182 research outputs found
Development of lifetime comorbidity in the world health organization world mental health surveys
CONTEXT: Although numerous studies have examined the role of latent variables in the structure of comorbidity among mental disorders, none has examined their role in the development of comorbidity. OBJECTIVE: To study the role of latent variables in the development of comorbidity among 18 lifetime DSM-IV disorders in the World Health Organization World Mental Health Surveys. DESIGN: Nationally or regionally representative community surveys. SETTING: Fourteen countries. PARTICIPANTS: A total of 21 229 survey respondents. MAIN OUTCOME MEASURES: First onset of 18 lifetime DSM-IV anxiety, mood, behavior, and substance disorders assessed retrospectively in the World Health Organization Composite International Diagnostic Interview. RESULTS: Separate internalizing (anxiety and mood disorders) and externalizing (behavior and substance disorders) factors were found in exploratory factor analysis of lifetime disorders. Consistently significant positive time-lagged associations were found in survival analyses for virtually all temporally primary lifetime disorders predicting subsequent onset of other disorders. Within-domain (ie, internalizing or externalizing) associations were generally stronger than between-domain associations. Most time-lagged associations were explained by a model that assumed the existence of mediating latent internalizing and externalizing variables. Specific phobia and obsessive-compulsive disorder (internalizing) and hyperactivity and oppositional defiant disorders (externalizing) were the most important predictors. A small number of residual associations remained significant after controlling the latent variables. CONCLUSIONS: The good fit of the latent variable model suggests that common causal pathways account for most of the comorbidity among the disorders considered herein. These common pathways should be the focus of future research on the development of comorbidity, although several important pairwise associations that cannot be accounted for by latent variables also exist that warrant further focused study
Improved Cleaning Process for Textured ∼25 μm Flexible Mono-Crystalline Silicon Heterojunction Solar Cells with Metal Backing
An improved cleaning process is developed to remove front surface contamination for single heterojunction solar cells on textured surfaces on ∼25 μm thick exfoliated, flexible mono-crystalline silicon. The process is very effective in cleaning metallic and organic residues, without introducing additional contamination or degrading the supporting back metal used for ultrathin substrate handling. Quantitative analysis of the Auger electron spectra shows significant potassium contamination reduction (∼0.89% atomic) using the new cleaning process. An open-circuit voltage enhancement of 22 mV and an absolute 1.5% increase in conversion efficiency are observed with the new cleaning procedure for the exfoliated thin solar cells. Thin crystalline silicon (c-Si) solar cells are of much interest due to their potential to achieve high efficiency and reduce cost by using less Si material. However, there are significant challenges to commercialize sub-100 μm thin Si substrates as they can easily break or crack with wafer-handling, resulting in low yield in a solar cell manufacturing line. We have introduced in our earlier work, 1 a kerf-less process in which ultra-thin (∼25 μm) and flexible mono-crystalline Si substrates can be obtained through an exfoliation technique from a thicker (>450 μm) parent wafer. These substrates, when exfoliated, have thick (∼50 μm) electroplated nickel (Ni) metal backing, which provides mechanical support to the thin Si and enables ease of processing for semiconductor device fabrication. Previously we have demonstrated single heterojunction (SHJ) solar cells fabricated on this type of substrate exhibiting efficiencies 14.9% on as-exfoliated substrates. 2 However, on textured surfaces efficiency was limited to 11%. We postulated that one of the issues that could be limiting the performance of the cells is unintentional front surface contamination introduced during wet chemical processes before hydrogenated amorphous Si (a-Si:H) deposition of the front surface emitter, which can limit the open-circuit voltage (V OC ) of these solar cells. This could happen due to the presence of potassium ions introduced from potassium hydroxide (KOH) during texturing. For decontamination we could not use SC-2 solution (5:1:1 ratio of H 2 O, H 2 O 2 , HCl at 80 o C) as it reacts rather aggressively with the electroplated Ni back metal. Instead, we used a piranha solution (1:1 ratio of H 2 O 2 , H 2 SO 4 ) for both decontamination from potassium ions and removal of organic contaminants, which did not seem to show corrosion degradation in the back side Ni. The pH level of HCl is slightly lower compared to H 2 SO 4, and SC-2 solution has a stronger effervescent action than piranha solution. This may explain why the Ni is much more affected by the SC-2 clean compared to the piranha clean. Nevertheless, piranha-treatment alone is probably inadequate for metal residues or potassium related contaminant removal after texturing. In this work, we attempted to address the front surface contamination issue by developing an improved cleaning procedure for textured silicon surfaces for mono-crystalline exfoliated Si substrate. We assumed the cleaning process employed for the rear surface is sufficient as it was done using traditional RCA cleaning 3 on a textured thick parent wafer. With the help of X-ray Photoelectron Spectroscopy (XPS) we have identified the chemical bonding nature of key contaminants at the surface i.e. carbon and potassium. We have also employed Auger electron spectroscopy (AES) to quantify the atomic concentration of the impurities before and after implementation of various wet chemical cleans. We have fabricated and characterized SHJ solar cells on z E-mail: [email protected] both exfoliated and bulk (∼180 μm) substrates to study the effect of contamination on device performance and how an improved surface clean procedure can affect the solar cell efficiency. Experimental A detailed process flow for the exfoliation process is discussed in previous work. 2 Sample 3 was treated with a 1:40 water based solution of SC-15 5 (Surface Chemistry Discoveries, Inc.) at 40 o C for 5 minutes. SC-15 is used as an alternative to RCA clean. It is well documented in the literature 6,7 that SC-1 step (5:1:1 ratio of H 2 O, H 2 O 2 , NH 4 OH at 80 o C) in RCA cleans causes micro-roughening and even pitting of silicon substrates, thereby introducing trap states (D it ) at the heterointerface. 8 We ensure extremely low anisotropic silicon etch rate to reduce roughening the surface by using high dilution (1:40) of SC-15 formulation. This is verified by scanning electron microscopy (SEM) done before and after SC-15 treatment. The surface morphology doesn't change as the solution was not concentrated enough and the temperature wasn't high enough to round off the peaks of the random pyramids that has been typically shown in previous literature 11,12 The chelating agent was used to increase the capacity of the cleaning bath to retain metals in solution by acting as a multi-dentate ligand forming a stable multi-dentate complex with the metal cations, which enhances the dissolution of metallic residues on the silicon surface. 13,14 The temperature of 40 o C aids in the contaminant removal, but is still not high enough to result in anisotropic etching of the silicon. Finally, sample 4 was treate
Genome-Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low
bone mineral density (BMD) is a major predisposing factor to fracture and is
known to be highly heritable. Site-, gender-, and age-specific genetic effects
on BMD are thought to be significant, but have largely not been considered in
the design of genome-wide association studies (GWAS) of BMD to date. We report
here a GWAS using a novel study design focusing on women of a specific age
(postmenopausal women, age 55–85 years), with either extreme high or low
hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0,
n = 1055, or −4.0 to −1.5,
n = 900), with replication in cohorts of women drawn from
the general population (n = 20,898). The study replicates
21 of 26 known BMD–associated genes. Additionally, we report suggestive
association of a further six new genetic associations in or around the genes
CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and
SOX4, with replication in two independent datasets. A novel
mouse model with a loss-of-function mutation in GALNT3 is also
reported, which has high bone mass, supporting the involvement of this gene in
BMD determination. In addition to identifying further genes associated with BMD,
this study confirms the efficiency of extreme-truncate selection designs for
quantitative trait association studies
PAK1-dependent mechanotransduction enables myofibroblast nuclear adaptation and chromatin organization during fibrosis.
Myofibroblasts are responsible for scarring during fibrosis. The scar propagates mechanical signals inducing a radical transformation in myofibroblast cell state and increasing profibrotic phenotype. Here, we show mechanical stress from progressive scarring induces nuclear softening and de-repression of heterochromatin. The parallel loss of H3K9Me3 enables a permissive state for distinct chromatin accessibility and profibrotic gene regulation. Integrating chromatin accessibility profiles with RNA expression provides insight into the transcription network underlying the switch in profibrotic myofibroblast states, emphasizing mechanoadaptive regulation of PAK1 as key drivers. Through genetic manipulation in liver and lung fibrosis, loss of PAK1-dependent signaling impairs the mechanoadaptive response in vitro and dramatically improves fibrosis in vivo. Moreover, we provide human validation for mechanisms underpinning PAK1-mediated mechanotransduction in liver and lung fibrosis. Collectively, these observations provide insight into the nuclear mechanics driving the profibrotic chromatin landscape in fibrosis, highlighting actomyosin-dependent mechanisms as potential therapeutic targets in fibrosis
Meta-analysis of exome array data identifies six novel genetic loci for lung function [version 1; peer review:1 approved, 1 approved with reservations]
Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and the ratio of FEV1 to FVC (FEV1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2•8x10 -7 ) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs (SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.</p
Evidence for large-scale gene-by-smoking interaction effects on pulmonary function
Background: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV1 (forced expiratory volume in 1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking. Methods: We evaluated the interaction between smoking exposure, considered as either ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic risk score in relation to FEV1 or FEV1/FVC in 50 047 participants of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and SpiroMeta consortia. Results: We identified an interaction (beta(int) = -0.036, 95% confidence interval, -0.040 to -0.032, P = 0.00057) between an unweighted 26 SNP genetic risk score and smoking status (ever/never) on the FEV1/FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV1/FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. A replication analysis in two independent datasets, although not statistically significant, showed a similar trend in the interaction effect. Conclusions: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs and shows, for the first time, that persons with the highest genetic risk for low FEV1/FVC may be more susceptible to the deleterious effects of smoking.Peer reviewe
Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe
Mapping child growth failure across low- and middle-income countries
Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016
Background: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97\ub71 (95% UI 95\ub78-98\ub71) in Iceland, followed by 96\ub76 (94\ub79-97\ub79) in Norway and 96\ub71 (94\ub75-97\ub73) in the Netherlands, to values as low as 18\ub76 (13\ub71-24\ub74) in the Central African Republic, 19\ub70 (14\ub73-23\ub77) in Somalia, and 23\ub74 (20\ub72-26\ub78) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91\ub75 (89\ub71-93\ub76) in Beijing to 48\ub70 (43\ub74-53\ub72) in Tibet (a 43\ub75-point difference), while India saw a 30\ub78-point disparity, from 64\ub78 (59\ub76-68\ub78) in Goa to 34\ub70 (30\ub73-38\ub71) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4\ub78-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20\ub79-point to 17\ub70-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17\ub72-point to 20\ub74-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations
Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study
Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe
- …