337 research outputs found

    Herbal medicine use by surgery patients in Hungary: a descriptive study

    Get PDF
    BACKGROUND: The popularity of non-conventional treatments, especially the consumption of herbs is showing an increasing tendency all over the world. The consumption of herbal medicines might cause several complications during perioperative care. METHODS: The survey was conducted at the First Department of Surgery of Semmelweis University and focused on the demographics of patients consuming herbal medicines who had undergone elective surgery between July 1(st) 2014 and February 28(th) 2015. A one-page questionnaire, that the patients filled in individually and anonymously, was used. The response rate was 17.3 %. RESULTS: Out of the 390 patients who filled in the questionnaire, 7.2 % (28 patients) used herbal medicines, 3.6 % (14 patients) of them two weeks prior to their hospitalization. The other 3.6 % (14 patients) took herbal medicines sometime in the past. The majority of those who have ever consumed herbs are women (18/28), have completed secondary or tertiary education (23/28), more than half of them suffer from tumorous diseases and only a quarter of them (7/28) informed their physician about their use of herbal medication of their own accord. CONCLUSIONS: Attention must be paid to the exploration of herb consumption habits of surgery patients during the preoperative examinations in order to avoid potential side effects, complications or drug interactions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12906-015-0890-2) contains supplementary material, which is available to authorized users

    Effects of aversive odour presentation on inhibitory control in the Stroop colour-word interference task

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the unique neural projections of the olfactory system, odours have the ability to directly influence affective processes. Furthermore, it has been shown that emotional states can influence various non-emotional cognitive tasks, such as memory and planning. However, the link between emotional and cognitive processes is still not fully understood. The present study used the olfactory pathway to induce a negative emotional state in humans to investigate its effect on inhibitory control performance in a standard, single-trial manual Stroop colour-word interference task. An unpleasant (H<sub>2</sub>S) and an emotionally neutral (Eugenol) odorant were presented in two separate experimental runs, both in blocks alternating with ambient air, to 25 healthy volunteers, while they performed the cognitive task.</p> <p>Results</p> <p>Presentation of the unpleasant odorant reduced Stroop interference by reducing the reaction times for incongruent stimuli, while the presentation of the neutral odorant had no effect on task performance.</p> <p>Conclusions</p> <p>The odour-induced negative emotional state appears to facilitate cognitive processing in the task used in the present study, possibly by increasing the amount of cognitive control that is being exerted. This stands in contrast to other findings that showed impaired cognitive performance under odour-induced negative emotional states, but is consistent with models of mood-congruent processing.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Effects of attention and perceptual uncertainty on cerebellar activity during visual motion perception

    Get PDF
    Recent clinical and neuroimaging studies have revealed that the human cerebellum plays a role in visual motion perception, but the nature of its contribution to this function is not understood. Some reports suggest that the cerebellum might facilitate motion perception by aiding attentive tracking of visual objects. Others have identified a particular role for the cerebellum in discriminating motion signals in perceptually uncertain conditions. Here, we used functional magnetic resonance imaging to determine the degree to which cerebellar involvement in visual motion perception can be explained by a role in sustained attentive tracking of moving stimuli in contrast to a role in visual motion discrimination. While holding the visual displays constant, we manipulated attention by having participants attend covertly to a field of random-dot motion or a colored spot at fixation. Perceptual uncertainty was manipulated by varying the percentage of signal dots contained within the random-dot arrays. We found that attention to motion under high perceptual uncertainty was associated with strong activity in left cerebellar lobules VI and VII. By contrast, attending to motion under low perceptual uncertainty did not cause differential activation in the cerebellum. We found no evidence to support the suggestion that the cerebellum is involved in simple attentive tracking of salient moving objects. Instead, our results indicate that specific subregions of the cerebellum are involved in facilitating the detection and discrimination of task-relevant moving objects under conditions of high perceptual uncertainty. We conclude that the cerebellum aids motion perception under conditions of high perceptual demand

    Smaller Gene Networks Permit Longer Persistence in Fast-Changing Environments

    Get PDF
    The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the variance in population persistence times. When the rate of environmental change is high, the relationship between network size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time. However, when the rate of environmental change is very slow, the relationship between network size and heritability disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature, and as we are able to determine the genetic basis of ecologically-relevant quantitative traits

    Anhydrobiosis and Freezing-Tolerance:Adaptations That Facilitate the Establishment of Panagrolaimus Nematodes in Polar Habitats

    Get PDF
    <div><p>Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. <i>Panagrolaimus davidi</i>, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 <i>Panagrolaimus</i> strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other <i>Panagrolaimus</i> isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that <i>P. davidi</i> belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that <i>P. superbus</i>, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of <i>Panagrolaimus</i>. The early-diverging <i>Panagrolaimus</i> lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the <i>davidi</i> and the <i>superbus</i> clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of <i>P. davidi</i> do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by <i>P. davidi</i> and of Surtsey by <i>P. superbus</i> may be examples of recent “ecological fitting” of freezing-tolerant anhydrobiotic propagules to the respective abiotic conditions in Ross Island and Surtsey.</p></div

    A radio-pulsing white dwarf binary star

    Get PDF
    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable at radio frequencies, the first such detection for any white dwarf system. They reflect the spin of a magnetic white dwarf which we find to be slowing down on a 10^7 yr timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they originate in large part from the cool star. AR Sco's broad-band spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere

    Multifrequency studies of the peculiar quasar 4C+21.35 during the 2010 flaring activity

    Get PDF
    The discovery of rapidly variable Very High Energy ( VHE; E &gt; 100 GeV). - ray emission from 4C + 21.35 ( PKS 1222+ 216) by MAGIC on 2010 June 17, triggered by the high activity detected by the Fermi Large Area Telescope ( LAT) in high energy ( HE; E &gt; 100 MeV). - rays, poses intriguing questions on the location of the. - ray emitting region in this flat spectrum radio quasar. We present multifrequency data of 4C + 21.35 collected from centimeter to VHE during 2010 to investigate the properties of this source and discuss a possible emission model. The first hint of detection at VHE was observed by MAGIC on 2010 May 3, soon after a gamma- ray flare detected by Fermi-LAT that peaked on April 29. The same emission mechanism may therefore be responsible for both the HE and VHE emission during the 2010 flaring episodes. Two optical peaks were detected on 2010 April 20 and June 30, close in time but not simultaneous with the two gamma- ray peaks, while no clear connection was observed between the X-ray and gamma- ray emission. An increasing flux density was observed in radio and mm bands from the beginning of 2009, in accordance with the increasing gamma- ray activity observed by Fermi-LAT, and peaking on 2011 January 27 in the mm regime ( 230 GHz). We model the spectral energy distributions ( SEDs) of 4C + 21.35 for the two periods of the VHE detection and a quiescent state, using a one-zone model with the emission coming from a very compact region outside the broad line region. The three SEDs can be fit with a combination of synchrotron self-Compton and external Compton emission of seed photons from a dust torus, changing only the electron distribution parameters between the epochs. The fit of the optical/UV part of the spectrum for 2010 April 29 seems to favor an inner disk radius of &lt; six gravitational radii, as one would expect from a prograde-rotating Kerr black hole.</p

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data
    corecore