48 research outputs found

    Characterization of copper microelectrodes, following a homemade lithography, technique, and gold electroless deposition

    Get PDF
    We report the fabrication and characterization of copper microelectrodes obtained by a homemade lithography technique and after gold electroless deposition. For the fabrication, planes consisting of arrays of electrodes (black in color) with bow tie shape were designed and printed on a transparent paper (Canson ltd.). Using an embroidery frame with a silk fabric, a photographic emulsion was spread on the silk and simultaneously pressing the Canson paper on it. The system was introduced into a closed box and exposed with a UV light. The designed electrode templates prevented direct exposition of the UV light over copper films and indelible ink was spread over it. After the ink was dried, the copper film is immersed into ferric acid to attack the uncovered copper parts (where there is no ink). In this way, we obtained copper electrodes with initial gap separation of ~142μm and subsequently, they followed electroless deposition of gold to make the copper electrodes to contact. For the characterization, electrical measurements were performed. They present ohmic resistance values in the order of 106 Ω produced by surface scattering of the electrons within the gold microwire and enhanced by oxidation of the copper electrodes

    Characterization of copper microelectrodes, following a homemade lithography, technique, and gold electroless deposition

    Get PDF
    ABSTRACT We report the fabrication and characterization of copper microelectrodes obtained by a homemade lithography technique and after gold electroless deposition. For the fabrication, planes consisting of arrays of electrodes (black in color) with bow tie shape were designed and printed on a transparent paper (Canson ltd.). Using an embroidery frame with a silk fabric, a photographic emulsion was spread on the silk and simultaneously pressing the Canson paper on it. The system was introduced into a closed box and exposed with a UV light. The designed electrode templates prevented direct exposition of the UV light over copper films and indelible ink was spread over it. After the ink was dried, the copper film is immersed into ferric acid to attack the uncovered copper parts (where there is no ink). In this way, we obtained copper electrodes with initial gap separation of ~142μm and subsequently, they followed electroless deposition of gold to make the copper electrodes to contact. For the characterization, electrical measurements were performed. They present ohmic resistance values in the order of 10 6 Ω produced by surface scattering of the electrons within the gold microwire and enhanced by oxidation of the copper electrodes

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Effect of ZrO2:SiO2 dispersion on the thermal stability, mechanical properties and corrosion behavior of hybrid coatings deposited on carbon steel

    No full text
    In this work we present the development of a nanocomposite material composed by ZrO2:SiO2 (25:75 mol%) nanoparticles in a polyurethane (PU) matrix for corrosion protection of AISI 1018 carbon steel. Specifically, the effect of the pre-dispersion method of ZrO2:SiO2 nanoparticles to reinforce PU coatings in delayed the corrosion and enhance mechanical properties of mild steel, were analyzed by applying two conventional methods: mechanical stirring (1, 3 and 5 h) and sonication (30, 60 and 120 min). The effect of pre-dispersed the ceramic nanoparticles by mechanical stirring and sonication on the mechanical properties and corrosion behavior was analyzed. Sonication improved the dispersion and hardness properties reducing the time of dispersion of the nanoparticles in comparison with mechanical stirring. The EIS results also showed that the hybrid coatings using sonication as method to pre-dispersed the nanoparticles enhanced the dispersion and the degradation resistance of the carbon steel by more than two-order of magnitude as compared to the coated samples with pure polyurethane after 2 h exposure in 3 wt.% NaCl solution. Long-term (20 days) EIS results also confirmed that the hybrid coating synthesized with sonically pre-dispersed particles improved the mechanical properties and degradation resistance in comparison with that observed with coatings using pre-dispersed particles by mechanical stirring, which could be better in service mechanical integrity. © 2014 Elsevier B.V. All rights reserved

    Controlled Electroplating And Electromigration In Nickel Electrodes For Nanogap Formation

    No full text
    We report the fabrication of nickel nanospaced electrodes by electroplating and electromigration for nanoelectronic devices. Using a conventional electrochemical cell, nanogaps can be obtained by controlling the plating time alone and after a careful optimization of electrodeposition parameters such as electrolyte bath, applied potential, cleaning, etc. During the process, the gap width decreases exponentially with time until the electrode gaps are completely bridged. Once the bridge is formed, the ex situ electromigration technique can reopen the nanogap. When the gap is ∼1 nm, tunneling current-voltage characterization shows asymmetry which can be corrected by an external magnetic field. This suggests that charge transfer in the nickel electrodes depends on the orientation of magnetic moments. © 2010 IOP Publishing Ltd

    Green Biosynthesis of Tin Oxide Nanomaterials Mediated by Agro-Waste Cotton Boll Peel Extracts for the Remediation of Environmental Pollutant Dyes.

    No full text
    The sustainable synthesis of metal oxide materials provides an ecofriendly and more exciting approach in the domain of a clean environment. Besides, plant extracts to synthesize nanoparticles have been considered one of the more superior ecofriendly methods. This paper describes the biosynthetic preparation route of three different sizes of tetragonal structure SnO2 nanoparticles (SNPs) from the agro-waste cotton boll peel aqueous extract at 200, 500, and 800 °C for 3 h and represents a low-cost and alternative preparation method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, ultraviolet-visible absorption spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy. Surface area and porosity size distribution were identified by nitrogen adsorption-desorption isotherms and Brunauer-Emmett-Teller analysis. The photocatalytic properties of the SNP samples were studied against methylene blue (MB) and methyl orange (MO), and the degradation was evaluated with three different size nanomaterials of 3.97, 8.48, and 13.43 nm. Photocatalytic activities were carried out under a multilamp (125 W Hg lamps) photoreactor. The smallest size sample exhibited the highest MB degradation efficiency within 30 min than the most significant size sample, which lasted 80 min. Similarly, in the case of MO, the smallest sample showed a more superior degradation efficiency with a shorter period (40 min) than the large-size samples (100 min). Therefore, our studies suggested that the developed SNP nanomaterials could be potential, promising photocatalysts against the degradation of industrial effluents
    corecore