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Abstract

Lineage-specific epigenomic changes during human corticogenesis have remained elusive due to 

challenges with sample availability and tissue heterogeneity. For example, previous studies used 

single-cell RNA sequencing to identify at least nine major cell types and up to 26 distinct subtypes 

in the dorsal cortex alone1,2. Here, we characterize cell type-specific cis-regulatory chromatin 

interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor 

cells, excitatory neurons, and interneurons isolated from mid-gestational human cortex samples. 

We show that chromatin interactions underlie multiple aspects of gene regulation, with 

transposable elements and disease-associated variants enriched at distal interacting regions in a 

cell type-specific manner. In addition, promoters with significantly increased levels of chromatin 

interactivity, termed super interactive promoters, are enriched for lineage-specific genes, 

suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we 

develop CRISPRview, a novel technique integrating immunostaining, CRISPRi, RNAscope, and 

image analysis for validating cell type-specific cis-regulatory elements in heterogeneous 

populations of primary cells. Our study presents the first cell type-specific characterization of 3D 

epigenomes in the developing human cortex, advancing our understanding of gene regulation and 

lineage specification during this critical developmental window.

Introduction

The human cortex undergoes extensive expansion during development, a process which is 

markedly different and features distinct cell types from mouse cortical development. Much 

of its diversity arises from cortical stem cells known as radial glia (RG), which give rise to 

intermediate progenitor cells (IPCs) and excitatory neurons (eNs) that undergo radial 

migration until they reach the cortical plate (CP)3,4. Meanwhile, interneurons (iNs) migrate 

tangentially into the dorsal cortex through the marginal and germinal zones (GZ)5. Dynamic 

changes in the epigenomic landscape have been shown to play a critical role in development 

and cell fate commitment, for instance through the rewiring of physical chromatin loops 

between promoters and distal regulatory elements including enhancers6. These interactions 

are of particular interest as their dysregulation has been linked to alterations in gene 

expression and complex disorders and traits7,8. Although previous studies have investigated 

bulk tissues including the CP and GZ9, detailed characterizations are still missing for 

specific cell types. Here, we describe a novel approach for isolating RG, IPCs, eNs, and iNs 

from mid-gestational human cortex samples, enabling a comparison of their 3D epigenomes. 

Furthermore, we develop CRISPRview, a sensitive technique for validating cell type-specific 

distal regulatory elements in single cells. Our results identify key mechanisms underlying 
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gene regulation and lineage specification during human corticogenesis, providing a 

framework for the understanding of diverse processes in development and disease.

Results

Sorting specific cell types from the developing human cortex

To isolate cell types from human cortex samples between gestational weeks (GW) 15 to 22 

(Supplementary Table 1), we expanded upon an established approach for isolating RG from 

human cortical samples using fluorescence-activated cell sorting (FACS)10. GZ and CP 

samples were dissociated, stained using antibodies for EOMES, SOX2, PAX6, and SATB2, 

and partitioned into their constituent populations using FACS (Fig. 1a; Extended Data Fig. 

1). IPCs were isolated as the EOMES+ population, while eNs were isolated from the 

EOMES- and SOX2- population based on high SATB2 expression1. RG were isolated based 

on high SOX2 and high PAX6 expression, and iNs were isolated based on medium SOX2 

and low PAX6 expression. The gene expression profiles of the sorted cell populations were 

both highly consistent with cellular identity and reproducible between individuals (Fig. 1b; 

Extended Data Fig. 2a, b).

Characterizing cell type-specific 3D epigenomes

We used H3K4me3 proximity ligation-assisted ChIP-seq (PLAC-seq)11 to identify 

chromatin interactions at active promoters and assay for transposase-accessible chromatin 

using sequencing (ATAC-seq) to profile open chromatin peaks for the sorted cell populations 

(Fig. 1c; Supplementary Table 2). After confirming that the samples cluster by cellular 

identity (Extended Data Fig. 2c, d), we applied the Model-based Analysis of PLAC-seq 

(MAPS) pipeline12 to call significant H3K4me3-mediated chromatin interactions at a 

resolution of 5 kb. We identify 35,552, 26,138, 29,104 and 22,598 interactions in RG, IPCs, 

eNs, and iNs, respectively, with approximately 85% of the interactions classified as anchor 

to non-anchor, and the remaining interactions classified as anchor to anchor (Fig. 1d; 

Extended Data Fig. 3a, b). The median interaction distance was between 170 kb to 230 kb 

(Fig. 1e), with an average of 4–5 interactions per promoter (Fig. 1f), and the majority of 

interactions occurred within topologically associated domains (TADs) (Extended Data Fig. 

3c).

Chromatin interactions influence cell type-specific transcription

We characterized the extent to which H3K4me3-mediated chromatin interactions influence 

cell type-specific transcription. First, the sorted cell populations cluster by developmental 

age based on their interaction strengths across all interacting loci (Fig. 2a). This is consistent 

with iNs at this age possessing progenitor-like characteristics including high SOX2 
expression. Meanwhile, genes participating in cell type-specific interactions are enriched for 

biological processes linked to their respective cell types, including cell proliferation for RG 

and IPCs, and neuron projection development for IPCs and eNs (Extended Data Fig. 4a; 

Supplementary Table 3). Interaction strength and gene expression are positively correlated 

(Fig. 2a, b; Extended Data Fig. 4b), suggesting that chromatin interactions orchestrate 

transcription in a manner that is distinctly cell type-specific. Next, we leveraged the 

enrichment of open chromatin peaks at distal interacting regions (Fig. 2c; Extended Data 
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Fig. 4c) and performed transcription factor (TF) motif enrichment analysis for distal 

interacting regions in each cell type13 (Fig. 2d; Supplementary Table 4). The motifs for 

PAX6, EOMES, and TBR1 are enriched in RG, IPCs, and eNs, respectively, recapitulating 

their sequence of expression along this developmental trajectory14. The motifs for DLX1, 

DLX2, DLX6, GSX2, and LHX6 are enriched in iNs, in accordance with their roles in iN 

maturation and function15. Finally, we detect motifs that are enriched in distal interacting 

regions for co-expression modules in the developing human cortex1 (Supplementary Table 

5). Our results identify key lineage-specific TFs while linking them to their interacting 

genes, enabling novel insights into gene regulatory networks during human corticogenesis.

Super interactive promoters are enriched for lineage-specific genes

The number of chromatin interactions at H3K4me3-mediated anchor bins is modestly 

correlated with gene expression (Extended Data Fig. 5a). One potential explanation is that 

individual genes are expressed to varying degrees in the contexts of their diverse cellular 

functions, and a subset of regulatory elements may be better described as fine-tuning rather 

than independently inducing or silencing transcription. Multiple regulatory interactions can 

also exert synergistic or nonlinear effects on gene regulation. Cell type-specific genes tend to 

harbor more chromatin interactions than shared genes across all four cell types (Extended 

Data Fig. 5b). By ranking anchor bins according to their cumulative interaction scores, we 

delineate a subset of promoters with significantly increased levels of chromatin interactivity, 

termed super interactive promoters (SIPs) (Fig. 3a; Extended Data Fig. 5c). We identify 755, 

765, 638, and 663 SIPs in RG, IPCs, eNs, and iNs, respectively (Extended Data Fig. 5d; 

Supplementary Table 6). SIPs are enriched for key lineage-specific genes including GFAP 
and HES1 for RG, EOMES for IPCs, SATB2 for eNs, and DLX5, DLX6, GAD1, GAD2, 

and LHX6 for iNs. We also observe forebrain-specific SIPs including FOXG1 in all four cell 

types, progenitor-specific SIPs including SOX2 in RG, IPCs, and iNs, and cortical neuron-

specific SIPs including TBR1 in IPCs and eNs. Numerous promoters for lincRNAs 

including LINC00461 and LINC01551 are annotated as SIPs, consistent with their 

expression in the developing cortex16. In general, SIPs are enriched in cell types with the 

highest expression of their linked genes, supporting their putative roles in lineage 

specification (Fig. 3b). Moreover, super-enhancers and DNA methylation valleys (DMVs)17 

are enrichment at SIPs (Extended Data Fig. 5e, f). Finally, SIPs based on promoter capture 

Hi-C data in neutrophils, naive CD4+ T cells, monocytes, megakaryocytes, and 

erythroblasts18 are analogously enriched for cell type-specific over shared genes (Extended 

Data Fig. 5g), implying that SIPs present a generalized mechanism for maintaining the 

expression of key genes underlying cellular identity and function.

Transposable elements in SIP formation

To explore mechanisms underlying SIP formation, we evaluated the contributions of 

transposable elements (TEs), which are known to influence 3D chromatin architecture and 

propagate regulatory elements19–21. We analyzed the enrichment of TEs at the class, family, 

and subfamily levels in sequences defined by SIPs and their distal interacting regions, 

termed super interactive promoter groups (SIPGs) (Fig. 3c; Extended Data Fig. 6a–c). We 

first observe that ERVL-MaLRs are enriched in SIPGs across all four cell types. We identify 

16 SIPGs in eNs that exhibit significant enrichment for ERVL-MaLRs and have 40 or more 
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distal interacting regions (hypergeometric test, one-tailed, P < 0.01) (Fig. 3d). TF motif 

enrichment analysis for ERVL-MaLRs reveals highest enrichment for that of ZNF143, an 

architectural protein mediating physical chromatin looping between promoters and distal 

regulatory elements22 (Fig. 3e), corroborating links between ERVL-MaLR TEs and ZNF143 

binding in 3T3 and HeLa cells23. We find that ZNF143 motifs are broadly enriched in 

ERVL-MaLRs, SIPGs, and ERVL-MaLR TEs in SIPGs (Extended Data Fig. 6d–f). The 

ADRA2A SIPG is characterized by the strongest enrichment of ERVL-MaLR TE-localized 

ZNF143 motifs (hypergeometric test, one-tailed, P = 1.59×10−6) (Fig. 3f), spanning 42 distal 

interacting regions, 25 of which contain ERVL-MaLRs, and 12 of which contain ERVL-

MaLR-localized ZNF143 motifs, underscoring elevated ADRA2A expression in eNs (Fig. 

3g, Extended Data Fig. 6g, h). ZNF143 motifs can be found in the consensus sequences of 

the ERVL-MaLR TE subfamilies (Extended Data Fig. 6i, j), suggesting ZNF143 motifs are 

coordinately expanded by ERVL-MaLR TE insertion, promoting increased binding site 

redundancy and strengthened assembly of the ADRA2A regulatory unit (Fig. 3h). CRISPRi 

targeting of ERVL-MaLR TE-localized ZNF143 motifs in the ADRA2A SIPG resulted in 

the significant downregulation of ADRA2A expression for 3 of 7 regions in eNs (two-

sample t-test, two-tailed, P < 0.05) (Fig. 3i), supporting TEs’ role in mediating the formation 

of higher order chromatin features including SIPs24.

Developmental trajectories from RG to eNs

Since RG, IPCs, and eNs represent a developmental trajectory from dorsal cortical 

progenitors to mature functional neurons, we grouped genes based on their gene expression 

and chromatin interactivity along this axis and identified genes linked to cell type-specific 

processes in RG, IPCs, and eNs (groups 1–3) (Fig. 4a; Extended Data Fig. 7a; 

Supplementary Table 7). We similarly identified genes with anticorrelated gene expression 

and chromatin interactivity from RG to eNs (groups 4–5), which represent eN-silenced and 

RG-silenced genes, respectively. eN-silenced genes are enriched for biological processes 

linked to chromatin remodeling and epigenetic regulation, while RG-silenced genes are 

enriched for eN-specific signatures. Furthermore, genes in these two groups are depleted for 

interactions with enhancers annotated using ChromHMM in the germinal matrix25 while 

exhibiting enrichment for interactions with TFs containing domains associated with 

transcriptional repression (Fig. 4b; Extended Data Fig. 7b; Supplementary Table 8). Our 

results demonstrate that cell type-specific 3D epigenomes are capable of identifying distinct 

modes of epigenetic regulation during development.

Human-specific aspects of cortical development

Human corticogenesis is dramatically distinct from other mammals, driven largely by the 

increased diversity and proliferative capacity of cortical progenitors26. Notch signaling 

genes in particular have been implicated in the clonal expansion of RG27,28. Here, RG are 

enriched relative to other cell types for interactions involving Notch signaling genes29 (Fig. 

4c). Compared to other cell types, interactions in RG target a significantly higher proportion 

of human-gained enhancers (HGEs)30. This suggests that epigenetic modifications 

surrounding Notch signaling genes in RG contribute to significant neurological differences 

between humans and other species. Additional biological processes exhibiting enrichment 

for interactions with HGEs include forebrain neuron fate commitment in RG, neuroblast 
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proliferation in IPCs, forebrain neuron development in eNs, and GABAergic interneuron 

development in iNs (Supplementary Table 9). We provide detailed annotations of genes 

interacting with HGEs and in vivo-validated enhancer elements31 in Supplementary Table 

10.

Partitioning SNP heritability for complex disorders and traits

Chromatin interactions present a unique resource for linking GWAS variants to their target 

genes (Extended Data Fig. 7c, d; Supplementary Table 11). Both fetal32 and adult33 brain 

eQTLs are enriched at chromatin interactions (Extended Data Fig. 8a–c). Besides, we 

leveraged linkage disequilibrium score regression (LDSC)34,35 to partition SNP heritability 

for seven complex neuropsychiatric disorders and traits: Alzheimer’s disease (AD), attention 

deficit hyperactivity disorder (ADHD)36, autism spectrum disorder (ASD)37, bipolar 

disorder (BD)38, intelligence quotient (IQ)39, major depressive disorder (MDD)40, and 

schizophrenia (SCZ)41. First, conditioned on a baseline model42, PLAC-seq anchor and 

target bins exhibit significant enrichment for all of the disorders and traits, except for AD 

and ASD (Extended Data Fig. 8d). Anchor and target bins are also more informative than 

distal open chromatin peaks and cell type-specific genes (Extended Data Fig. 8e, f), 

attributable to the utility of chromatin interactions for linking genes to distal regulatory 

sequences. Next, we utilized a joint model incorporating all four cell types to investigate cell 

type-specific patterns of SNP heritability enrichment (Fig. 4d, e). Target bins exhibit more 

variability than anchor bins in terms of enrichment scores, reflecting the increased cell type 

specificity of distal regulatory elements compared to promoters. Furthermore, eNs and iNs 

present higher enrichment scores at target bins relative to RG and IPCs, suggesting the 

increased relevance of neuronal cell types for these neuropsychiatric traits. We used H-

MAGMA43 to identify enriched biological processes for genes interacting with non-coding 

variants (Extended Data Fig. 9; Supplementary Table 12). Our results recapitulate the roles 

of lipoprotein metabolism and transport in AD pathophysiology44 in RG. IPCs and eNs are 

enriched across all diseases with interactions linking SNPs to genes related to neural 

precursor cell proliferation, axon guidance, and axonogenesis. Finally, our results for SCZ 

align with extensive evidence that disruption of chromatin regulators contribute significantly 

to disease risk9,45.

Characterizing distal interacting regions in primary cells

Validating distal regulatory elements in primary cells has proved challenging in the past, 

with most experiments performed using cell lines or iPSC-derived cells. A major obstacle 

lies in the robust detection of transcriptional changes in complex, heterogeneous samples. 

We developed CRISPRview to validate cell type-specific distal regulatory elements in single 

cells (Fig. 5a). Specifically, primary cultures of GZ or CP samples are first infected with 

lentivirus expressing mCherry, dCas9-KRAB, and sgRNAs targeting open chromatin peaks 

interacting with a gene of interest along with lentivirus expressing GFP, dCas9-KRAB, and 

control sgRNAs. Next, the cells are fixed and stained using antibodies for mCherry, GFP, 

cell type-specific markers, DAPI, and intronic RNAscope probes targeting the gene of 

interest. Finally, we leverage SMART-Q46 to compare the number of nascent RNA 

transcripts between experimental and control sgRNA-treated cells. We validated four regions 

interacting with the GPX3 promoter, all of which exhibited significant downregulation in 
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terms of GPX3 expression upon silencing (Fig. 5b–d). Meanwhile, silencing three regions 

interacting with the IDH1 promoter in RG and eNs resulted in the significant 

downregulation of IDH1 expression in the respective cell types (Extended Data Fig. 10a, b). 

Finally, we characterized two additional RG-specific loci in TNC and HES1, both of which 

are annotated as SIPs (Extended Data Fig. 10c–h). The observation of small but significant 

changes in gene expression supports the hypothesis that multiple interactions frequently 

work in concert to titrate gene expression

Discussion

Single-cell RNA sequencing studies have highlighted the heterogeneity of the developing 

human cortex. Despite significant differences in lineage and maturation state, many of the 

cell types share intriguing similarities in their transcriptional landscapes. For example, iNs 

express genes for TFs that are typically associated with RG proliferation, including SOX2, 

as well as with eN differentiation, including ASCL1 and NPAS31. By isolating specific cell 

types, we are able to distinguish nuanced regulatory programs driving cell type-specific 

differences during human corticogenesis. We identify SIPs which are enriched for key 

lineage-specific genes and represent distinct chromatin features from A/B compartments47, 

TADs48, frequently interacting regions (FIREs)49, and highly interacting regions (HIRs)50. 

Furthermore, we uncover a mechanism in which TEs propagate binding sites for 

architectural proteins such as ZNF143, facilitating the formation of multi-interaction clusters 

that function to sustain transcription. Lastly, by developing CRISPRview, we achieve several 

emergent advantages for validating distal regulatory elements in primary cells. First, we are 

able to focus our analysis on specific cell types, circumventing averaging effects associated 

with bulk measurements in complex samples. Next, we are able to directly compare 

experimental and control sgRNA-infected cells within the same population. Finally, we 

achieve enhanced sensitivity and statistical power based on the detection of nascent RNA 

transcripts in single cells. Future experiments leveraging CRISPRview in live tissue should 

continue to reveal regulatory relationships in a manner that is truly representative of the 

complex in vivo environment.

Methods

Ethics statement

Deidentified tissue samples were collected with prior informed consent in strict observance 

of legal and institutional ethical regulations. All protocols were approved by the Human 

Gamete, Embryo, and Stem Cell Research Committee (GESCR) and Institutional Review 

Board (IRB) at the University of California, San Francisco.

Tissue dissociation

The tissue dissociation protocol was adapted from Nowakowski et al, 20171. Briefly, 

samples were first cut into small pieces in artificial cerebrospinal fluid before being added to 

pre-warmed papain dissociation media (Worthington #LK003150). The samples were 

incubated in dissociation media for 45 minutes at 37°C. Next, they were triturated, filtered 

through a 70 μM nylon mesh, and centrifuged for 8 minutes at 300 g. For individual 
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germinal zone (GZ) and cortical plate (CP) cultures, samples were first cut coronally into 

thin slices. As previously described, cell density drops dramatically past the outer 

subventricular zone, enabling the clear identification of the outer filamentous zone and 

subplate. Samples were dissected along this boundary to separate the GZ from the CP prior 

to dissociation.

Sample fixation

Mid-gestational human cortex samples between GW15 and GW22 were fixed in 2% 

paraformaldehyde prepared in PBS with gentle agitation for 10 minutes at room 

temperature. Glycine was added to a final concentration of 200 mM to quench the reactions, 

and the samples were centrifuged for 5 minutes at 4°C and 500 g. The samples were washed 

twice with PBS before being frozen at −80°C for further processing.

Permeabilization and staining

The cell pellet was thawed on ice and resuspended in PBS containing 0.1% Triton-X-100 for 

15 minutes. The cells were then washed twice with PBS and resuspended in 5% BSA in PBS 

for staining. Staining proceeded for at least one hour with FcR Blocking Reagent (Miltenyi 

Biotech, 1/20 dilution), EOMES PE-Cy7 (Invitrogen, Cat 25-4877-42, Clone WD1928, Lot 

1923396, 1/10 dilution), PAX6 PE (BD Biosciences, Cat 561552, Clone O18–1330, Lot 

8187686, 1/10 dilution), SOX2 PerCP-Cy5.5 (BD Biosciences, Cat 561506, Clone O38– 

678, Lot 8165744, 1/10 dilution), and SATB2 Alexa Fluor 647 (Abcam, Cat ab196536, 

Clone EPNCIR130A, Lot GR3208103-I and GR228747–2, 1/100 dilution). After staining, 

the cells were centrifuged for 5 minutes at 500 g, and the pellet was diluted into PBS. When 

sorting cells for RNA-seq, 1% RNasin Plus RNase Inhibitor (Promega) was added to all 

buffers, and acetylated BSA was used to prepare 5% BSA in PBS for staining.

FACS

AbC Total Antibody Compensation Beads (Thermo Fisher) were used to generate single 

color compensation controls prior to sorting. Sorting was conducted on either the FACSAria 

II, FACSAria IIu, or FACSAria Fusion instruments using a 70 μM nozzle, and cells were 

collected in 5 ml tubes pre-coated with FBS. A sample of each sorted cell population was 

reanalyzed on the same machine to assess purity. Cells were collected by centrifuging for 10 

minutes at 500 g, and the cell pellet was frozen at −80°C for further processing. When 

sorting cells for RNA-seq, cells were collected in 5 ml tubes pre-coated with both FBS and 

RNAlater (Thermo Fisher).

Primary cell culture

Following dissociation, cells were plated onto Matrigel-coated coverslips in 48 well plates or 

chamber slides at a density of approximately 0.7×106 cells per well. All cell culture was 

handled in sterile conditions. The cells were infected with lentivirus the day after plating, 

and media was changed every two days. Media was composed of 96% DMEM/F-12 with 

GlutaMAX, 1% N-2, 1% B-27, and 1% penicillin/streptomycin. The cells were grown in 8% 

oxygen and 5% carbon dioxide and harvested four days post-infection for CRISPRview. For 

qPCR at the ADRA2A locus, the cells were harvested six days post-infection.
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PLAC-seq

PLAC-seq was performed according to Fang et al., 201611. 1 to 5 million cells were used to 

prepare each library. Digestion was performed using 100 U MboI for 2 hours at 37°C, and 

chromatin immunoprecipitation was performed using Dynabeads M-280 sheep anti-rabbit 

IgG (Invitrogen #11203D) superparamagnetic beads bound with 5 μg anti-H3K4me3 

antibody (Millipore 04–745). Sequencing adapters were added during PCR amplification. 

Libraries were sent for paired-end sequencing on the HiSeq X Ten or NovoSeq 6000 

instruments (150 bp paired-end reads). fastp was applied to trim reads to 100 bp for all 

downstream analysis.

MAPS

We used the MAPS pipeline to call significant H3K4me3-mediated chromatin interactions at 

a resolution of 5 kb based on our PLAC-seq data. First, bwa mem was used to map raw reads 

to hg38. Unmapped reads and reads with low mapping quality were discarded, and the 

resulting read pairs were processed as previously reported12. To define PLAC-seq anchor 

bins, we took the union of peaks identified by MACS2 using the options “--nolambda --

nomodel --extsize 147 --call-summits -B --SPMR” and an FDR cutoff of 0.0001 for all read 

pairs with interaction distance < 1 kb in each cell type. Next, we classified read pairs as 

AND, XOR, or NOT interactions based on whether both, one, or neither of the interacting 5 

kb bins overlapped anchor bins (Extended Data Fig. 3a). Since we were specifically 

interested in identifying long-range H3K4me3-mediated chromatin interactions, we retained 

only read pairs corresponding to intrachromosomal XOR and AND interactions with 

interaction distances between 10 kb and 1 Mb. We downsampled the number of read pairs 

separately for each chromosome to ensure that we started with the same number of read 

pairs for each cell type.

To call significant interactions, we employed a Poisson regression-based approach to 

normalize systematic biases from restriction sites, GC content, sequence repetitiveness, and 

ChIP enrichment. We fitted models separately for AND and XOR interactions and calculated 

FDRs for interactions based on the expected and observed contact frequencies between 

interacting 5 kb bins. We grouped interactions whose ends were located within 15 kb of each 

other into clusters and classified all other interactions as singletons. We defined our 

significant H3K4me3-mediated chromatin interactions as interactions with 12 or more reads, 

normalized contact frequency (defined as the ratio between the observed and expected 

contact frequency) ≥ 2, and FDR < 0.01 for clusters and FDR < 0.0001 for singletons. This 

was based on the reasoning that biologically meaningful interactions are more likely to 

appear in clusters, while singletons are more likely to represent false positives.

Reproducibility analysis

PCA was performed based on the normalized contact frequencies for interacting 5 kb bins 

from our PLAC-seq data. We first extracted AND and XOR interactions based on cell type-

specific anchor bins for each of the 11 replicates. Next, we applied zero-truncated Poisson 

regression adjusting for the same biases as the MAPS pipeline. We derived normalized 

contact frequencies based on the ratios between the observed and expected contact 

frequencies for interacting 5 kb bins, with the expected contact frequencies being the fitted 

Song et al. Page 9

Nature. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values from the zero-truncated Poisson regression. Normalized contact frequencies were 

then log-transformed and merged across the 11 replicates. The merged data was used to 

generate the PCA plots. We restricted our analysis to interacting 5 kb bins in both 300 and 

600 kb windows for Extended Data Fig. 2d.

ATAC-seq

ATAC-seq was performed as previously described using the Nextera DNA Library Prep Kit 

(Illumina #FC-121–1030). Briefly, fixed cells were washed once with ice cold PBS 

containing 1x protease inhibitor before being resuspended in ice cold nuclei extraction 

buffer (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA630, and 1x 

protease inhibitor) for 5 minutes. 50,000 cells were aliquoted, exchanged into 50 μL 1x 

Buffer TD, and incubated with 2.5 μL TDE1 enzyme for 45 minutes at 37°C with shaking. 

Following transposition, 150 μL reverse crosslinking solution (50 μL 1 M Tris pH 8.0, 100 

μL 10% SDS, 2 μL 0.5 M EDTA, 10 μL 5 M NaCl, 800 μL water, and 2.5 μL 20 mg/mL 

Proteinase K) was added to each tube and incubated at 65°C overnight. DNA was column 

purified, PCR amplified, and size-selected for fragments between 300 and 1000 bp. 

Libraries were sent for paired-end sequencing on the NovaSeq 6000 instrument (150 bp 

paired-end reads). Raw reads were trimmed to 50 bp, mapped to hg38, and processed using 

the ENCODE pipeline (https://github.com/kundajelab/atac_dnase_pipelines) running the 

default settings. The optimal naive overlap peaks for each cell type were used for all 

downstream analysis.

RNA-seq

We extracted total RNA from the sorted cell populations using the RNAstorm™ FFPE RNA 

extraction kit (Cell Data Sciences #CD501) starting with 5×105 to 1.5×106 cells. The quality 

of the extracted RNA was checked by determining the percentage of RNA fragments with 

size > 200 bp (DV200) from the Agilent 2100 Bioanalyzer. RNA samples with DV200 >= 

40% were used for library construction. First, samples were depleted of ribosomal RNA 

using the KAPA RNA HyperPrep Kit with RiboErase (HMR #KK8560). Next, we 

performed first and second strand synthesis, dA-tailing, and sequencing adapter ligation. 

cDNA was cleaned up and sequencing adapters were added via PCR amplification. Libraries 

were sent for paired-end sequencing on the NovaSeq 6000 instrument (150 bp paired-end 

reads). Raw reads were trimmed using Trim Galore and aligned to hg38 using STAR 

running the standard ENCODE parameters, and transcript quantification was performed in a 

strand-specific manner using RSEM with the GENCODE 29 annotation. The edgeR package 

in R was used to calculate TMM-normalized RPKM values for each gene, and the mean 

values across all replicates were used for all downstream analysis.

GO enrichment analysis

Protein coding and non-coding RNA genes participating in cell type-specific XOR 

interactions were used for GO enrichment analysis. Only interactions with open chromatin 

peaks overlapping promoters (defined as the 1 kb region centered around a gene’s TSS) in 

their anchor bins and distal open chromatin peaks (defined as open chromatin peaks not 

overlapping promoters) in their target bins were used. A minimum RPKM of 0.5 was used to 

retain only genes that were expressed, and the resulting genes were input into DAVID 6.8 
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running functional annotation clustering using the “GOTERM_BP_ALL” ontology. Group 

enrichment scores based on the geometric mean of EASE scores for terms in each group are 

reported. To report enriched biological processes for genes interacting with non-coding 

variants for each disease and cell type, we assigned non-coding SNPs for each disorder and 

trait to genes based on interactions with the 5 kb bins containing their promoters. Next, we 

ran H-MAGMA using our annotations to generate ranked lists of gene-level association 

statistics which were used to perform functional enrichment analysis using the gprofiler2 

package in R51: gost(ranked.list, organism=“hsapiens”, ordered_query=T, significant=F, 

correction_method=“fdr”, sources=“GO:BP”).

TF motif enrichment analysis

We used 200 bp windows centered around open chromatin peaks participating in cell type-

specific XOR interactions for TF motif enrichment analysis using HOMER. We used the 

complete set of vertebrate motifs from the JASPAR database, specifying the “-float” option 

to adjust the degeneracy threshold, and the entire genome was used as the background. The 

binomial distribution was used to calculate p-values. For the analysis of co-expression 

modules in the developing human cortex, we downloaded co-expression modules from 

Nowakowski et al. 20171. Specifically, we used the “all” network set for all four cell types, 

as well as network sets matched to individual cell types as follows: “page.rg” for RG, 

“page.ipc” for IPCs, “page.n” for eNs, and “vage.in” for iNs. This was to capture biological 

variation both between and within cell types, respectively. We used HOMER to perform TF 

motif enrichment analysis for the set of open chromatin peaks interacting with promoters of 

genes assigned to each co-expression module. For ranking TFs according to the number of 

co-expression modules they were enriched for in each network set and cell type, an FDR 

threshold of 0.05 was applied.

Super interactive promoters

We used an approach similar to calling super-enhancers52 to annotate super interactive 

promoters (SIPs) in each cell type. For each anchor bin, we calculated the cumulative 

interaction score, defined as the sum of the −log10FDR for interactions overlapping each 

anchor bin. We used this metric as it accounts for noise and is directly associated with the 

interaction strength in PLAC-seq data. Next, we prepared plots of ranked cumulative 

interaction scores for anchor bins in each cell type and defined SIPs to be anchor bins 

located past the point in each curve where the slope is equal to 1.

Cell type-specific versus shared genes

We classified each gene as cell type-specific or shared according to its Shannon entropy 

score across all four cell types. Specifically, for each gene, we calculated its relative 

expression value in each cell type, defined as its RPKM in that cell type divided by the sum 

of its RPKMs across all four cell types. Next, we calculated the Shannon entropy score for 

each gene based on its relative expression values across all four cell types. We classified a 

gene as specific for a cell type if met the following conditions: its Shannon entropy score 

was < 0.01, its RPKM was > 1 in that cell type, and its RPKM in that cell type was the 

highest across all four cell types. All other genes with RPKM > 1 were classified as shared.
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TE enrichment in SIPGs

TE enrichment in SIPGs was evaluated as follows. The foreground enrichment was defined 

as the number of TEs at the class, family, or subfamily levels overlapping SIPGs in each cell 

type. The background enrichment was defined as the number of TEs overlapping all 

interacting 5 kb bins (both SIPGs and non-SIPGs). At least 50% of a TE had to overlap a 5 

kb bin for it to be considered overlapping. The overall enrichment was defined as the 

foreground enrichment divided by the background enrichment multiplied by the proportion 

of interacting 5 kb bins that were assigned to SIPGs.

For the enrichment of SIPGs for ERVL-MaLR TEs, the foreground enrichment for each 

SIPG was defined as the number of distal interacting regions containing one or more ERVL-

MaLR TEs for that SIPG. The background enrichment for each SIPG was defined as the 

number of randomly shuffled distal interacting regions containing one or more ERVL-MaLR 

TEs for that SIPG. We computed the background enrichment over 100 permutations. The 

overall enrichment was defined as the foreground enrichment divided by the background 

enrichment. The significance for each SIPG was calculated using the hypergeometric 

distribution as follows:

P =
m
q

n
k − q

m + n
k

where “q” is the number of distal interacting regions containing one or more ERVL-MaLR 

TEs for that SIPG, “m” is the number of 5 kb bins containing one or more ERVL-MaLR TEs 

on the same chromosome, “n” is the number of 5 kb bins containing no ERVL-MaLR TEs 

on the same chromosome, and “k” is the size of the SIPG.

ZNF143 motif enrichment

For the enrichment of SIPGs for ERVL-MaLR TE-localized ZNF143 motifs, the foreground 

enrichment for each SIPG was defined as the number of ERVL-MaLR TE-localized ZNF143 

motifs in its distal interacting regions. FIMO53 was used to detect ZNF143 motifs within 

ERVL-MaLR TEs. The background enrichment was defined as the total number of ZNF143 

motifs in the SIPG. The overall enrichment was defined as the foreground enrichment 

divided by the background enrichment multiplied by the proportion of the SIPG that is 

occupied by ERVL-MaLR TEs. The significance for each SIPG was calculated using a 

Poisson distribution where the number of events (k) is the foreground enrichment and the 

rate parameter (l) is the background enrichment multiplied by the proportion of the SIPG 

that is occupied by ERVL-MaLR TEs.

For evaluating the genome-wide enrichment of ZNF143 motifs in ERVL-MaLR and THE1C 

TEs, we first used FIMO to scan all ERVL-MaLR and THE1C TEs for instances of ZNF143 

motifs. As a background, we scanned 100 sets of chromosome- and length-matched, non-

overlapping sequences randomly sampled to avoid gaps and blacklisted regions in the human 

genome. We used a similar approach to evaluate the enrichment of ZNF143 motifs in ERVL-

MaLR TEs in SIPGs. For evaluating the enrichment of ZNF143 motifs in SIPGs, we 
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compared the mean numbers of ZNF143 motifs per 5 kb bin for distal interacting regions 

across all SIPGs to 100 sets of chromosome- and length-matched, non-overlapping 

sequences randomly sampled to avoid gaps and blacklisted regions in the human genome. 

For comparing the distributions of the mean numbers of ZNF143 motifs per 5 kb bin for 

actual versus shuffled SIPGs, we sampled distal interacting regions for each SIPG 100 times 

on the same chromosome in a non-overlapping manner.

Target gene annotation for enhancers and GWAS SNPs

To determine whether a human-gained enhancer, Vista enhancer element, or GWAS SNP 

interacted with a gene, we determined whether any of its promoters participated in 

interactions with the element of interest on the other end. All human-gained enhancers and 

Vista enhancer elements were expanded to a minimum width of 5 kb, and all GWAS SNPs 

were expanded to a minimum width of 1 kb to account for potential functional sequences 

around each element. Furthermore, we determined the proportion of GWAS SNPs 

interacting with their nearest and more distal genes, except when all the promoters for the 

nearest gene fell within the same 5 kb bin as the GWAS SNAP and could not be resolved for 

interactions.

Partitioning SNP heritability for complex disorders and traits.

We leveraged linkage disequilibrium score regression (LDSC) to partition SNP heritability 

separately for each complex neuropsychiatric disorder and trait based on joint models 

incorporating PLAC-seq anchor or target bins across all cell types. We also ran LDSC using 

a baseline model42 consisting of coding, UTR, promoter, and intron regions, histone marks, 

DNase I hypersensitive sites, ChromHMM/Segway predictions, regions that are conserved in 

mammals, super-enhancers, FANTOM5 enhancers, and LD-related annotations 

(recombination rate, nucleotide diversity CpG content, etc.) that are not specific to any cell 

type. This informs us whether our epigenomic annotations for a given cell type are 

informative for SNP heritability enrichment compared to a comprehensive set of genomic 

features that has been widely adopted in the field. To compare different epigenomic 

annotations for each cell type, we used both distal open chromatin peaks and 100 kb 

windows around the transcription start and end sites of cell type-specific genes according to 

their Shannon entropy scores and RPKM > 1.

Validating ERVL-MaLR-localized ZNF143 motifs

CRISPRi and qRT-PCR were used to validate ERVL-MaLR TE-localized ZNF143 motifs at 

distal interacting regions in the ADRA2A SIPG. Of the 12 distal interacting regions 

containing ERVL-MaLR TE-localized ZNF143 motifs, we were able to design sgRNAs to 

target ZNF143 motifs overlapping open chromatin peaks for 7 of the regions. ZNF143 

motifs were extended by 100 bp in both directions for designing sgRNAs. To maximize 

CRISPRi efficiency, we designed two sgRNAs for each region and cloned them into the dual 

expression cassette in the CRISPRi vector as described for CREST-seq54. sgRNA sequences 

were confirmed by Sanger sequencing and packaged into lentivirus. Primary cell cultures 

enriched for eNs based on SATB2 staining were infected with lentivirus for 24 hours, and 

mRNA was extracted on day 7. qRT-PCR was used to quantify ADRA2A expression using 

the following primers: TCGTCATCATCGCCGTGTTC (forward) and 
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AAGCCTTGCCGAAGTACCAG (reverse). All sgRNA sequences used for validation can be 

found in Supplementary Table 13.

Validating distal interacting regions using CRISPRview

The CRISPRi vector was modified from the Mosaic-seq55 and CROP-seq vectors56. The 

hU6-sgRNA expression cassette from the CROPseq-Guide-Puro vector (Addgene #86708) 

was cloned and inserted downstream of the WPRE element in the Lenti-dCas9-KRAB-blast 

vector (Addgene #89567). The blasticidin resistance gene was replaced with either mCherry 

or EGFP. sgRNAs targeting open chromatin peaks in distal interacting regions were 

designed using CHOPCHOP57. Single-stranded DNA was annealed and ligated into the 

CRISPRi vector at the BsmBI cutting locus. Single clones were picked following 

transformation, and the sgRNA sequences were confirmed by Sanger sequencing. For 

lentiviral packaging, the CRISPRi vector, pMD2.G (Addgene #12259), and psPAX 

(Addgene #12260) were transformed into 293T cells using PolyJet (SignaGen Laboratories 

#SL100688) according to the manufacturer’s instructions. Virus-containing media was 

collected three times over 16 to 20 hours and concentrated using Amicon 10K columns. All 

lentivirus was immediately stored at −80°C. Primary cell cultures were infected with virus 

(MOI < 1) 24 hours after plating, and cells were fixed with 4% PFA four days post-infection 

for FISH and immunostaining. All sgRNA sequences used for validation can be found in 

Supplementary Table 13.

FISH experiments were performed using the RNAScope Multiplex Fluorescent V2 Assay kit 

(ACDBio #323100). Probes targeting intronic regions for GPX3 (ACDBio #572341), IDH1 
(ACDBio #832031), TNC (ACDBio #572361), and HES1 (ACDBio #560881) were custom-

designed, synthesized, and labeled with TSA Cyanine 5 (Perkin Elmer #NEL705A001KT, 

1:1000 dilution). Fixed cells were pretreated with hydrogen peroxide for 10 minutes and 

Protease III for 15 minutes, and probes were hybridized and amplified according to the 

manufacturer’s instructions. Slides were washed with PBS before blocking with 5% donkey 

serum in PBS for 30 minutes at room temperature. Next, slides were incubated with primary 

antibodies against mCherry (Abcam ab205402, 1/200), GFP (Abcam ab1218, 1/500), and 

GFAP (Abcam ab7260, 1/400) for RG or SATB2 (Abcam ab92446, 1/300) for eNs overnight 

at 4°C, followed by incubation with Alexa Fluor 488 donkey anti-mouse IgG (Thermo 

Fisher Scientific #A21202, 1/800), Alexa-546 nm donkey anti-rabbit IgG (Thermo Fisher 

Scientific #A10040, 1/500), and Alexa-594 nm goat anti-chicken IgG (Thermo Fisher 

Scientific #A11042, 1/500) for 1 hour at room temperature. 3D confocal microscopy images 

were captured using a Leica TCS SP8 with a 40x oil-immersion objective lens (NA = 1.30). 

The z-step size was 0.4 μm. For five color multiplexed imaging, three sequential scans were 

performed to avoid overlapping spectra. The excitation lasers were 405 nm and 594 nm, 488 

nm and 633 nm, and 561 nm. All images were obtained using the same acquisition settings. 

For FISH analysis, we developed a Python-based pipeline called Single-Molecule Automatic 

RNA Transcription Quantification (SMART-Q) for quantifying nascent RNA transcripts in 

single cells. Briefly, the RNAscope channel was first filtered and fitted in three dimensions 

using a Gaussian model. Next, segmentation was performed in two dimensions on the DAPI 

channel to ascertain the location of each nucleus. Finally, segmentation was performed on 
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the remaining channels to identify experimental and control sgRNA-infected RG or eNs for 

nascent RNA transcript quantification.

Extended Data

Extended Data Figure 1. Representative contour plots depicting FACS gating strategy.
(a) Cells were separated from debris of various sizes based on the forward scatter area (FSC-

A) and side scatter area (SSC-A). Specifically, they were passed through two singlet gates 

using the width and height metrics of the (b) side scatter (SSC-H versus SSC-W) and (c) 

forward scatter (FSC-H versus FSC-W). (d) SOX2+, and SOX2-, and intermediate 

progenitor (IPC) populations were isolated by gating on EOMES-PE-Cy7 and SOX2-PerCP-

Cy5.5 staining. (e) Radial glia (RG) and interneurons (iNs) were isolated based on high 

PAX6/high SOX2 and medium SOX2/low PAX6 staining, respectively. (f) Excitatory 

neurons (eNs) were isolated from the SOX2- population by gating on SATB2-Alexa Fluor 

647 staining.
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Extended Data Figure 2. Reproducibility between RNA-seq, ATAC-seq, and PLAC-seq 
replicates.
(a) RNA-seq replicates were hierarchically clustered according to gene expression sample 

distances using DESeq2. (b) Heatmap showing correlations between gene expression 

profiles for the sorted cell populations and single-cell RNA sequencing (scRNA-seq) data in 

the developing human cortex. The sorted cell populations exhibited the highest correlation 

with their corresponding subtypes while exhibiting reduced correlation with the endothelial, 

mural, microglial, and choroid plexus lineages. (c) Heatmap showing correlations and 

hierarchical clustering for read densities at open chromatin peaks across all ATAC-seq 

replicates. (d) Principle component analysis (PCA) was performed based on normalized 

contact frequencies across all PLAC-seq replicates (see methods). PCA was performed using 

interacting 5 kb bins in both 300 and 600 kb windows.
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Extended Data Figure 3. Identification of significant H3K4me3-mediated chromatin interactions.
(a) Illustration of XOR and AND interactions in a representative PLAC-seq contact matrix. 

The blue tracks represent H3K4me3 peaks at anchor bins. Purple cells represent AND 

interactions where both of the interacting bins are anchor bins. Orange cells represent XOR 

interactions where only one of the interacting bins is an anchor bin. Grey cells represent 

NOT interactions where neither of the interacting bins are anchor bins. (b) Venn diagram 

displaying cell type-specificity for interactions in each cell type. (c) Proportions of 

interactions occurring within and across TADs in the GZ and CP for matching cell types.
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Extended Data Figure 4. Chromatin interactions influence cell type-specific transcription.
(a) GO enrichment analysis for genes participating in cell type-specific interactions. The top 

annotation clusters from DAVID are reported along with their group enrichment scores for 

each cell type (see methods). (b) Scatterplots showing the correlation between the difference 

in the number of interactions for each promoter and the difference in the expression of the 

corresponding genes across all cell types (Pearson product-moment correlation coefficient, 

two-tailed, n = 13,996 anchor bins with promoters). The trendline from linear regression is 

shown. (c) Fold enrichment of open chromatin peaks over distance-matched background 

regions in 1 Mb windows around distal interacting regions for IPCs, eNs, and iNs.
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Extended Data Figure 5. Super interactive promoters are enriched for lineage-specific genes.
(a) Scatterplots showing the correlation between interaction counts and gene expression at 

promoters for each cell type (Pearson product-moment correlation coefficient, two-tailed, n 

= 13,996 anchor bins with promoters). (b) CDF plots of the numbers of interactions for 

shared versus cell type-specific genes for each cell type (two-sample t-test, two-tailed). (c) 

Anchor bins were ranked according to their cumulative interaction scores in RG, IPCs, and 

iNs. Super interactive promoters (SIPs) are located past the point in each curve where the 

slope is equal to 1. (d) Venn diagram displaying cell type-specificity for SIPs in each cell 

type. (e-f) Enrichment of super-enhancers and DMVs at SIPs versus non-SIPs (left) and 

distal interacting regions for SIPs versus non-SIPs (right) (Fisher’s exact test, two-tailed). 

Super-enhancers were based on data in the fetal brain and adult cortex, while DMVs were 

based on data in 40 and 60 day cerebral organoids with closely matched gene expression 

profiles to mid-fetal cortex samples. (g) Forrest plot showing that SIPs identified in 
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hematopoietic cells are analogously enriched for cell type-specific over shared genes. Odds 

ratios and 95% confidence intervals are shown. We identified 554, 709, 460, 712, and 401 

SIPs in neutrophils, naive CD4+ T cells, monocytes, megakaryocytes, and erythroblasts, 

respectively.

Extended Data Figure 6. Transposable elements in SIP formation.
(a-c) Enrichment of TEs at the class (a), family (b), and subfamily (c) levels in SIPGs for 

each cell type. Only TE families occupying more than 1% of the genome are shown in (b). 

Only TE subfamilies from the MIR and ERVL-MaLR TE families occupying more than 

0.1% of the genome are shown in (c). (d) Both ERVL-MaLR TEs (left, 32% versus 19% of 

sequences, P < 2.2*10−16, binomial test, two-tailed) and THE1C TEs (right, 73% versus 

19% of sequences, P < 2.2*10−16, binomial test, two-tailed) are enriched over background 

sequences for ZNF143 motifs in eNs. (e) ZNF143 motifs are enriched at SIPGs in eNs (left, 
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P = 5.39×10−82, two-sample t-test, two-tailed, n = 8,894 distal interacting regions). Means 

are indicated and error bars represent the SEM. Distributions comparing the number of 

ZNF143 motifs per bin for actual versus shuffled SIPGs are shown (right, P < 2.2*10−16, 

Kolmogorov-Smirnov test, two-tailed, n = 638 SIPGs). (f) ERVL-MaLR TEs in SIPGs are 

enriched over background sequences for ZNF143 motifs in eNs (31% versus 17% of 

sequences, P = 4.3×10−98, binomial test, two-tailed). (g) Box plots showing elevated 

ADRA2A gene expression in eNs. The median, upper and lower quartiles, minimum, and 

maximum are indicated. (h) Illustration of the 12 distal interacting regions containing 

ERVL-MaLR TE-localized ZNF143 motifs in the ADRA2A SIPG. ZNF143 motifs are 

colored by strand. The bin numbers correspond to Fig. 3j. (i) Conservation of ERVL-MaLR 

TEs in the ADRA2A SIPG. Blue bars indicate consensus sequences, yellow bars indicate 

ERVL-MaLR TEs, and red bars indicate ZNF143 motifs. (j) Alignment of THE1C TEs in 

the human genome to their consensus sequence. The THE1C subfamily contains two 

ZNF143 motifs, one at positions 47–61 (P1), and another at positions 96–110 (P2).
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Extended Data Figure 7. Developmental trajectories and mapping complex disorder- and trait-
associated variants to their target genes.
(a) Box plots showing the distributions of gene expression and cumulative interaction scores 

for the groups identified in Fig. 4a. The median, upper and lower quartiles, minimum, and 

maximum are indicated. (b) Groups 4 and 5 are enriched for interactions with TFs 

containing domains associated with transcriptional repression. (c-d) Counts of the numbers 

of GWAS SNPs (P < 10−8) interacting with their nearest gene only, with both their nearest 

and more distal genes, and with more distal genes only across all diseases (c) and specific 

disorders and traits (d).
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Extended Data Figure 8. Partitioning SNP heritability for complex disorders and traits using 
alternative epigenomic annotations.
(a) Forrest plot showing the enrichment of fetal and adult brain eQTL-TSS pairs in our 

interactions compared to n = 50 sets of distance-matched control interactions (Fisher’s exact 

test, two-tailed). Odds ratios and 95% confidence intervals are shown. The increased 

significance of adult brain eQTLs can be attributed to the larger sample size of the 

CommonMind Consortium (CMC) study (n = 1,332,863), while larger odds ratios were 

observed for the more closely matched fetal brain eQTLs (n = 6,446). (b-c) Histograms 

displaying the numbers of adult and fetal brain eQTL-TSS pairs recapitulated by n = 50 sets 

of distance-matched control interactions in each cell type. The numbers of Eqtl-TSS pairs 

recapitulated by our interactions are indicated by red lines (Fisher’s exact test, two-tailed). 

(d) LDSC enrichment scores for each disease and cell type, conditioned on the baseline 

model from Gazal et al. 2017 and stratified by PLAC-seq anchor and target bins. Non-

significant enrichment scores are shown as striped bars. (e-f) LDSC enrichment scores for 

each disease and cell type, conditioned on the baseline model from Gazal et al. 2017 and 

using either distal open chromatin peaks (e) or cell type-specific genes (f). Non-significant 

enrichment scores are shown as striped bars.
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Extended Data Figure 9. Enriched biological processes for genes interacting with non-coding 
variants for each disease and cell type.
GO enrichment analysis for genes interacting with non-coding variants for each disease and 

cell type using H-MAGMA and gProfileR (Fisher’s exact test, two-tailed, BH method). The 

full results can be found in Supplementary Table 12.
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Extended Data Figure 10. Characterization of RG- and eN-specific loci using CRISPRview.
(a-b) Validation of distal interacting regions at the IDH1 locus in RG and eNs. Silencing 

region 1, which interacts with the IDH1 promoter only in eNs, results in the significant 

downregulation of IDH1 expression in eNs but not in RG. Silencing region 2, which 

interacts with the IDH1 promoter only in RG, results in the significant downregulation of 

IDH1 expression in RG but not in eNs. Silencing region 3, which interacts with the IDH1 
promoter in both RG and eNs, results in the significant downregulation of IDH1 expression 

in both cell types. Interactions between the promoter of IDH1 and distal interacting regions 

containing open chromatin peaks that were targeted for silencing are highlighted. Box plots 

show results for experimental (red) and control (green) sgRNA-treated cells for each region 

(two-sample t-test, two-tailed). The median, upper and lower quartiles, and 10% to 90% 

range are indicated. Open circles represent single cells. Sample sizes are indicated above 

each box plot. (c-h) Validation of distal interacting regions at the TNC and HES1 loci in RG. 

Interactions between the promoters of TNC and HES1 and distal interacting regions 

containing open chromatin peaks that were targeted for silencing are highlighted. 
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Representative images show staining for intronic RNAscope probes (white), DAPI (blue), 

GFAP (light blue), GFP (green), and mCherry (red). The scale bar is 50 μm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design and features of 3D epigenomes during human corticogenesis.
(a) Schematic of the sorting strategy. Microdissected GZ and CP samples were dissociated 

into single cells prior to being fixed, stained with antibodies for PAX6, SOX2, EOMES, and 

SATB2, and sorted using FACS. (b) Heatmap displaying the expression of key marker genes 

for each cell type. (c) WashU Epigenome Browser snapshot displaying a region (chr17: 

72,970,000–73,330,000) with interactions linked to SSTR2 expression in IPCs. (d) Bar 

graph of interaction counts for each cell type, with the proportions of anchor to anchor (red) 

and anchor to non-anchor (blue) interactions highlighted. (e) Cumulative distribution 

function (CDF) plots of interaction distances for each cell type. (f) Histogram displaying the 

numbers of interactions for interacting promoters across all cell types.
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Figure 2. H3K4me3-mediated chromatin interactions influence cell type-specific transcription.
(a) Heatmaps showing interaction strengths (left) and gene expression (right) for anchor to 

non-anchor interactions grouped according to their cell type specificity. Interaction strengths 

are based on the −log10FDR from the MAPS pipeline. (b) Scatterplot showing the 

correlation between the difference in the number of interactions for each promoter and the 

difference in the expression of the corresponding genes for RG and eNs (Pearson product-

moment correlation coefficient, two-tailed, P = 1.32*10−279, n = 13,996 anchor bins with 

promoters). The trendline from linear regression is shown. (c) Fold enrichment of open 

chromatin peaks over distance-matched background regions in 1 Mb windows around distal 

interacting regions for RG. (d) TF motif enrichment analysis for open chromatin peaks at 

cell type-specific distal interacting regions in each cell type. We analyzed 4,203, 1,412, 

3,088, and 949 regions in RG, IPCs, eNs, and iNs, respectively. Colors represent enrichment 

scores based on the p-value from HOMER, while sizes represent the gene expression of the 

corresponding TFs.
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Figure 3. Super interactive promoters are enriched for lineage-specific genes.
(a) Anchor bins were ranked according to their cumulative interaction scores in eNs. Super 

interactive promoters (SIPs) are located past the point in each curve where the slope is equal 

to 1. (b) The number of SIPs was divided by the total number of anchor bins (both SIPs and 

non-SIPs) associated with genes with the 1st, 2nd, 3rd, and 4th highest expression among all 

four cell types (n = 13,996 anchor bins with promoters). Fold enrichment was calculated 

relative to the group with the lowest expression among all four cell types. (c) Scatterplot 

showing the enrichment and numbers of observed copies for TE families in SIPGs for eNs. 

TE families occupying more than 1% of the genome are colored. (d) Scatterplot showing the 

enrichment and numbers of distal interacting regions for ERVL-MaLR TEs in SIPGs for eNs 

(n = 638 SIPGs). The 16 SIPGs with significant enrichment (hypergeometric test, one-tailed, 

P < 0.01) and 40 or more distal interacting regions are highlighted. (e) Scatterplot showing 

the enrichment of TF motifs in ERVL-MaLR TEs for the 16 SIPGs highlighted in (d). 
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Enrichment P values are from HOMER. (f) Scatterplot showing the enrichment of ZNF143 

motifs in ERVL-MaLR TEs for the 16 SIPGs highlighted in (d) (Poisson distribution, see 

methods). (g) Interactions between the ADRA2A promoter and 12 distal interacting regions 

containing ERVL-MaLR TE-localized ZNF143 motifs. (h) Proposed mechanism for the 

contribution of TEs to SIP formation. (i) ADRA2A expression was significantly 

downregulated for 3 of 7 regions relative to control sgRNAs (two-sample t-test, two-tailed, P 
< 0.05, n = 3 for all regions except region III, which has n = 2). Means are indicated and 

error bars represent the SEM.
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Figure 4. Features of cortical development and partitioning SNP heritability for complex 
disorders and traits.
(a) Genes categorized based on their gene expression and chromatin interactivity from RG to 

eNs. Groups 1–5 represent RG-upregulated, IPC-upregulated, eN-upregulated, eN-silenced, 

and RG-silenced genes, respectively. Representative genes and biological processes are 

shown for each group. (b) Groups 1 (75 of 312 bins) and 3 (40 of 127 bins) are enriched for 

interactions with enhancers relative to groups 4 (6 of 58 bins) and 5 (3 of 52 bins) (chi-

squared test, two-tailed). Only bins with at least one interaction were considered. (c) Bar 

graph of interaction counts from Notch signaling genes to regions with and without HGEs in 

each cell type (chi-squared test, two-tailed). We observed 2,541, 1,854, 1,869, and 1,610 

interactions with HGEs in RG, IPCs, eNs, and iNs, respectively. (d–e) LDSC enrichment 

scores for each disease and cell type, stratified by PLAC-seq anchor and target bins. Non-

significant enrichment scores are shown as striped bars.
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Figure 5. Validation of cell type-specific distal regulatory elements using CRISPRview.
(a) Schematic of the CRISPRview workflow. Image analysis was performed using the 

SMART-Q pipeline. (b) Interactions between the GPX3 promoter and distal interacting 

regions containing open chromatin peaks that were targeted for silencing are highlighted. 

Notably, region 1 overlaps both an HGE and Vista enhancer element (mm1343), supporting 

its function as a putative enhancer. (c) Representative images show staining for intronic 

RNAscope probes (white), DAPI (blue), GFAP (light blue), GFP (green), and mCherry 

(red). The scale bar is 50 μm. (d) Box plots show results for experimental (red) and control 

(green) sgRNA-treated cells for each region (two-sample t-test, two-tailed). The median, 

upper and lower quartiles, and 10% to 90% range are indicated. Open circles represent 

single cells. Sample sizes are indicated above each box plot.
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