193 research outputs found

    Dissecting the 3D structure of elliptical galaxies with gravitational lensing and stellar kinematics

    Full text link
    The combination of strong gravitational lensing and stellar kinematics provides a powerful and robust method to investigate the mass and dynamical structure of early-type galaxies. We demonstrate this approach by analysing two massive ellipticals from the XLENS Survey for which both high-resolution HST imaging and X-Shooter spectroscopic observations are available. We adopt a flexible axisymmetric two-component mass model for the lens galaxies, consisting of a generalised NFW dark halo and a realistic self-gravitating stellar mass distribution. For both systems, we put constraints on the dark halo inner structure and flattening, and we find that they are dominated by the luminous component within one effective radius. By comparing the tight inferences on the stellar mass from the combined lensing and dynamics analysis with the values obtained from stellar population studies, we conclude that both galaxies are characterised by a Salpeter-like stellar initial mass function.Comment: Proceedings of the IAU Symposium 309, Contributed Talk, Vienna, July 2014; 4 pages, 2 figure

    The SWELLS survey. III. Disfavouring "heavy" initial mass functions for spiral lens galaxies

    Get PDF
    We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. Fifteen of the lenses are taken from paper I while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground deflector has an inclined disc, with a wide range of morphological types, from late-type spiral to lenticular. For each system, we compare the total mass inside the critical curve inferred from gravitational lens modelling to the stellar mass inferred from stellar population synthesis (SPS) models, computing the stellar mass fraction f* = M(SPS)/M(lens). We find that, for the lower mass SWELLS systems, adoption of a Salpeter stellar initial mass function (IMF) leads to estimates of f* that exceed 1. This is unphysical, and provides strong evidence against the Salpeter IMF being valid for these systems. Taking the lower mass end of the SWELLS sample sigma(SIE) < 230 km/s, we find that the IMF is lighter (in terms of stellar mass-to-light ratio) than Salpeter with 98% probability, and consistent with the Chabrier IMF and IMFs between the two. This result is consistent with previous studies of spiral galaxies based on independent techniques. In combination with recent studies of massive early-type galaxies that have favoured a heavier Salpeter-like IMF, this result strengthens the evidence against a universal stellar IMF.Comment: Accepted for publication in MNRAS. Some changes (none major) to address the referee's comments. 18 pages, 8 figure

    The SWELLS Survey. VI. hierarchical inference of the initial mass functions of bulges and discs

    Full text link
    The long-standing assumption that the stellar initial mass function (IMF) is universal has recently been challenged by a number of observations. Several studies have shown that a "heavy" IMF (e.g., with a Salpeter-like abundance of low mass stars and thus normalisation) is preferred for massive early-type galaxies, while this IMF is inconsistent with the properties of less massive, later-type galaxies. These discoveries motivate the hypothesis that the IMF may vary (possibly very slightly) across galaxies and across components of individual galaxies (e.g. bulges vs discs). In this paper we use a sample of 19 late-type strong gravitational lenses from the SWELLS survey to investigate the IMFs of the bulges and discs in late-type galaxies. We perform a joint analysis of the galaxies' total masses (constrained by strong gravitational lensing) and stellar masses (constrained by optical and near-infrared colours in the context of a stellar population synthesis [SPS] model, up to an IMF normalisation parameter). Using minimal assumptions apart from the physical constraint that the total stellar mass within any aperture must be less than the total mass within the aperture, we find that the bulges of the galaxies cannot have IMFs heavier (i.e. implying high mass per unit luminosity) than Salpeter, while the disc IMFs are not well constrained by this data set. We also discuss the necessity for hierarchical modelling when combining incomplete information about multiple astronomical objects. This modelling approach allows us to place upper limits on the size of any departures from universality. More data, including spatially resolved kinematics (as in paper V) and stellar population diagnostics over a range of bulge and disc masses, are needed to robustly quantify how the IMF varies within galaxies.Comment: Accepted for publication in MNRAS. 15 pages, 8 figures. Code available at https://github.com/eggplantbren/SWELLS_Hierarchica

    Lean Strategy e creazione di valore

    Get PDF
    Eliminazione degli sprechi, creazione di valore e miglioramento continuo sono gli obiettivi strategici del Lean Thinking. Ideata ed applicata originariamente nel mondo manifatturiero e in realtà industriali come la Toyota, oggigiorno la “filosofia” Lean si è successivamente diffusa in numerosi contesti gestionali - compresi quelli delle pubbliche amministrazioni e dei servizi - e si è progressivamente trasformata in uno degli approcci manageriali di maggiori potenzialità e successo. Nel dettaglio, sono le componenti manageriale e strategica che rendono questa filosofia quanto mai attuale e di interesse, soprattutto in un momento storico nel quale le risorse sono scarse e devono essere utilizzate con efficacia ed efficienza, e le richieste dei clienti e dei vari portatori di interesse aziendali sono pressanti. Partendo da queste premesse, il lavoro presenta a tutti gli interessati le caratteristiche fondamentali della filosofia Lean, i suoi principi guida, le primarie tecniche utilizzabili, nonché gli strumenti di management, controllo e misurazione che ne accompagnano l’implementazione ed il monitoraggio in azienda e guidano l’opera dei manager verso il miglioramento continuo e la perfezione. In maggior dettaglio, il focus dell’opera è posto sulla dimensione strategica del Lean (da cui la denominazione di Lean Strategy), ovvero sulla definizione dell’architettura strategica nella quale un sistema Lean può efficacemente essere implementato e prosperare in azienda, perseguendo e raggiungendo i suoi primari obiettivi, tra i quali innanzitutto la creazione di valore. Da notare che nel lavoro sono presentati anche strumenti non strettamente convenzionali, nello specifico ponendo in risalto il ruolo che la simulazione ed i business games possono svolgere a supporto della Lean Strategy in azienda

    The X-shooter Lens Survey - II. Sample presentation and spatially resolved kinematics

    Get PDF
    We present the X-shooter Lens Survey (XLENS) data. The main goal of XLENS is to disentangle the stellar and dark matter content of massive early-type galaxies (ETGs), through combined strong gravitational lensing, dynamics and spectroscopic stellar population studies. The sample consists of 11 lens galaxies covering the redshift range from 0.10.1 to 0.450.45 and having stellar velocity dispersions between 250250 and 380 km s−1380\,\mathrm{km}\,\mathrm{s}^{-1}. All galaxies have multi-band, high-quality HST imaging. We have obtained long-slit spectra of the lens galaxies with X-shooter on the VLT. We are able to disentangle the dark and luminous mass components by combining lensing and extended kinematics data-sets, and we are also able to precisely constrain stellar mass-to-light ratios and infer the value of the low-mass cut-off of the IMF, by adding spectroscopic stellar population information. Our goal is to correlate these IMF parameters with ETG masses and investigate the relation between baryonic and non-baryonic matter during the mass assembly and structure formation processes. In this paper we provide an overview of the survey, highlighting its scientific motivations, main goals and techniques. We present the current sample, briefly describing the data reduction and analysis process, and we present the first results on spatially resolved kinematics.Comment: Accepted for publication in MNRA

    The non-evolving internal structure of early-type galaxies: the case study SDSS J0728+3835 at z = 0.206

    Get PDF
    We study the internal dynamical structure of the early-type lens galaxy SDSS J0728+3835 at z = 0.206. The analysis is based on two-dimensional kinematic maps extending out to 1.7 effective radii obtained from Keck spectroscopy, on lensing geometry and on stellar mass estimates obtained from multiband Hubble Space Telescope imaging. The data are modelled under the assumptions of axial symmetry supported by a two-integral distribution function (DF), by applying the combined gravitational lensing and stellar dynamics code CAULDRON, and yielding high-quality constraints for an early-type galaxy at cosmological redshifts. Modelling the total density profile as a power-law of the form rho_tot ~ 1/r^{gamma}, we find that it is nearly isothermal (logarithmic slope gamma = 2.08^{+0.04}_{-0.02}), and quite flattened (axial ratio q = 0.60^{+0.08}_{-0.03}). The galaxy is mildly anisotropic (delta = 0.08 +/- 0.02) and shows a fair amount of rotational support, in particular towards the outer regions. We determine a dark matter fraction lower limit of 28 per cent within the effective radius. The stellar contribution to the total mass distribution is close to maximal for a Chabrier initial mass function (IMF), whereas for a Salpeter IMF the stellar mass exceeds the total mass within the galaxy inner regions. We find that the combination of a NFW dark matter halo with the maximally rescaled luminous profile provides a remarkably good fit to the total mass distribution over a broad radial range. Our results confirm and expand the findings of the SLACS survey for early-type galaxies of comparable velocity dispersion (sigma_SDSS = 214 +/- 11 km/s). The internal structure of J0728 is consistent with that of local early-type galaxies of comparable velocity dispersion as measured by the SAURON project, suggesting lack of evolution in the past two billion years.Comment: 13 pages, 10 figures. MNRAS in press. Revised to match accepted versio

    Two-dimensional kinematics of SLACS lenses: III. Mass structure and dynamics of early-type lens galaxies beyond z ~ 0.1

    Get PDF
    We combine in a self-consistent way the constraints from both gravitational lensing and stellar kinematics to perform a detailed investigation of the internal mass distribution, amount of dark matter, and dynamical structure of the 16 early-type lens galaxies from the SLACS Survey, at z = 0.08 - 0.33, for which both HST/ACS and NICMOS high-resolution imaging and VLT VIMOS IFU spectroscopy are available. Based on this data set, we analyze the inner regions of the galaxies, i.e. typically within one (3D) effective radius r_e, under the assumption of axial symmetry and by constructing dynamical models supported by two-integral stellar DFs. For all systems, the total mass density distribution is found to be well approximated by a simple power-law: this profile is on average slightly super-isothermal, with a logarithmic slope = 2.074^{+0.043}_{-0.041} (68% CL) and an intrinsic scatter 0.144^{+0.055}_{-0.014}, and is fairly round, with an average axial ratio = 0.77+/-0.04. The lower limit for the dark matter fraction (fDM) inside r_e ranges, in individual systems, from nearly zero to almost a half, with a median value of 12%. By including stellar masses derived from SPS models with a Salpeter IMF, we obtain an average fDM = 31%. The fDM rises to 61% if, instead, a Chabrier IMF is assumed. For both IMFs, the dark matter fraction increases with the total mass of the galaxy (3-sigma correlation). Based on the intrinsic angular momentum parameter calculated from our models, we find that the galaxies can be divided into two dynamically distinct groups, which are shown to correspond to the usual classes of the slow and fast rotators. Overall, the SLACS systems are structurally and dynamically very similar to their nearby counterparts, indicating that the inner regions of early-type galaxies have undergone little, if any, evolution since redshift z ~ 0.35. (Abridged)Comment: 27 pages, 34 figures. MNRAS, in pres

    Use of System Dynamics Models as Part of a Game-based, Urban Sustainability Course for Students in Higher Education (SUSTAIN Project)

    Get PDF
    The difficulty with sustainability arises from its abstract nature and the fact that these problems have long term horizons. The objective of the SUSTAIN course is to promote sustainability literacy among students of higher education through an innovative and student-centered education that makes use of system dynamics (SD) models embedded in game-based learning. In this project, as part of the SUSTAIN course, we try to develop small illustrative SD simulation models that will allow for experimentation in a consequence-free environment. These simulation models will then be translated to game elements, mechanics and potential playing scenarios for a table top / board game that deal with sustainability issues. The purpose of this project under development is to help students of higher education achieve competences such as the ability of constantly assessing the environment, operating and adapting to it through continuous and iterative individual process of revision from their frames of reference, and to provide the material to comprehend systemic complexity. We expect these competences to allow them to deal with complex decisions and decision making processes in their future careers in private and public organizations, and provide insights into the complexity and the effort required to achieve the Sustainable Development Goals (SDGs)
    • …
    corecore