38 research outputs found

    Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)

    Full text link
    The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400, 380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in survey astronomy. Here we summarize the science case feasible for a survey of Subaru 300 nights. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3 in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological distances will be measured to 3% precision via BAO, and redshift-space distortions will be used to constrain structure growth to 6% precision. In the GA program, radial velocities and chemical abundances of stars in the Milky Way and M31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10^6 stars in the Galactic thick-disk, halo and tidal streams as faint as V~22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars, elucidating the detailed chemo-dynamical structure and evolution of each of the main stellar components of the Milky Way Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our simulations suggest the wide avelength range will be powerful in probing the galaxy population and its clustering over a wide redshift range. We propose to conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the properties of early systems close to the reionization epoch.Comment: This document describes the scientific program and requirements for the Subaru Prime Focus Spectrograph (PFS) project. Made significant revision based on studies for the Preliminary Design Review (PRD) held in Feb 2013. The higher-resolution paper file is available from http://member.ipmu.jp/masahiro.takada/pfs_astroph_rv.pd

    Signatures of minor mergers in the Milky Way disc I: The SEGUE stellar sample

    Full text link
    It is now known that minor mergers are capable of creating structure in the phase-space distribution of their host galaxy's disc. In order to search for such imprints in the Milky Way, we analyse the SEGUE F/G-dwarf and the Schuster et al. (2006) stellar samples. We find similar features in these two completely independent stellar samples, consistent with the predictions of a Milky Way minor-merger event. We next apply the same analyses to high-resolution, idealised N-body simulations of the interaction between the Sagittarius dwarf galaxy and the Milky Way. The energy distributions of stellar particle samples in small spatial regions in the host disc reveal strong variations of structure with position. We find good matches to the observations for models with a mass of Sagittarius' dark matter halo progenitor 1011\lessapprox 10^{11} M_{\odot}. Thus, we show that this kind of analysis could be used to provide unprecedentedly tight constraints on Sagittarius' orbital parameters, as well as place a lower limit on its mass.Comment: 14 pages, 9 figures, 2 tables. Revised to reflect accepted versio

    Vertical density waves in the Milky Way disc induced by the Sagittarius Dwarf Galaxy

    Full text link
    Recently, Widrow and collaborators announced the discovery of vertical density waves in the Milky Way disk. Here we investigate a scenario where these waves were induced by the Sagittarius dwarf galaxy as it plunged through the Galaxy. Using numerical simulations, we find that the Sagittarius impact produces North-South asymmetries and vertical wave-like behavior that qualitatively agrees with what is observed. The extent to which vertical modes can radially penetrate into the disc, as well as their amplitudes, depend on the mass of the perturbing satellite. We show that the mean height of the disc is expected to vary more rapidly in the radial than in the azimuthal direction. If the observed vertical density asymmetry is indeed caused by vertical oscillations, we predict radial and azimuthal variations of the mean vertical velocity, correlating with the spatial structure. These variations can have amplitudes as large as 8 km/s.Comment: 6 pages, 6 figures, MNRAS accepted. Revised to reflect final versio

    25-Hydroxyvitamin D and pre-clinical alterations in inflammatory and hemostatic markers: a cross sectional analysis in the 1958 British Birth Cohort

    Get PDF
    BACKGROUND: Vitamin D deficiency has been suggested as a cardiovascular risk factor, but little is known about underlying mechanisms or associations with inflammatory or hemostatic markers. Our aim was to investigate the association between 25-hydroxyvitamin D [25(OH)D, a measure for vitamin D status] concentrations with pre-clinical variations in markers of inflammation and hemostasis. METHODOLOGY/PRINCIPAL FINDINGS: Serum concentrations of 25(OH)D, C-reactive protein (CRP), fibrinogen, D-dimer, tissue plasminogen activator (tPA) antigen, and von Willebrand factor (vWF) were measured in a large population based study of British whites (aged 45 y). Participants for the current investigation were restricted to individuals free of drug treated cardiovascular disease (n = 6538). Adjusted for sex and month, 25(OH)D was inversely associated with all outcomes (p or =75 nmol/l compared to < 25 nmol/l. D-dimer concentrations were lower for participants with 25(OH)D 50-90 nmol/l compared to others (quadratic term p = 0.01). We also examined seasonal variation in hemostatic and inflammatory markers, and evaluated 25(OH)D contribution to the observed patterns using mediation models. TPA concentrations varied by season (p = 0.02), and much of this pattern was related to fluctuations in 25(OH)D concentrations (p < or =0.001). Some evidence of a seasonal variation was observed also for fibrinogen, D-dimer and vWF (p < 0.05 for all), with 25(OH)D mediating some of the pattern for fibrinogen and D-dimer, but not vWF. CONCLUSIONS: Current vitamin D status was associated with tPA concentrations, and to a lesser degree with fibrinogen and D-dimer, suggesting that vitamin D status/intake may be important for maintaining antithrombotic homeostasi

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link
    corecore