229 research outputs found

    Antarctic intermediate water circulation in the South Atlantic over the past 25,000years

    Get PDF
    Antarctic Intermediate Water is an essential limb of the Atlantic meridional overturning circulation that redistributes heat and nutrients within the Atlantic Ocean. Existing reconstructions have yielded conflicting results on the history of Antarctic Intermediate Water penetration into the Atlantic across the most recent glacial termination. In this study we present leachate, foraminiferal, and detrital neodymium isotope data from three intermediate-depth cores collected from the southern Brazil margin in the South Atlantic covering the past 25kyr. These results reveal that strong chemical leaching following decarbonation does not extract past seawater neodymium composition in this location. The new foraminiferal records reveal no changes in seawater Nd isotopes during abrupt Northern Hemisphere cold events at these sites. We therefore conclude that there is no evidence for greater incursion of Antarctic Intermediate Water into the South Atlantic during either the Younger Dryas or Heinrich Stadial 1. We do, however, observe more radiogenic Nd isotope values in the intermediate-depth South Atlantic during the mid-Holocene. This radiogenic excursion coincides with evidence for a southward shift in the Southern Hemisphere westerlies that may have resulted in a greater entrainment of radiogenic Pacific-sourced water during intermediate water production in the Atlantic sector of the Southern Ocean. Our intermediate-depth records show similar values to a deglacial foraminiferal Nd isotope record from the deep South Atlantic during the Younger Dryas but are clearly distinct during the Last Glacial Maximum and Heinrich Stadial 1, demonstrating that the South Atlantic remained chemically stratified during Heinrich Stadial 1.Natural Environment Research Council (Grant IDs: NE/K005235/1, NE/F006047/1), National Science Foundation (Grant ID: OCE -1335191), Rutherford Memorial Scholarship, DFG Research Center/Cluster of Excellence “The Ocean in the Earth System”, FAPESP (Grant ID: 2012/17517-3), CAPES (Grant IDs: 1976/2014, 564/2015

    North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    Get PDF
    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change

    Abyssal origin for the early Holocene pulse of unradiogenic neodymium isotopes in Atlantic seawater

    Get PDF
    The neodymium isotopic composition of authigenic phases of deep-sea sediment cores can be interpreted as reflecting past changes in water-mass mixing proportions if end-member water-mass compositions are constrained through time. Here we present three new records spanning 2480 to 4360 m depth in the North Atlantic Ocean that show seawater Nd isotope values in the early to mid-Holocene that are more radiogenic than values from the abyssal northwest Atlantic. This finding indicates that that the end-member composition of North Atlantic Deep Water was more stable within its core than it was at abyssal depths. The spatial distribution of the unradiogenic neodymium isotope values observed in the North Atlantic suggests a bottom source, and therefore that they were unlikely to have been due to the production of intermediate-depth Labrador Sea Water. We infer that the unradiogenic authigenic Nd isotope values were most likely derived from a pulse of poorly chemically weathered detrital material that was deposited into the Labrador Sea following Laurentide ice sheet retreat in the early Holocene. This unradiogenic sediment released neodymium into the bottom waters, yielding an unradiogenic seawater signal that was advected southward at abyssal depths and attenuated as it vertically mixed upward in the water column to shallower depths. The southward dispersion of these unradiogenic seawater values traces deep-water advection. However, the exact values observed at the most abyssal sites cannot be interpreted as proportionate to the strength of deep-water production without improved constraints on end-member changes.Radiocarbon dates on Ocean Drilling Program Sites 925E and 929B were funded by Natural Environment Research Council (NERC) radiocarbon grant 1752.1013 and Nd isotope analyses were funded by NERC grants NE/K005235/1 and NE/F006047/1 to Piotrowski

    The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden

    Get PDF
    River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis

    Get PDF
    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests

    Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes

    Get PDF
    Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease
    corecore