21 research outputs found

    Poster: Userland Containers for Mobile Systems

    Get PDF
    Mobile platforms are not rising to their potential as ubiquitous computers, in large part because of the constraints we impose on their apps in the name of security. Mobile operating systems have long struggled with the challenge of isolating untrusted apps. In pursuit of a secure runtime environment, Android and iOS isolate apps inside a gulag of platform-imposed programming languages and runtime libraries, leaving few design decisions to the application developers. These thick layers of custom software eschew app portability and maintainability, as development teams must continually tweak their apps to support modifications to the OS\u27s runtime libraries. Nonstandard and ever-changing interfaces to those APIs invite bugs in the operating system and apps alike. Mobile-only APIs have bifurcated the population of software running on our devices. On one side sits the conventional PC and server programs: compilers, shells, servers, daemons, and many others that use the standard libraries and programming models to interface with the computer and the outside world. On the other side lives the apps: mobile-only and purpose-built, they often serve as user interfaces to some larger cloud-based system. Under the weight of the numerous OS-imposed platform constraints, it is difficult for app developers to innovate: large classes of applications are simply impossible to port to mobile devices because the required APIs are unsupported. To deal with these cross platform dependencies, it is necessary to maintain multiple code bases. In the past, dependency issues have typically been solved through the use of containers. However, deploying containers on mobile systems present unique challenges. To maintain security, mobile operating systems do not give users permission to launch Docker containers. To solve this issue, we consider an older idea known as user-land containerization. Userland containerization allows userland containers to be launched by regular unprivileged users in any Linux or Android based system. Userland containerization works by inserting a modified operating system kernel between the host kernel and the guest processes. We have done an in depth study on the performance of user-mode containers like the user mode linux (UML) kernel [1], repurposing it as a userland hypervisor between the host kernel and the guest processes. We prototype a proof-of-concept usermode kernel with an implementation that is guided by the findings of our empirical study. Our kernel introduces a new technique---similar to paravirtualization---to optimize the syscall interface between the guest process and the usermode kernel to improve its I/O performance. The redesigned syscall interface provides I/O performance that approaches that of conventional virtualization techniques. Our paravirtualization strategies outperform UML by a factor of 3--6X for I/O bound workloads. Furthermore, we achieve 3.5--5X more network throughput and equal disk write speed compared to VMWare Workstation. Although there is still ample opportunity for performance improvements, our approach demonstrates the promise and potential of a usable userland virtualization platform that balances security with performance

    Establishing Trust in Vehicle-to-Vehicle Coordination: A Sensor Fusion Approach

    Get PDF
    Autonomous vehicles (AVs) use diverse sensors to understand their surroundings as they continually make safety- critical decisions. However, establishing trust with other AVs is a key prerequisite because safety-critical decisions cannot be made based on data shared from untrusted sources. Existing protocols require an infrastructure network connection and a third-party root of trust to establish a secure channel, which are not always available. In this paper, we propose a sensor-fusion approach for mobile trust establishment, which combines GPS and visual data. The combined data forms evidence that one vehicle is nearby another, which is a strong indication that it is not a remote adversary hence trustworthy. Our preliminary experiments show that our sensor-fusion approach achieves above 80% successful pairing of two legitimate vehicles observing the same object with 5 meters of error. Based on these preliminary results, we anticipate that a refined approach can support fuzzy trust establishment, enabling better collaboration between nearby AVs

    Establishing Trust in Vehicle-to-Vehicle Coordination: A Sensor Fusion Approach

    Get PDF
    As we add more autonomous and semi-autonomous vehicles (AVs) to our roads, their effects on passenger and pedestrian safety are becoming more important. Despite extensive testing, AVs do not always identify roadway hazards. Failures in object recognition components have already led to several fatal collisions, e.g. as a result of faults in sensors, software, or vantage point. Although a particular AV may fail, there is an untapped pool of information held by other AVs in the vicinity that could be used to identify roadway hazards before they present a safety threat

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    SyncBleed: A Realistic Threat Model and Mitigation Strategy for Zero-Involvement Pairing and Authentication (ZIPA)

    No full text
    Zero Involvement Pairing and Authentication (ZIPA) is a promising technique for auto-provisioning large networks of Internet-of-Things (IoT) devices. Presently, these networks use password-based authentication, which is difficult to scale to more than a handful of devices. To deal with this challenge, ZIPA enabled devices autonomously extract identical authentication or encryption keys from ambient environmental signals. However, during the key negotiation process, existing ZIPA systems leak information on a public wireless channel which can allow adversaries to learn the key. We demonstrate a passive attack called SyncBleed, which uses leaked information to reconstruct keys generated by ZIPA systems. To mitigate SyncBleed, we present TREVOR, an improved key generation technique that produces nearly identical bit sequences from environmental signals without leaking information. We demonstrate that TREVOR can generate keys from a variety of environmental signal types under 4 seconds, consistently achieving a 90-95% bit agreement rate across devices within various environmental sources

    VoltKey: Using Power Line Noise for Zero-Involvement Pairing and Authentication (Demo Abstract)

    No full text
    We present VoltKey, a method that transparently generates secret keys for colocated devices, leveraging spatiotemporally unique noise contexts observed in commercial power line infrastructure. VoltKey extracts randomness from power line noise and securely converts it into an authentication token. Nearby devices which observe the same noise patterns on the powerline generate identical keys. The unique noise pattern observed only by trusted devices connected to a local power line prevents malicious devices without physical access from obtaining unauthorized access to the network. VoltKey is implemented inside of a standard USB power supply as a platform-agnostic bolt-on addition to any IoT or mobile device or any wireless access point that is connected to the power outlet
    corecore