987 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Evidence for tt¯ tt¯ production in the multilepton final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is presented for four-top-quark production using an integrated luminosity of 139 fb- 1 of proton–proton collision data at a centre-of-mass energy of 13TeV collected by the ATLAS detector at the LHC. Events are selected if they contain a same-sign lepton pair or at least three leptons (electrons or muons). Jet multiplicity, jet flavour and event kinematics are used to separate signal from the background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The four-top-quark production cross section is measured to be 24-6+7 fb. This corresponds to an observed (expected) significance with respect to the background-only hypothesis of 4.3 (2.4) standard deviations and provides evidence for this process

    Search for heavy resonances decaying into a pair of Z bosons in the ℓ⁺ ℓ ¯ℓ'⁺ ℓ'¯ and ℓ⁺ ℓ¯ν\bar{ν} states using 139 fb¯¹ of proton–proton collisions at \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a pair of Z bosons leading to \ell ^+\ell ^-\ell '^+\ell '^- and \ell ^+\ell ^-\nu {{\bar{\nu }}} final states, where \ell stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the integrated luminosity of 139 \mathrm {fb}^{-1} recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations

    Optimisation of large-radius jet reconstruction for the ATLAS detector in 13 TeV proton–proton collisions

    Get PDF
    Jet substructure has provided new opportunities for searches and measurements at the LHC, and has seen continuous development since the optimization of the large-radius jet definition used by ATLAS was performed during Run 1. A range of new inputs to jet reconstruction, pile-up mitigation techniques and jet grooming algorithms motivate an optimisation of large-radius jet reconstruction for ATLAS. In this paper, this optimisation procedure is presented, and the performance of a wide range of large-radius jet definitions is compared. The relative performance of these jet definitions is assessed using metrics such as their pileup stability, ability to identify hadronically decaying W bosons and top quarks with large transverse momenta. A new type of jet input object, called a ‘unified flow object’ is introduced which combines calorimeter- and inner-detector-based signals in order to achieve optimal performance across a wide kinematic range. Large-radius jet definitions are identified which significantly improve on the current ATLAS baseline definition, and their modelling is studied using pp collisions recorded by the ATLAS detector at \sqrt{s}=13~\text {TeV} during 2017

    Search for top squarks in events with a Higgs or Z boson using 139 fb−1 of pp collision data at √ s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a search for direct top squark pair production in events with missing transverse momentum plus either a pair of jets consistent with Standard Model Higgs boson decay into b-quarks or a same-flavour opposite-sign dilepton pair with an invariant mass consistent with a Z boson. The analysis is performed using the proton–proton collision data at s=13 TeV collected with the ATLAS detector during the LHC Run-2, corresponding to an integrated luminosity of 139 fb- 1. No excess is observed in the data above the Standard Model predictions. The results are interpreted in simplified models featuring direct production of pairs of either the lighter top squark (t~ 1) or the heavier top squark (t~ 2), excluding at 95% confidence level t~ 1 and t~ 2 masses up to about 1220 and 875 GeV, respectively
    corecore