Tidal Marsh Vegetation Plant community structure may re-
spond to climate change in a variety of ways due to species-
specific anatomical and physiological adaptations (Brinson
et al. 1995). Plant species in a low-elevationmarsh are adapted
to frequent flooding, whereas those in a high-elevation marsh
may only tolerate infrequent flooding. As a result, marsh re-
sponse to an increased hydroperiod (i.e., frequency, duration,
and amplitude of tidal flooding) because of RSLR varies de-
pending on the position of the tidal frame. Increased tidal
flooding of high marsh vegetation may exceed plant stress
tolerances to saltwater inundation and exacerbate soil anoxia,
both of which can lead to highmarsh plant loss or replacement
by low marsh species (Brinson et al. 1995; Fagherazzi 2013).

Marsh response to increased storms and wave energy may
also vary. Marshes dominated by structurally rigid plant spe-
cies may experience folding and breaking of stems, while
marshes with more flexible species may tolerate higher wave
energy levels, as has been shown with Elymus athericus and
Puccinellia maritima, respectively, in a European salt marsh
(Rupprecht et al. 2017). However, at very high wave energy
levels, conditions may be unsuitable even for highly flexible
species, resulting in total plant loss. Positive feedback loops
may be exacerbated by climate change, whereby declines in
plant density and changes in plant traits can decrease attenu-
ation of wave energy, sediment trapping efficiency, shoreline

stabilization, and storm buffering (Temmerman et al. 2005;
Möller 2006; Mudd et al. 2010; Ozeren et al. 2014; Morris
et al. 2016).

Altered climatic conditions are also predicted to drive
changes in foundation species, and the biogenic habitat
they provide, in multiple and often non-intuitive ways.
Warming-induced increases in the growing season may in-
crease overall community photosynthesis and marsh plant
biomass (Gedan and Bertness 2010). While elevated CO2

concentrations may cause a similar overall ecosystem stim-
ulus (Langley et al. 2002), this stimulation may be prefer-
entially beneficial to C3 plants (i.e., forbs), which are cur-
rently sub-dominant in many saline marshes, compared to
the C4 grasses (e.g., Spartina patens and S. alterniflora)
that more commonly dominate those systems (Erickson
et al. 2007). “Tropicalization” occurs when decreases in
the frequency and duration of extreme cold events allow
the expansion of tropical and subtropical macrophytes into
temperate areas. For example, woody black mangroves
(Avicennia germinans) are replacing S. alterniflora in
marshes of the southeastern USA (McKee and Rooth
2008; Cavanaugh et al. 2019). Changing environmental
conditions may also affect phenological characteristics
such as propagule establishment, peak biomass, senes-
cence, and ultimately marsh surface elevation, as has been
observed with increased temperature and shifts in
flowering timing in S. alterniflora (Crosby et al. 2015).
These types of preferential adaptations may imply substan-
tial shifts in future wetland (i.e., marsh and mangrove)
community structure, food web pathways, and fisheries
support.

Table 2 Summary of eleven
estimates of annual increases in
relative sea level rise (RSLR) that,
when exceeded, are predicted to
lead to the conversion of marsh to
open water in each system. Such
threshold values are commonly
referred to as marsh “tipping
points”

Tipping points
(mm year−1)

Study description and location Reference

2 to 10 Mangrove presence/absence and paleo-botany record in the Pacific Fujimoto et al. 1996

4 to 6 Field observations in New England, USA Watson et al. 2017

4 to 10 Field experiments and model of high and low sediment marshes on
the East Coast, USA

Mudd et al. 2010

5 Model based on 5075 samples from 33 salt marshes Morris et al. 2016

5 to 10 Model of varying tidal ranges and suspended sediment
concentrations on the East and Gulf coasts, USA

Kirwan et al. 2010

5 to 10 Determination of the rate of SLR when 36 deltas formed across the
globe

Turner et al. 2018

6 to 9 Paleo-marsh record on the Gulf Coast, USA Törnqvist et al. 2020

6.1 Paleo-record of mangrove vertical accretion records compared to
modeled rates of RSLR at multiple locations globally

Saintilan et al. 2020

7.1 780 Holocene evolution reconstructions in Great Britain Horton et al. 2018

7.99 Multiple metrics model on the Gulf Coast, USA Wu 2019

8.49 Total area model on the Gulf Coast, USA Wu 2019

12 Salt marshes with high sedimentation rates on the East Coast, USA Morris et al. 2002
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Climate Change Impacts on Nekton
Communities

Potentially profound consequences of climate change arise
from alterations to the complex suite of interacting physical,
biogeochemical, and ecological processes affecting estuarine
and coastal nekton. Here, we explore multiple stressor impacts
on species distributions, life history adaptations, and food web
dynamics, with an emphasis on the trophic linkages between
marsh production and nekton communities. For example, ma-
rine transient primary and intermediate consumers [e.g., juve-
nile shrimp (Penaeidae) and pinfish (Lagodon rhomboides),
respectively] accumulate marsh production while feeding on
the marsh surface or in channels before recruiting to estuarine
or coastal waters where they are subsequently consumed (Fry

et al. 2003). These production transfers or “trophic relays”
also occur when larger marine transient predators [e.g., striped
bass (Morone saxatilis), white perch (Morone americana)]
make “feeding forays” into marshes to consume both resident
[e.g., mummichog (Fundulus heteroclitus)] and transient prey
(Tupper and Able 2000; Weinstein et al. 2000; Baker et al.
2016). We use this framework (Kneib 2000) to illustrate how
trophic relays, the primary mechanism of energy transport
from tidal marshes to estuarine and coastal ecosystems, may
be fundamentally altered by climate change.

Species Distributions Changes in macroclimate may redistrib-
ute species and alter ecosystem function (Thompson et al.
2012). Species range expansions are particularly evident in
marine systems (e.g., coastal salt marshes) whereby nekton

Fig. 1 Comparison of two scenarios: a tidal marsh seascape a under
historic rates of sea level rise (SLR) and b under accelerated SLR. In
scenario b, SLR leads to erosion and transgression, which shift the
location and extent of each habitat type (e.g., subtidal, mudflat, low
marsh, middle marsh, high marsh, ponds) laterally and vertically. In
areas where human infrastructure constrains marsh transgression,
coastal squeeze leads to a higher risk of flooding along levees, roads,

and houses. In areas connected to upland watersheds, marsh migration
is unimpeded. Implications for food web dynamics in squeezed areas are
(1) reduced marsh area for resident nekton and juvenile transient nekton
but increased access for larger transient marine predators and (2) shifts in
the relative contributions of food web pathways, represented here as a
higher biomass of plankton (i.e., phytoplankton and zooplankton) due to
expanding open water habitat
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are responding to warming temperatures (Sorte et al. 2010;
Burrows et al. 2011; Morley et al. 2020). Historical compar-
isons of bivalves (Berge et al. 2005), gastropods
(Mieszkowska et al. 2006), amphipods (Foster et al. 2004),
crabs (Spivak and Luppi 2005; Hollebone and Hay 2007), and
fishes (Fodrie et al. 2010; Morson et al. 2012) have all dem-
onstrated poleward expansions. Species distributions within
estuaries may expand or contract depending on changes in
the spatial and temporal variability of environmental drivers
and gradients (e.g., temperature, salinity, dissolved oxygen,
pH; Lauchlan and Nagelkerken 2020). In addition, species
invasions into new areas may lead to unprecedented combi-
nations of species in estuarine and coastal nekton communi-
ties, with unforeseen consequences to species interactions and
food web structure (Hobbs et al. 2009).

Life History Adaptations Climate change can affect the phe-
nology, physiology, and behavior of tidal marsh fauna. Plant
responses to shifts in the timing and magnitude of environ-
mental fluctuations (e.g., seasonal temperature maxima) may
alter the availability of structural habitat (i.e., cover), foraging
substrate, and nutritional quality to consumers (Renner and
Zohner 2018; Lauchlan and Nagelkerken 2020). In addition,
the timing of peak nekton abundance may shift in response to
changing environmental conditions. In the southeastern USA,
for example, the timing of peak ingress of larval fishes [e.g.,
Atlantic croaker (Micropogonias undulates), summer floun-
der (Paralichthys dentatus), pinfish] from the coastal ocean to
estuarine nurseries is shifting earlier in warm years, with pro-
jections of future shifts in response to warming SST on the
order of weeks or months, but is delayed in years with strong
northerly winds (Thaxton et al. 2020).

Physiological performance (e.g., growth, calcification,
maximum body size), behavior (e.g., predator detection, es-
cape response, freshwater dependence), and inter- and intra-
specific competition and non-consumptive indirect effects
may also be affected by climate change (Miller et al. 2000;
Pörtner and Peck 2010; Nagelkerken and Munday 2016). The
consequences may vary among species, depending on life
history flexibility (Lord et al. 2017; Lauchlan and
Nagelkerken 2020). For example, changes to physio-
chemical conditions have the potential to negatively affect
secondary nekton production directly through changes in
feeding rate, growth, and survival [juvenile weakfish
(Cynoscion regalis); Lankford and Targett 1994] or indirectly
through mediating the overlap of nekton and their predators
[age-0 winter flounder (Pseudopleuronectes americanus);
Manderson et al. 2006].

Climate change may lead to ecological mismatches between
nekton and critical resources at important points in their life
cycles, which often occur in pulses or bottlenecks (Lauchlan
and Nagelkerken 2020). For example, shifts in the timing of
primary production pulses may create a temporal mismatch in

feeding and food availability for larval fishes, thus affecting
growth and survival (Houde 2016). Altered predator-prey inter-
actions may also impact early survival rates of nekton due to
increased predation on newly settled recruits (Almany and
Webster 2004), which has the potential to scale up to large
effects on population persistence (Levin and Stunz 2005;
Baker et al. 2014). Other documented ecological mismatches
arise when different life history types, species, or populations
exhibit differential responses to spatial or temporal changes in
environmental conditions (Durant et al. 2007; Millette et al.
2020). Nekton adapted to moving between marine, estuarine,
and freshwater environments at different life stages or events
may be uniquely affected by altered timing of their preferred
conditions due to climate change (Davis et al. 2014).

Tidal Marsh Food Webs Tidal marsh integration of complex
physical, biogeochemical, and ecological processes is
reflected in the diversity of primary producers, such as emer-
gent vegetation, phytoplankton, benthic algae, or aquatic mac-
rophytes, which support marsh resident and transient nekton
(Currin et al. 1995). Due to the fact that marshes are embedded
in seascape mosaics linked by an overlying water column that
integrates multiple interacting processes (Childers et al. 2000),
consumers that are able to exploit different resources in space
and time may be more resilient to change (Young et al. 2020).
However, if consumers are reliant on marsh-derived organic
matter, a reduction in its availability resulting from marsh
plant loss could have cascading effects on nekton growth
and recruitment (Litvin and Weinstein 2004; Litvin et al.
2018), foraging success (Colombano et al. 2021), energy re-
serves (Litvin et al. 2014), and trophic relays (Childers et al.
2000; Deegan et al. 2000; Kneib 2000).

Impacts on biogenic habitat structure may profoundly im-
pact food web dynamics (see Fig. 1). For example, hydrope-
riod and marsh-edge morphology govern nekton access to the
marsh surface, marsh primary production, and prey resources;
marsh residence time; and the frequency that organisms are
transported off the marsh surface to aquatic habitats (Minello
et al. 2012; Ziegler et al. 2020). As a result, any changes to
these factors may affect direct consumption of marsh-derived
organic matter, feeding forays by transient nekton, and trophic
relays (Childers et al. 2000; Deegan et al. 2000; Kneib 2000).
Increased tidal flooding height due to RSLR may influence
nekton access and predator-prey interactions on the marsh
platform, whereby increased flooding duration may affect
the amount of marsh production supporting estuarine and
coastal food webs (Ziegler et al. 2019). Conversely, marsh-
edge erosion that leads to scarp formations may limit the abil-
ity of primary consumers to access the marsh surface during
periods of tidal flooding, thus limiting the amount of energy
consumers transfer from the marsh surface to the aquatic food
web and make available to consumers (Nelson et al. 2019;
Lesser et al. 2020).
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Climate change impacts on food web dynamics may also
scale up to estuarine and coastal nekton communities and
population persistence. Such impacts are already being ob-
served in the Gulf of Mexico, USA, where nekton communi-
ties are receiving less energetic benefit from foraging in man-
groves, which are increasingly encroaching into marshes due
to tropicalization (Harris et al. 2020). Other changes in habitat
complexity (e.g., foraging substrate, cover in interstitial
spaces) due to climate change and RSLR may reduce the
nursery function (i.e., growth and survival of juvenile resident
and transient nekton) and, ultimately, reduce recruitment from
marshes to adult populations inhabiting other estuarine or ma-
rine habitats (Minello et al. 2003; Nagelkerken et al. 2015).

Threshold Effects on Tidal Marsh Food Webs The cumulative
impacts of multiple interacting stressors on tidal marshes
may yield immediate, delayed, or non-linear responses, or
may exceed critical ecological thresholds, with important
implications for energy flows to recipient consumers and
ecosystems. For example, as seaward marshes submerge
under accelerated RSLR, nekton production may increase
in response to fragmentation and associated increases in
marsh edge-to-area ratios (Minello et al. 1994; Gittman
et al. 2018). Therefore, if submergence stimulates nekton
production, and transgression compensates for seaward
losses, the net effect of RSLR could be an increase in nekton
production and consumption by marine transient predators
(Chesney et al. 2000). However, these increases in food web
support of nekton may only be temporary if significant
marsh loss occurs over the long term, with uncertain but
potentially catastrophic outcomes for trophic relays from
marsh resident to transient nekton (Weinstein et al. 2000).
Overall, the resulting net losses of marsh contributions of
secondary production to estuarine and coastal food webs
may occur over short (e.g., years; Nelson et al. 2019;
Harris et al. 2020) or long timescales (e.g., decades, centu-
ries; Able this issue). Understanding what characteristics of
tidal marsh ecosystem structure and function underlie nek-
ton support, and their resilience to climate change, is now a
clear research and management priority.

Considering Climate Change Impacts
in Future Tidal Marsh Research

Climate change is a rapidly evolving topic that can be incor-
porated into all tidal marsh research efforts and resource man-
agement decisions due to the prevalence and range of effects
on present and future tidal marshes globally. Our goals are to
promote awareness of climate change impacts and to stimulate
discussion among coastal and estuarine scientists and man-
agers. We offer the following recommendations with the aim
of encouraging tidal marsh researchers to conduct more

holistic and cross-disciplinary climate change studies, which
are critically needed for present and future management and
conservation of nekton and fisheries that rely on marshes.

& Climate change affects a diverse suite of physical and
biological processes that directly and indirectly influence
tidal marsh ecosystems. Future studies should focus on
drivers of short- and long-term ecosystem change and var-
iability, including those originating from coastal oceans
and watersheds (Table 1).

& Research opportunities on climate change impacts on tidal
marshes abound, especially in the context of the multiple
stressor framework (Table 1) and the critical ecological
threshold framework (“tipping points”; Table 2).
Quantitative studies on the net effects of multiple stressors
will provide important insight into the magnitude, direc-
tion, and timing of change that is likely to occur in tidal
marsh ecosystems.

& Secondary production offers a composite metric
reflecting ecosystem structure and function (Layman
and Rypel 2020) and, thus, in the context of this per-
spective, partially reflects the complex physical, bio-
geochemical, and ecological processes mediating mul-
tiple energetic pathways through which tidal marsh
production supports estuarine and coastal nekton. In
addition to trophic relays, marsh-derived organic mat-
ter exported in the form of particulate or dissolved
organic matter may also support nekton (i.e., the
“outwelling hypothesis”; Teal 1962; Nixon 1980;
Childers et al. 2000; Odum 2000), but this mechanism
has received less attention over recent decades (Duarte
et al. 2017; Najjar et al. 2018). Studies quantifying
tidal marsh energy flows (e.g., g m−2 year−1) through
both mechanisms are needed to track climate change
effects on food web resilience and recovery.

& Advancing integrative research on climate change impacts
on tidal marsh ecosystems requires diverse, collaborative
teams of theoreticians, empiricists, and statisticians. Open
science practices allow for tidal marsh researchers and
managers across the globe to tackle pressing climate
change issues together (Kimball et al. this issue).

Furthermore, there are numerous other high-priority tidal
marsh ecology topics that need to be evaluated in the context
of climate change. Examples are listed below.

& Climate change interactions with anthropogenic drivers of
seascape change (Gilby et al. 2020)

& Geographic variation in climate change impacts on tidal
marsh structure and function (Ziegler et al. 2021)

& Strategies to mitigate the effects of climate change and
urbanization through restoration techniques (Waltham
et al. 2021)
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& Emerging technologies to study climate change impacts
on nekton communities and food web dynamics (Kimball
et al. this issue)

& Climate change threats to the provision of marsh-supported
fisheries to humans (zu Ermgassen et al. this issue)
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