69 research outputs found

    Origin and History of Mitochondrial DNA Lineages in Domestic Horses

    Get PDF
    Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability

    Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

    Get PDF
    Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons(1,2). Several groups have attributed this apparent plasticity to 'transdifferentiation'(3-5). Others, however, have suggested that cell fusion could explain these results(6-9). Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62789/1/nature02069.pd

    Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis

    Get PDF
    : Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2

    Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

    Get PDF
    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Understanding cultural significance, the edible mushrooms case

    Get PDF
    RefereedBackground: Cultural significance is a keystone in quantitative ethnobiology, which offers the possibility to make inferences about traditional nomenclature systems, use, appropriation and valuing of natural resources. In the present work, using as model the traditional mycological knowledge of Zapotecs from Oaxaca, Mexico, we analyze the cultural significance of wild edible resources. Methods In 2003 we applied 95 questionnaires to a random sample of informants. With this data we integrated the Edible Mushroom Cultural Significance Index. This index included eight variables: frequency of mention, perceived abundance, use frequency, taste, multifunctional food use, knowledge transmission, health and economy. Data were analyzed in an inductive perspective using ordination and grouping techniques to reveal the behavior of species in a cultural multivariate dimension. Results: In each variable the species had different conducts. Cantharellus cibarius s.l. was the species with most frequency of mention. Pleurotus sp. had the highest perceived abundance. C. cibarius s.l. was the most frequently consumed species. Gomphus clavatus was the most palatable species and also ranked highest in the multifunctional food index. Cortinarius secc.Malacii sp. had the highest traditional importance. Only Tricholoma magnivelare was identified as a health enhancer. It also had the most economic importance. According to the compound index, C. cibarius s.l., the Amanita caesarea complex, Ramaria spp. and Neolentinus lepideus were the mushrooms with highest cultural significance. Multivariate analysis showed that interviewees identify three main groups of mushrooms: species with high traditional values, frequent consumption and known by the majority; species that are less known, infrequently consumed and without salient characteristics; and species with low traditional values, with high economic value and health enhancers. Conclusion: The compound index divided the cultural significance into several cultural domains and showed the causes that underlie this phenomenon. This approach can be used in cross-cultural studies because it brings a list with the relative position of species among a cultural significance gradient. This list is suitable for comparisons and also it is flexible because cultural variables can be included or removed to adjust it to the nature of the different cultures or resources under study
    corecore