362 research outputs found

    In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging

    Get PDF
    A retinal-fundus camera fitted with a custom Image-Replicating Imaging Spectrometer was used to image the bulbar conjunctival and episcleral microvasculature in ten healthy human subjects at normoxia (21% Fraction of Inspired Oxygen [FiO2]) and acute mild hypoxia (15% FiO2) conditions. Eyelid closure was used to control oxygen diffusion between ambient air and the sclera surface. Four subjects were imaged for 30 seconds immediately following eyelid opening. Vessel diameter and Optical Density Ratio (ODR: a direct proxy for oxygen saturation) of vessels was computed automatically. Oximetry capability was validated using a simple phantom that mimicked the scleral vasculature. Acute mild hypoxia resulted in a decrease in blood oxygen saturation (SO2) (i.e. an increase in ODR) when compared with normoxia in both bulbar conjunctival (p < 0.001) and episcleral vessels (p = 0.03). Average episcleral diameter increased from 78.9 ± 8.7 μm (mean ± standard deviation) at normoxia to 97.6 ± 14.3 μm at hypoxia (p = 0.02). Diameters of bulbar conjunctival vessels showed no significant change from 80.1 ± 7.6 μm at normoxia to 80.6 ± 7.0 μm at hypoxia (p = 0.89). When exposed to ambient air, hypoxic bulbar conjunctival vessels rapidly reoxygenated due to oxygen diffusion from ambient air. Reoxygenation occured in an exponential manner, and SO2 reached normoxia baseline levels. The average ½ time to full reoxygenation was 3.4 ± 1.4 s. As a consequence of oxygen diffusion, bulbar conjunctival vessels will be highly oxygenated (i.e. close to 100% SO2) when exposed to ambient air. Episcleral vessels were not observed to undergo any significant oxygen diffusion, instead behaving similarly to pulse oximetry measurements. This is the first study to the image oxygen dynamics of bulbar conjunctival and episcleral microvasculature, and consequently, the first study to directly observe the rapid reoxygenation of hypoxic bulbar conjunctival vessels when exposed to ambient air. Oximetry of bulbar conjunctival vessels could potentially provide insight into conditions where oxygen dynamics of the microvasculature are not fully understood, such as diabetes, sickle-cell diseases, and dry-eye syndrome. Oximetry in the bulbar conjunctival and episcleral microvasculature could be complimentary or alternative to retinal oximetry

    Dye-free retinal angiography using blood-oxygenation modulation

    Get PDF
    Fluorescence angiography (FA) is widely used for studying and diagnosing abnormalities in the retinal blood circulation, but has associated risks of nausea, skin irritation, and even death. We describe a new non-invasive angiography technique: Blood Oxygenation Modulation Angiography, in which multispectral imaging of a transient perturbation in blood-oxygen saturation, yields angiography sequences similar to FA, including key features such as sequential filling of choroidal and retinal-vessels, which underpin assessment of circulation health. This is the first non-invasive angiography technique capable of visualizing these circulation features

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Clinical and Demographic Factors Associated with COVID-19, Severe COVID-19, and SARS-CoV-2 Infection in Adults: A Secondary Cross-Protocol Analysis of 4 Randomized Clinical Trials

    Get PDF
    Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57692 participants (median [range] age, 51 [18-95] years; 11720 participants [20.3%] aged ≥65 years; 31058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17678 Hispanic or Latino participants (30.6%), and 40745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P <.001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P <.001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P <.001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P <.001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P =.002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P <.001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P =.005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P =.008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P <.001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P =.001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P =.001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P <.001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P <.001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics

    Cell-type-specific 3D epigenomes in the developing human cortex

    Get PDF
    Lineage-specific epigenomic changes during human corticogenesis have been difficult to study owing to challenges with sample availability and tissue heterogeneity. For example, previous studies using single-cell RNA sequencing identified at least 9 major cell types and up to 26 distinct subtypes in the dorsal cortex alone1,2. Here we characterize cell-type-specific cis-regulatory chromatin interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor cells, excitatory neurons, and interneurons isolated from mid-gestational samples of the human cortex. We show that chromatin interactions underlie several aspects of gene regulation, with transposable elements and disease-associated variants enriched at distal interacting regions in a cell-type-specific manner. In addition, promoters with increased levels of chromatin interactivity—termed super-interactive promoters—are enriched for lineage-specific genes, suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we develop CRISPRview, a technique that integrates immunostaining, CRISPR interference, RNAscope, and image analysis to validate cell-type-specific cis-regulatory elements in heterogeneous populations of primary cells. Our findings provide insights into cell-type-specific gene expression patterns in the developing human cortex and advance our understanding of gene regulation and lineage specification during this crucial developmental window

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore