46 research outputs found
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
Plan de mejora para la disminución de la rotación en Movich corporativo
En este proyecto de grado tiene como fin encontrar un plan de mejora para la disminución de la rotación en empresas del sector hotelero, para mejorar la productividad de los compañeros, motivándolos de manera extrínseca o intrínseca, dentro de dicho documento estará el software E-Learning para capacitar a los empleados y de esta manera, que pueda ejercer un plan de carrera al interior de la organización, motivación por medio de las distintas alianzas generadas, todo esto para que los empleados encuentren un clima laboral afable a sus necesidades.In this degree project aims to find an improvement plan for the decrease of rotation in companies in the hotel sector, to improve the productivity of peers, motivating them in an extrinsic or intrinsic way, within said document will be the E-Learning software to train employees and in this way, that can exercise a career plan within the organization, motivation through the various alliances generated, all this so that employees find a working environment friendly to their needs.Administrador (a) de EmpresasPregrad
Very High-Frequency Radar Mapping of Surface Currents
An ocean surface current radar (OSCR) in the very high frequency (VHF) mode was deployed in South Florida Ocean Measurement Center (SFOMC) during the summer of 1999. During this period, a 29-d continuous time series of vector surface currents was acquired starting on 9 July 1999 and ending 7 August 1999. Over a 20-min sample interval, the VHF radar mapped coastal ocean currents over a 7.5 km × 8 km domain with a horizontal resolution of 250 m at 700 grid points. A total of 2078 snapshots of the two-dimensional current vectors were acquired during this time series and of these samples, only 69 samples (3.3%) were missing from the time series. During this period, complex surface circulation patterns were observed that included coherent, submesoscale vortices with diameters of 2 to 3 km inshore of the Florida Current. Comparisons to subsurface measurements from moored and ship-board acoustic Doppler current profiles revealed regression slopes of close to unity with biases ranging from 4 to 8 cm s-1 between surface and subsurface measurements at 3 to 4 m beneath the surface. Correlation coefficients were 0.8 or above with phases of -10 to -20° suggestive of an anticylconic veering of current with depth relative to the surface current. The radar-derived surface current field provided spatial context for an observational network using mooring-, ship- and autonomous underwater vehicle-sensor packages that were deployed at the SFOMC
VHF Radar Detects Oceanic Submesoscale Vortex along Florida Coast
Escalating national interest in the coastal ocean underscores the need for high‐quality surface current data that can improve our understanding of surface circulation and its impact on societal and environmental issues related to coastal pollution, beach restoration, oil spill mitigation, and coastal air‐sea interaction. Coastal regimes exposed to strong ocean currents,surface waves, and winds during storm conditions may frequently require beach renourishment to restore valuable beaches that are key to local economies. Maintaining water quality is a problem, too, particularly where shipping dominates the traffic in and out of harbors. These environmental issues are increasingly difficult to manage due to evolving oceanic and atmospheric conditions. Inferring evolving spatial patterns of the coastal ocean current fields from single‐point measurements such as moorings or drifters that propagate away from divergent flow regimes is difficult at best. The Doppler radar technique is one approach that effectively measures the evolution of surface current fields in near‐real time