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Abstract

Background: Smoking is the strongest environmental risk factor for reduced pulmonary

function. The genetic component of various pulmonary traits has also been demon-

strated, and at least 26 loci have been reproducibly associated with either FEV1 (forced

expiratory volume in 1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the

main effects of smoking and genetic loci are well established, the question of potential

gene-by-smoking interaction effect remains unanswered. The aim of the present study

was to assess, using a genetic risk score approach, whether the effect of these 26 loci on

pulmonary function is influenced by smoking.

Methods: We evaluated the interaction between smoking exposure, considered as either

ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic

risk score in relation to FEV1 or FEV1/FVC in 50 047 participants of European ancestry

from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and

SpiroMeta consortia.

Results: We identified an interaction (bint¼ –0.036, 95% confidence interval, –0.040 to

–0.032, P¼0.00057) between an unweighted 26 SNP genetic risk score and smoking sta-

tus (ever/never) on the FEV1/FVC ratio. In interpreting this interaction, we showed that

the genetic risk of falling below the FEV1/FVC threshold used to diagnose chronic ob-

structive pulmonary disease is higher among ever smokers than among never smokers.

A replication analysis in two independent datasets, although not statistically significant,

showed a similar trend in the interaction effect.

Conclusions: This study highlights the benefit of using genetic risk scores for identifying

interactions missed when studying individual SNPs and shows, for the first time, that

persons with the highest genetic risk for low FEV1/FVC may be more susceptible to the

deleterious effects of smoking.

Key words: FEV1/FVC, smoking, gene–environment interaction, genetic risk score

Introduction

Spirometric measures of pulmonary function, such as the

forced expiratory volume in 1 second (FEV1) or its ratio

with the forced vital capacity (FEV1/FVC), form the basis of

the diagnosis of chronic obstructive pulmonary disease

(COPD).1–3 Pulmonary function measures are also used clin-

ically to monitor severity and control of asthma and other re-

spiratory diseases and are independent risk factors for

mortality.1–3 Pulmonary function is strongly influenced by

cigarette smoking and by multiple low-penetrance genetic

variants. Indeed, genome-wide association studies (GWAS)

of marginal genetic effects (i.e. not including interaction ef-

fects between genetic variants and smoking) have identified

at least 26 loci associated with FEV1 or FEV1/FVC in the

general population.4 However, the interplay between genetic

factors and environmental exposures has not been well

Key Messages

• Spirometric measures of pulmonary function are influenced by both smoking and genetics. This paper reports a gen-

etic risk score-by-ever smoking interaction on FEV1/FVC (forced expiratory volume in 1 second/forced vital capacity).

• In individuals of European ancestry, the reduction in FEV1/FVC as a result of smoking was greater among individuals

who are genetically predisposed to lower FEV1/FVC ratio.

• Genetic risk score-by-ever smoking interaction can allow the identification of subgroups in the population whose gen-

etic background makes them more susceptible to the deleterious effects of smoking.
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established for pulmonary function or its associated traits.

More broadly, although considerable efforts have been made

to identify interaction effects between genetic variants and

environmental exposures across the wide range of human

traits and diseases,5,6 such investigations have been mostly

unsuccessful in detecting robust gene–environment inter-

actions.5,7 The well-established effect of cigarette smoking

on numerous human health outcomes8 makes it a serious

candidate for identification of novel gene–environment inter-

actions, especially for pulmonary traits.

Hypothesizing the presence of single nucleotide polymorph-

ism (SNP)-by-smoking interaction, Hancock et al.9 performed

a genome-wide interaction study of pulmonary function, mod-

elling single SNP main effects and their interactions with

smoking in 50047 participants of European ancestry across

19 studies within the Cohorts for Heart and Aging Research

in Genomic Epidemiology (CHARGE)10 and SpiroMeta con-

sortia11—the largest genome-wide interaction study of pul-

monary function as modified by smoking to date. However,

rather than focusing on the interaction effects per se, they per-

formed a meta-analysis of the joint test of SNP main effects

and SNP-by-smoking interaction effects to improve power for

identifying genetic variants associated with pulmonary func-

tion.12,13 Although they reported new candidate variants based

on this joint test, the study did not identify any SNPs with

genome-wide significant interaction with smoking.

Here, we explored gene-by-smoking interaction effects

limited to genetic variants previously found to be associ-

ated with pulmonary function in standard marginal effects

GWAS,4 therefore not including the new variants reported

by Hancock et al.9 based on the joint test of main effects

plus interaction. Specifically, we aimed to determine

whether smoking modifies the effect of established genetic

variants when considered singly or in combination using a

genetic risk score summarizing the genetic predisposition

to abnormal pulmonary function. The primary motivation

for using genetic risk score is statistical power.14,15 Indeed,

several genetic risk score-by-exposure interactions have al-

ready been identified in cases where single SNPs did not

show evidence for statistically significant interactions.16–21

Genetic risk score-by-exposure interaction testing expands

on the principle of omnibus test while leveraging the as-

sumption that, for a given choice of coded alleles, most

interaction effects will have the same direction. This is

similar to burden tests that have been widely used for rare

variant analysis22 where a single parameter can accumulate

evidence for association without increasing the number of

degrees of freedom. When interaction effects are null on

average (i.e. if interaction effects are both negative and

positive so that the sum of interaction coefficients tend to

zero), the single SNP approach will generally outperform

the risk score-based approach. Conversely, if interaction

effects tend to be in the same direction, the risk score-

based approach can have dramatically higher power.14

Methods

Study sample

The present analysis relies on the Hancock et al.9 genome-

wide meta-analysis for main genetic effects plus interaction

effects with smoking in relation to pulmonary function

among 50 047 participants (56% women) of European an-

cestry from 19 studies. The mean age was 53 years at the

time of pulmonary function testing. Approximately 15%

were current smokers and 56% were ever smokers. Among

ever smokers, the average pack-years of smoking was 21.

Supplementary Table 3 (available as Supplementary data

at IJE online) provides the main characteristics of the stud-

ies included; complete details of study-specific pulmonary

function testing protocols have been published.4 For stud-

ies with spirometry at a single visit, we analysed FEV1/

FVC and FEV1 measured at that visit. For studies with

spirometry at more than one visit, measurements from the

baseline visit or the most recent examination with spirom-

etry data was used. Smoking history (current, former and

never smoking) was ascertained by questionnaire at the

time of pulmonary function testing. Pack-years of smoking

were calculated for current and past smokers by multiply-

ing smoking amount (packs per day) and duration (years

smoked). Approximately 2.5 million autosomal SNPs were

tested for interaction with smoking status (ever smoking vs

never smoking) and pack-years, for two outcomes: FEV1

and FEV1/FVC (see next section). We also used two inde-

pendent datasets of individuals of European ancestry to

test for replication. The first replication dataset included

8859 unrelated individuals, and the second dataset

included 9457 family-based individuals. The look-up was

done in the GWAS for marginal genetic effects done separ-

ately in ever and never smoker as part of a recent meta-

analysis of FEV1 and FEV1/FVC.23

Single SNP-by-smoking interaction

The analysis performed in this study used summary statistics

data from the aforementioned meta-analysis of 19 studies

performed by Hancock et al.9 In brief, each of the 19 studies

derived the residuals of FEV1 and FEV1/FVC after regressing

out age, age2, sex, standing height, principal component

eigenvectors of genotypes and recruitment site if applicable.

The residuals were normalized using a rank-based inverse

normal transformation. Single SNP interaction effects were

assessed using the following model (see Supplementary Note,

available as Supplementary data at IJE online):
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Y � b0 þ bGGþ bGEk
GEk þ

X
l¼1...3

bEl
El ; (1)

where bG and bEl
are the main effect of the SNP G and ex-

posure El, bGEk
is the interaction effect between G and ex-

posure Ek, and b0 the intercept.

Detailed description of studies used in the replication

analysis can be found in Soler Artigas et al.23 In brief, lin-

ear regression of age, age2, sex, height and principal com-

ponents for population structure was undertaken on FEV1

and FEV1/FVC separately for ever smokers and never

smokers. The residuals were normalized using a rank-

based inverse normal transformation, again separately in

ever smokers and never smokers. These transformed re-

siduals were then used as the phenotype for association

testing under an additive genetic model in each exposure

strata. Inference of the interaction effects from the

exposure-stratified analyses are described in the

Supplementary Note (available as Supplementary data at

IJE online).

Multivariate interaction analysis overview

First, we considered an unweighted genetic risk score-by-

smoking interaction where the risk score simply sums the

number of risk alleles (i.e. alleles associated with a lower

pulmonary function). This unweighted genetic risk score is

most powerful when the interaction effects have the same

direction as marginal SNP effects (i.e. the harmful effects

of smoking are magnified in individuals with a genetic pre-

disposition to reduced pulmonary function). Second, we

used a weighted genetic risk score where SNPs were

weighted by the absolute value of their marginal effect esti-

mates obtained from stage 1 screening of FEV1 and FEV1/

FVC from Soler Artigas et al.4 (Supplementary Table 1,

available as Supplementary data at IJE online). This

weighting scheme is most powerful when the magnitude of

interaction effects is proportional to the SNP marginal ef-

fects. Finally, for our third multivariate analysis, we

derived a standard omnibus test of all interaction effects.

This test will retain power in the presence of effects in both

directions or of different magnitudes. Although there is

strong correlation among the 12 tests performed (these

three models, considering interaction with two smoking

metrics, ever/never smoking or pack-years, for the two pul-

monary function metrics FEV1 and FEV1/FVC), we used a

stringent Bonferroni P-value correction threshold of

4� 10–3 to account for multiple testing.

When raw data are available, the weighted genetic risk

score (GRS) is usually expressed as GRS¼Rm[wi�Gi],

where m is the number of SNPs included in the genetic risk

score and w¼ (w1,..wm) are the weights attributed to each

single SNP. Following previous notation, the test of inter-

action between the GRS and the exposure Ek can be

applied using the following model:

Y � c0 þ cGRS �GRSþ cINT �GRS� Ek þ
X

l¼1...3
cEl

� El ;

(2)

where c0, cGRS, cEl
and cINT are the intercept, the main ef-

fect of the GRS, the main effect of the exposure El and the

interaction effect between Ek and the GRS, respectively.

However, because individual-level data were not directly

available, we performed the test of cINT from summary

statistics of interaction effects using an inverse-variance

weighted sum as proposed by Aschard.14 The chi-square

for the interaction term cINT was derived as follows:

v2
int ¼

X
i¼1...m

wi�b̂GiEk

r̂2
bGiEk

 !2

X
i¼1...m

w2
i

r̂2
bGiEk

; (3)

where b̂Gi�Ek
and r̂2

bGi�Ek

are the estimated effects and vari-

ance of the interaction between the exposure Ek and the

SNP Gi obtained from Equation (1) and wi is the weight

applied to SNP Gi. Under the null hypothesis of no inter-

action effect, v2
int follows a chi-squared distribution with

one degree of freedom.

The standard omnibus test of all interaction effects con-

sisted of evaluating jointly aG�Ek
¼ ðaG1�Ek

; . . . ; aGm�Ek
Þ

from the model:

Y � a0 þ
X

i¼1...m
½aGi
�Gi�

þ
X

i¼1...m
½aGi�Ek

�Gi � Ek� þ
X

l¼1...3
aEl
� El;

(4)

where a0, aGi , aEl
and aGi�Ek

are the intercept, the main ef-

fects of SNP Gi and the exposure El, and the interaction ef-

fect between Gi and Ek. Leveraging the independence

between the SNPs considered (a single SNP was selected

for each independent locus), we also derived the omnibus

test using summary statistics. Under this independence as-

sumption, the Gi�Ek interaction terms would also be in-

dependents,14 so that it can be performed by summing the

chi-square from each univariate interaction test to form a

chi-square with m degrees of freedom as follows:

v2
omnibus ¼

X
i¼1...m

b̂
2

Gi�Ek

r̂2
bGi�Ek

; (5)

where b̂Gi�Ek
and r̂2

bGi�Ek

are the estimated effects and
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variance of the interaction between the exposure Ek and

the SNP Gi obtained from Equation (1).

Relative risk in ever smokers vs never smokers

GRS interaction effects can further be translated in terms of

risk prediction. For pulmonary function, low FEV1 or FEV1/

FVC increases the risk of death24 and together they form the

basis for the diagnosis of COPD.1–3 COPD stage 2 or higher

are defined by the Global Initiative for Chronic Obstructive

Lung Disease (GOLD) as FEV1/FVC< 0.70 and

FEV1< 80% of the predicted value. According to recent stud-

ies,2,25 between 5% and 20% of European ancestry adults

are expected to have FEV1/FVC< 0.70, depending on smok-

ing characteristics and age distribution. Several studies argue

for a more stringent threshold to define COPD25,26 based on

lower limit of normal predicted value, rather than a fixed ab-

solute value, to prevent disease misclassification.

To explore the impact of interaction effect on the risk

of disease, we derived the relative risk (RR) of having

FEV1/FVC below a given threshold (1%, 5% and 20%) in

ever smokers vs never smokers conditional on the un-

weighted GRS. This quantity is defined as the joint prob-

ability of having both FEV1/FVC in the interval [–1,

FEV1/FVCup] and the GRS in the interval [GRSlow,GRSup].

This can be expressed as the following integral:

ðFEV1=FVCup

�1

ðGRSup

GRSlow

f1ðyjg; eÞ � f2ðgjeÞ dy dg; (6)

where y, e and g are FEV1/FVC, smoking status and the

GRS, respectively, and f1 and f2 are the probability density

function of y and g. The detailed derivation of the above

integral is available as Supplementary data at IJE online.

Results

We selected 26 loci previously found to be associated with

FEV1 or FEV1/FVC at genome-wide significance

(P< 5� 10–8) in marginal association tests4,11,27 (i.e. not

including interaction effects with smoking exposures) and

replicated in the GWAS by Soler Artigas et al.,4 the largest

meta-analysis of marginal genetic effect conducted for

these two traits in the general population. Additional loci

for these two phenotypes have been identified in two recent

studies.28,29 However, these new loci were not included in

our analysis because both these studies used a large cohort

ascertained through smoking status. For each of the 26 se-

lected loci, we choose the SNP with the strongest evidence

for association (i.e. smallest P-value) with each of these

phenotypes. The final list included 26 SNPs per phenotype,

with only two SNPs being different between FEV1 and

FEV1/FVC as previously reported4 (Supplementary Table

1, available as Supplementary data at IJE online).

Estimated interaction effects of these SNPs were extracted

from the meta-analysis summary statistics for the four tests

performed in the Hancock et al.9 analysis: SNP-by-

smoking status (ever smoking vs never smoking)

interaction effect on FEV1 and FEV1/FVC; and SNP-by-

smoking pack-years interaction effect on FEV1/FVC and

FEV1. As shown in Supplementary Table 2 (available as

Supplementary data at IJE online), nine SNPs showed

nominal significance (P< 0.05) out of the 104 tests per-

formed; however, none remained significant after account-

ing for multiple testing (Bonferroni corrected P-value

threshold of 5� 10–4). The minimum P-value was observed

for the interaction between rs993925, near the TGFb2

gene, and smoking status on FEV1 [bint¼ –0.036, 95%

confidence interval (CI), –0.009 to –0.032, P¼ 0.007].

Next, using these data, we conducted three multivariate

(as opposed to single SNP) interaction analyses, testing

jointly for the interaction effects between those SNPs and

either smoking status or pack-years on the two phenotypes

(FEV1 and FEV1/FVC) for a total of 12 tests. As shown in

Table 1, none of the multivariate interaction tests with

pack-years was significant. However, four of the six multi-

variate interaction tests with smoking status (ever vs never)

showed nominal significance, and two tests for FEV1/FVC

had a P-value below the Bonferroni significance level (12

tests, P< 4� 10–3). The strongest signal was observed for

the unweighted genetic risk score-by-smoking status inter-

action effect on FEV1/FVC (bint¼ –0.036, 95% CI –0.040

to –0.032, P¼ 0.00057). The Cochran’s Q test for hetero-

geneity of the interaction effect across studies was not sig-

nificant (P¼ 0.97) and the forest plot of study-specific

results did not display any obvious outlier (Supplementary

Figure 1, available as Supplementary data at IJE online).

The contrast between this significant risk score inter-

action and the absence of strong single SNP interaction ef-

fects can be explained by looking at the distribution of the

single SNP interaction effect estimates. Figure 1 shows this

distribution for the alleles associated with decreased FEV1/

FVC. It highlights that, although the 95% CI of most single

SNP interaction effects encompass the null (and therefore

the absence of significant single SNP interaction effect),

there is an enrichment for negative interaction effects.

Indeed, even a binomial test can be used to confirm the

unbalanced direction of interaction effects (18 of 26 inter-

actions are negative leading to a P-value of 0.014 for a bi-

nomial test with an expected equiprobable distribution of

0.5). The genetic risk score-based interaction test exploits

such enrichment by testing for the average interaction ef-

fect across all SNPs.14 As with any multivariate approach
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Table 1. Multivariate interaction tests of the 26 loci associated with pulmonary function

Outcome Exposure Test b̂int (CI) P-value

FEV1 Smoking statusa uGRS –0.0055 (–0.011, 2.7�10–5) 0.051

wGRS –0.21 (–0.40, –0.033) 0.020

CHISQ – – 0.49

FEV1 Pack-years uGRS –1.6�10–5 (–4.6�10–5, 1.4�10–5) 0.30

wGRS –6.5�10–4 (–1.6�10–3, 3.3�10–4) 0.19

CHISQ – – 0.46

FEV1/FVC Smoking status uGRS –0.0099 (–0.016, –0.0043) 0.00057b

wGRS –0.21 (–0.33, –0.073) 0.0022b

CHISQ – – 0.026

FEV1/FVC Pack-years uGRS –4.4e-06 (–3.6�10–5, 2.7�10–5) 0.78

wGRS –6.5�10–5 (–8.0�10–4, 6.6�10–4) 0.85

CHISQ – – 0.53

uGRS is the genetic risk score using equal weights to all SNPs; wGRS is the genetic risk score weighted by effect estimates from the marginal screening; CHISQ

is the omnibus test of all interaction effects; b̂int is the estimated interaction effect between the GRS and the outcome; and CI is the confidence interval of that esti-

mate. Nominally significant tests are indicated in bold.
aSmoking status is defined as never smokers vs ever smokers.
bSignificant P-value after Bonferroni correction.

Figure 1. Distribution of interaction effects on FEV1/FVC.

Single SNP risk allele-by-smoking status (ever/never) interaction effect estimates (bint) and 95% confidence intervals are plotted by increasing values.

The unweighted genetic risk score-by-smoking status interaction is plotted at the bottom.
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based on a composite null hypothesis, this result indicates

that at least a subset of these 26 SNPs interact with smok-

ing status, but does not allow us to determine which or

how many SNPs are driving the genetic risk score-by-

smoking interaction. The three other sets of single SNP

interaction tests showed a similar (but not significant after

correction for multiple testing) trend with enrichment for

negative interactions (Supplementary Figures 2–4, avail-

able as Supplementary data at IJE online). We summarized

the contribution of the unweighted genetic risk score-by-

smoking interaction on FEV1/FVC in Table 2 and

Figure 2A. This indicates that the deleterious effect of

smoking is enhanced among carriers of the risk alleles or

equivalently that the deleterious effect of smoking is

reduced among subjects carrying the protective alleles.

We used two independent datasets, one of 8859 unre-

lated individuals and another of 9457 related individuals,

to test for independent replication of our results

(Supplementary Note, available as Supplementary data at

IJE online). Although the interaction effects were not sig-

nificant, both replication samples showed consistent nega-

tive GRS-by-ever smoking interaction effect on FEV1/FVC

(b̂int¼ –0.0025, 95% CI –0.0165, 0.0115, P¼ 0.72 and

b̂int¼ –0.0030, 95% CI –0.0214, 0.0154, P¼ 0.74, and

overall interaction effect in the combined replication data-

sets b̂int¼ –0.0027, 95% CI –0.0136, 0.0082 P¼ 0.63) and

a Cochran’s Q test for heterogeneity showed no significant

difference in the three effect estimates (P¼ 0.51).

To quantify the impact of this result from a public health

perspective, we estimated the impact of the genetic risk

score-by-smoking interaction on having FEV1/FVC below

1%, 5% and 20% in the lower tails of the distribution in

the population. Specifically, we derived the RR of having

FEV1/FVC below these cut-off points (1%, 5% and 20%)

in ever smokers compared with never smokers. Figure 2B

quantifies the excess RR (i.e. the RR minus one) of individ-

uals across five GRS quintiles. It highlights the higher risk

associated with smoking among individuals carrying risk

alleles (i.e. alleles associated with poorer pulmonary func-

tion) as compared with individuals carrying protective al-

leles (i.e. alleles associated with better pulmonary function).

For example, among individuals with a GRS above the

80th percentile, smokers have on average a 26% excess RR

of having FEV1/FVC in the lowest 1% of the population

distribution, whereas ever smokers with a GRS below the

20th percentile have on average an 18% excess RR of fall-

ing in that same FEV1/FVC category compared with never

smokers. Applying the same approach for FEV1, we

observed a similar pattern (Supplementary Figure 5, avail-

able as Supplementary data at IJE online). However, as

expected, the lower magnitude of the genetic risk score-by-

ever smoking interaction on FEV1 implied a lower differ-

ence in RR between ever smokers and never smokers.

Discussion

Using the largest dataset to date of European ancestry par-

ticipants from the general population with pulmonary

Table 2. Summary of effect estimates for genetic risk score-

by-smoking status interaction on FEV1/FVC

Predictors Beta SD P-value

From the marginal exposure model

Pack-years –0.0030 0.00017 1.2�10–71

Current smoking –0.040 0.0047 7.7�10–18

Smoking statusa –0.0023 0.0046 0.61

From the interaction model

GRS –0.0363 0.0021 3.9�10–64

GRS� Smoking statusa –0.0099 0.0029 5.7�10–4

GRS is the unweighted genetic risk score; beta is the effect estimates of

each predictor; and SD the standard deviation of the each beta.
aSmoking status was defined as never smokers vs ever smokers.

Figure 2. Overview of the unweighted genetic risk score-by-smoking

interaction effect on FEV1/FVC.

Upper panel (A) presents the distribution of the unweighted genetic risk

score (GRS, grey density plot) and the relationship between the un-

weighted GRS and standardized FEV1/FVC in ever smokers (dashed line)

and never smokers (solid line). Lower panel (B) shows the excess rela-

tive risk (RR) of having FEV1/FVC in the lowest 1%, 5% and 20% of the

population for ever smokers compared with never smokers, as stratified

by GRS quintiles.
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function (FEV1/FVC and FEV1), smoking and genetic data,

we identified a gene-by-smoking interaction effect on

FEV1/FVC by using a GRS composed of 26 SNPs identified

and replicated in a prior GWAS meta-analysis of marginal

genetic effects. To our knowledge, our study is the first to

report a synergistic action of genes and smoking on pul-

monary function (i.e. the reduction in FEV1/FVC as a re-

sult of smoking is greater among individuals who are

genetically predisposed to lower FEV1/FVC ratio). Our

study also highlights the importance of developing and

applying alternative strategies to evaluate interaction ef-

fects for lung phenotypes along with other complex traits

and diseases. The genetic risk score-based approach

enabled us to identify an interaction when the standard

univariate test (i.e. evaluating each single genetic variant

for interaction independently) failed to identify any

interactions.

Replication studies showed interaction effect estimates

in the same direction as the discovery study but were not

significant, and the magnitude of interaction effects were

substantially smaller. We acknowledge that, despite careful

evaluation of the interaction effects in the discovery sam-

ple, the observed signal might be overestimated or con-

founded by unmeasured complex factors. However, we

can a priori rule out a systematic bias of the single SNP

interaction effects in the discovery study, because the gen-

omic inflation factor k, defined as the ratio of the median

of the empirically observed distribution of the test statistic

to the expected median,30 was not substantially different

from 1 (k¼ 1.044 for FEV1/FVC and smoking status).

Instead, differences in significance and effect estimates

might be partly explained by the limited sample size in the

replication study and differences in the analytical design.

Indeed, the discovery analysis was performed using a satu-

rated model including three smoking exposures and expli-

citly modelled the interaction effect. In comparison, the

replication analysis was not adjusted for current smoking

status and pack-year, and the interaction effect was

approximated from analyses stratified by smoking status

outcome, which has some limitations (see Supplementary

Note and Supplementary Figure 6, available as

Supplementary data at IJE online). Previous work has

shown that combined analyses are more powerful when ef-

fects exist in both strata,31 as observed in discovery study.

Further, even with N¼ 18 316 individuals in the combined

replication population, we are underpowered. This sample

size provides less than 50% power, at nominal significance

of 5%, to detect interaction effects with the GRS.

Genetic risk score-by-exposure interaction can have

higher clinical value than the identification of single SNP-

by-exposure interaction by capturing a wealth of informa-

tion in a single measure to identify subgroups in the

population whose genetic background makes them more

susceptible to the deleterious effects of smoking.19,32,33

Indeed, if single SNP-by-smoking interactions are distrib-

uted unconditionally on the marginal genetic effect (i.e.

interaction effects are equally likely to be positive or nega-

tive given that the coded alleles are the risk alleles), the

genetic effect is expected to be similar between ever and

never smokers. The enrichment for negative interactions

we identified through our GRS approach reveals a stronger

genetic component among the ever smoker subgroup in the

population and can allow the implementation of more effi-

cient implementation of prevention strategies. For ex-

ample, in the public health setting, programmes targeting

smoking cessation campaigns to individuals who are genet-

ically predisposed to low pulmonary function may have a

stronger impact in preventing COPD.

Our results may also elucidate biological mechanisms

underlying the interplay between genes and smoking in

pulmonary function. In particular, the higher statistical

power for the genetic risk score-based interaction test

points towards the potential presence of an unmeasured

intermediate biomarker mediating the effect of the 26 loci

on FEV1/FVC. As shown in Figure 3, the most parsimoni-

ous model (i.e. the less complex following Occam’s razor)

that would explain multiple interactions going in the same

direction (Figure 1) implies that the genetic variants

Figure 3. Underlying causal model.

Potential causal diagrams underlying the gene and smoking interaction

effects on FEV1/FVC. Panel (A) presents a scenario where each genetic

variant influences the outcome through a SNP-specific pathway, and

interactions with the environmental exposure take place along these

pathways. Panel (B) presents an alternative (and simpler) model where

multiple genetic variants influence an unmeasured intermediate bio-

marker U, which effect on FEV1/FVC depends on smoking. In scenario

(A), the single SNP-by-smoking interaction test is the optimal approach,

whereas, in scenario (B), the single SNP-by-smoking interaction test

can become inefficient, and interaction would be easier to detect using

a genetic risk score-by-smoking interaction test, because it summarizes

all interaction effects in a single test.
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together influence an intermediate biomarker, which itself

interacts with smoking. Future studies with extended gen-

omic data, including transcriptomic, proteomic or metabo-

lomic data, might be able to further assess such an

hypothesis by evaluating (i) the effect of the GRS on those

biomarkers and (ii) testing for interactions between smok-

ing and the candidate biomarkers identified at step (i).

This study has some limitations. The 26 selected vari-

ants together explain a relatively small proportion of the

additive genetic variance in FEV1/FVC and in FEV1.4

However, GWAS with increasing sample sizes will likely

continue to provide additional associated genetic variants

to further assess the role of SNP-by-smoking interaction ef-

fects on pulmonary phenotypes and may increase the gap

between smokers and never smokers to allow for a signifi-

cant impact in the clinic or at the population level.

Moreover, we focused on genetic variants previously found

to be associated at genome-wide significance level, but fu-

ture studies might consider less stringent criteria to select

genetic variants, including those with only suggestive evi-

dence, or alternatively candidate variants with functional

annotation relevant to the outcomes and exposures in

question. Obviously, the signal-to-noise ratio might de-

crease when relaxing the constraint on the SNP selection.

However, as we recently showed, additional gain in statis-

tical power might be achieved even if a substantial propor-

tion of the variants do not interact with the exposure.14

Finally, investigation of interaction effects with other en-

vironmental exposures such as second-hand smoke, air

pollution, asbestos or occupational risks may lead to a

more comprehensive understanding of the biological and

epidemiological significance of these variants.

In summary, the identification of interaction effects be-

tween genetic variants and environmental exposures in

human traits is recognized as extremely challenging, and

this quest has been mostly unsuccessful so far. In this

study, we discovered novel gene-by-smoking interactions

using risk scores that were not observed at the level of indi-

vidual genetic variants. This risk score analysis suggests

that persons with a greater genetic predisposition to low

pulmonary function are more susceptible to the deleterious

effects of smoking. By extension, the use of a GRS may

help predict which smokers will fall below thresholds that

establish the diagnosis of COPD.

Supplementary Data

Supplementary data are available at IJE online.
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