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Abstract 
Background: Over 90 regions of the genome have been associated 
with lung function to date, many of which have also been implicated in 
chronic obstructive pulmonary disease. 
Methods: We carried out meta-analyses of exome array data and 
three lung function measures: forced expiratory volume in one second 
(FEV1), forced vital capacity (FVC) and the ratio of FEV1 to FVC (FEV1
/FVC). These analyses by the SpiroMeta and CHARGE consortia 
included 60,749 individuals of European ancestry from 23 studies, and 
7,721 individuals of African Ancestry from 5 studies in the discovery 
stage, with follow-up in up to 111,556 independent individuals. 
Results: We identified significant (P<2·8x10-7) associations with six 
SNPs: a nonsynonymous variant in RPAP1, which is predicted to be 
damaging, three intronic SNPs (SEC24C, CASC17 and UQCC1) and two 
intergenic SNPs near to LY86 and FGF10. Expression quantitative trait 
loci analyses found evidence for regulation of gene expression at 
three signals and implicated several genes, including TYRO3 and PLAU. 
Conclusions: Further interrogation of these loci could provide greater 
understanding of the determinants of lung function and pulmonary 
disease.

Keywords 
Lung function, respiratory, exome array, GWAS, COPD

 

This article is included in the Wellcome Sanger 

Institute gateway.

 

This article is included in the Generation 

Scotland gateway.

Open Peer Review

Approval Status   

1 2

version 3

(revision)
07 Aug 2018

version 2

(revision)
21 Jun 2018

view

version 1
12 Jan 2018 view view

Robin Beaumont , University of Exeter, 

Exeter, UK 

Rachel M. Freathy , University of Exeter, 

Exeter, UK

1. 

Lisa Strug, Hospital for Sick Children, 

Toronto, Canada 

Naim Panjwani, The Hospital for Sick 

Children, Toronto, Canada

2. 

Any reports and responses or comments on the 

article can be found at the end of the article.

 
Page 4 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023

https://doi.org/10.12688/wellcomeopenres.12583.1
https://doi.org/10.12688/wellcomeopenres.12583.2
https://doi.org/10.12688/wellcomeopenres.12583.3
https://wellcomeopenresearch.org/gateways/sanger
https://wellcomeopenresearch.org/gateways/sanger
https://wellcomeopenresearch.org/gateways/sanger
https://wellcomeopenresearch.org/gateways/generationscotland
https://wellcomeopenresearch.org/gateways/generationscotland
https://wellcomeopenresearch.org/gateways/generationscotland
https://wellcomeopenresearch.org/articles/3-4/v3
https://wellcomeopenresearch.org/articles/3-4/v2
https://wellcomeopenresearch.org/articles/3-4/v3#referee-response-33384
https://wellcomeopenresearch.org/articles/3-4/v1
https://wellcomeopenresearch.org/articles/3-4/v3#referee-response-29790
https://wellcomeopenresearch.org/articles/3-4/v3#referee-response-30984
https://orcid.org/0000-0003-0750-8248
https://orcid.org/0000-0003-4152-2238


Corresponding authors: Martin D. Tobin (martin.tobin@le.ac.uk), Stephanie J. London (london2@niehs.nih.gov)
Author roles: Jackson VE: Formal Analysis, Writing – Original Draft Preparation; Latourelle JC: Formal Analysis, Writing – Review & 
Editing; Wain LV: Formal Analysis, Supervision, Writing – Review & Editing; Smith AV: Data Curation, Formal Analysis, Writing – Review & 
Editing; Grove ML: Data Curation, Writing – Review & Editing; Bartz TM: Formal Analysis, Writing – Review & Editing; Obeidat M: Formal 
Analysis, Writing – Review & Editing; Province MA: Conceptualization, Data Curation, Writing – Review & Editing; Gao W: Formal Analysis, 
Writing – Review & Editing; Qaiser B: Formal Analysis, Writing – Review & Editing; Porteous DJ: Data Curation; Cassano PA: Data 
Curation, Formal Analysis, Writing – Review & Editing; Ahluwalia TS: Conceptualization, Data Curation, Writing – Review & Editing; 
Grarup N: Conceptualization, Data Curation, Writing – Review & Editing; Li J: Data Curation, Formal Analysis, Writing – Review & Editing; 
Altmaier E: Formal Analysis, Writing – Review & Editing; Marten J: Formal Analysis, Writing – Review & Editing; Harris SE: Data Curation, 
Formal Analysis, Writing – Review & Editing; Manichaikul A: Data Curation, Formal Analysis, Writing – Review & Editing; Pottinger TD: 
Data Curation, Formal Analysis, Writing – Review & Editing; Li-Gao R: Data Curation, Formal Analysis, Writing – Review & Editing; Lind-
Thomsen A: Data Curation, Formal Analysis, Writing – Review & Editing; Mahajan A: Formal Analysis, Writing – Review & Editing; 
Lahousse L: Conceptualization, Data Curation, Formal Analysis, Writing – Review & Editing; Imboden M: Data Curation, Formal Analysis, 
Writing – Review & Editing; Teumer A: Data Curation, Formal Analysis, Writing – Review & Editing; Prins B: Data Curation, Formal 
Analysis, Writing – Review & Editing; Lyytikäinen LP: Data Curation, Formal Analysis, Writing – Review & Editing; Eiriksdottir G: 
Conceptualization, Data Curation, Writing – Review & Editing; Franceschini N: Formal Analysis, Writing – Review & Editing; Sitlani CM: 
Formal Analysis, Writing – Review & Editing; Brody JA: Data Curation, Formal Analysis, Writing – Review & Editing; Bossé Y: Data 
Curation, Writing – Review & Editing; Timens W: Data Curation, Writing – Review & Editing; Kraja A: Data Curation, Formal Analysis, 
Writing – Review & Editing; Loukola A: Data Curation, Writing – Review & Editing; Tang W: Data Curation, Formal Analysis, Writing – 
Review & Editing; Liu Y: Data Curation, Formal Analysis, Writing – Review & Editing; Bork-Jensen J: Conceptualization, Data Curation, 
Writing – Review & Editing; Justesen JM: Formal Analysis, Writing – Review & Editing; Linneberg A: Conceptualization, Writing – Review & 
Editing; Lange LA: Data Curation, Writing – Review & Editing; Rawal R: Data Curation, Writing – Review & Editing; Karrasch S: Data 
Curation, Writing – Review & Editing; Huffman JE: Formal Analysis, Writing – Review & Editing; Smith BH: Data Curation, Writing – 
Review & Editing; Davies G: Data Curation, Writing – Review & Editing; Burkart KM: Conceptualization, Writing – Review & Editing; 
Mychaleckyj JC: Data Curation, Writing – Review & Editing; Bonten TN: Data Curation, Writing – Review & Editing; Enroth S: Data 
Curation, Formal Analysis, Writing – Review & Editing; Lind L: Data Curation, Writing – Review & Editing; Brusselle GG: 
Conceptualization, Data Curation, Writing – Review & Editing; Kumar A: Data Curation, Formal Analysis, Writing – Review & Editing; 
Stubbe B: Conceptualization, Data Curation, Writing – Review & Editing; Kähönen M: Conceptualization, Data Curation, Writing – Review 
& Editing; Wyss AB: Conceptualization, Formal Analysis, Writing – Review & Editing; Psaty BM: Conceptualization, Data Curation, Writing 
– Review & Editing; Heckbert SR: Data Curation, Writing – Review & Editing; Hao K: Data Curation, Writing – Review & Editing; Rantanen 
T: Conceptualization, Data Curation, Writing – Review & Editing; Kritchevsky SB: Conceptualization, Data Curation, Writing – Review & 
Editing; Lohman K: Data Curation, Formal Analysis, Writing – Review & Editing; Skaaby T: Conceptualization, Writing – Review & Editing; 
Pisinger C: Conceptualization, Data Curation, Writing – Review & Editing; Hansen T: Conceptualization, Data Curation, Formal Analysis, 
Writing – Review & Editing; Schulz H: Conceptualization, Writing – Review & Editing; Polasek O: Conceptualization, Data Curation, 
Writing – Review & Editing; Campbell AI: Data Curation, Writing – Review & Editing; Starr JM: Data Curation, Writing – Review & Editing; 
Rich SS: Conceptualization, Data Curation, Writing – Review & Editing; Mook-Kanamori DO: Conceptualization, Data Curation, Writing – 
Review & Editing; Johansson Å: Data Curation, Writing – Review & Editing; Ingelsson E: Data Curation, Writing – Review & Editing; 
Uitterlinden AG: Conceptualization, Data Curation, Writing – Review & Editing; Weiss S: Data Curation, Formal Analysis, Writing – Review 
& Editing; Raitakari OT: Conceptualization, Data Curation, Writing – Review & Editing; Gudnason V: Conceptualization, Formal Analysis, 
Writing – Review & Editing; North KE: Data Curation, Writing – Review & Editing; Gharib SA: Writing – Review & Editing; Sin DD: Data 
Curation, Writing – Review & Editing; Taylor KD: Data Curation, Writing – Review & Editing; O'Connor GT: Data Curation, Writing – 
Review & Editing; Kaprio J: Conceptualization, Data Curation, Writing – Review & Editing; Harris TB: Conceptualization, Data Curation, 
Writing – Review & Editing; Pederson O: Data Curation, Formal Analysis, Writing – Review & Editing; Vestergaard H: Data Curation, 
Formal Analysis, Writing – Review & Editing; Wilson JG: Data Curation, Writing – Review & Editing; Strauch K: Data Curation, Writing – 
Review & Editing; Hayward C: Conceptualization, Data Curation, Formal Analysis, Writing – Review & Editing; Kerr SM: Data Curation, 
Writing – Review & Editing; Deary IJ: Data Curation, Writing – Review & Editing; Barr RG: Conceptualization, Data Curation, Writing – 
Review & Editing; de Mutsert R: Conceptualization, Data Curation, Writing – Review & Editing; Gyllensten U: Conceptualization, Data 
Curation, Writing – Review & Editing; Morris AP: Data Curation, Formal Analysis, Writing – Review & Editing; Ikram MA: 
Conceptualization, Writing – Review & Editing; Probst-Hensch N: Conceptualization, Data Curation, Formal Analysis, Writing – Review & 
Editing; Gläser S: Conceptualization, Data Curation, Writing – Review & Editing; Zeggini E: Conceptualization, Writing – Review & Editing; 
Lehtimäki T: Conceptualization, Data Curation, Writing – Review & Editing; Strachan DP: Conceptualization, Data Curation, Writing – 
Review & Editing; Dupuis J: Formal Analysis, Supervision, Writing – Review & Editing; Morrison AC: Formal Analysis, Writing – Review & 
Editing; Hall IP: Conceptualization, Formal Analysis, Supervision, Writing – Review & Editing; Tobin MD: Conceptualization, Formal 
Analysis, Supervision, Writing – Review & Editing; London SJ: Conceptualization, Formal Analysis, Supervision, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: MDT has been supported by MRC fellowships G0501942 and G0902313. MDT and LVW are supported by the MRC 
(MR/N011317/1). IPH is supported by the MRC (G1000861). ALW and SJL are supported by the Intramural Research Program of the NIH, 
National Institute of Environmental Health Sciences (ZIA ES 043012). We acknowledge use of phenotype and genotype data from the 
British 1958 Birth Cohort DNA collection, funded by the Medical Researanch Council grant G0000934 and the Wellcome Trust grant 
068545/Z/02. APM was a Wellcome Trust Senior Fellow in Basic Biomedical Science (grant number WT098017) and was also supported by 
Wellcome Trust grant WT064890. EI is supported by the Swedish Research Council (2012-1397), Knut och Alice Wallenberg Foundation 

 
Page 5 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023

mailto:martin.tobin@le.ac.uk
mailto:london2@niehs.nih.gov


(2013.0126) and the Swedish Heart-Lung Foundation (20140422). JK is supported by Academy of Finland Center of Excellence in Complex 
Disease Genetics grants 213506, 129680 and Academy of Finland grants 265240, 263278. The Finnish Twin Cohort is supported by the 
Welcome Trust Sanger Institute, UK. The Lothian Birth Cohort is supported by Age UK (The Disconnected Mind Project), the UK Medical 
Research Council (MR/K026992/1) and The Royal Society of Edinburgh. ÅJ is supported by the Swedish Society for Medical Research 
(SSMF), The Kjell och Märta Beijers Foundation, The Marcus Borgström Foundation, The Åke Wiberg foundation and The Vleugels 
Foundation. UG is supported by Swedish Medical Research Council grants K2007-66X-20270-01-3 and 2011-2354 and European 
Commission FP6 (LSHG-CT-2006-01947). SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, 
which is funded by the Federal Ministry of Education and Research, the Ministry of Cultural Affairs as well as the Social Ministry of the 
Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by 
the Federal Ministry of Education and Research, and the German Asthma and COPD Network (COSYCONET) (grant no.01ZZ9603, 
01ZZ0103, 01ZZ0403, 03IS2061A, BMBF 01GI0883). ExomeChip data have been supported by the Federal Ministry of Education and 
Research (grant no. 03Z1CN22) and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the 
Caché Campus program of the InterSystems GmbH. UKHLS is supported by grants WT098051 (Wellcome Trust) and ES/H029745/1 
(Economic and Social Research Council). Y.B. holds a Canada Research Chair in Genomics of Heart and Lung Diseases. Lies Lahousse is a 
Postdoctoral Fellow of the Research Foundation - Flanders (FWO grant G035014N). The Rotterdam Study is funded by Erasmus Medical 
Center and Erasmus University, Rotterdam, the Netherlands Organization for Scientific Research (NOW), the Netherlands Organization 
for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, 
Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. 
Genotyping in the Rotterdam study was supported by Netherlands Organization for Scientific Research (NOW grants 175.010.2005.011 ; 
911-03-305 012), the Research Institute for Diseases in the Elderly (RIDE2 grants 014-93-015) and Netherlands Genomics Initiative 
(NGI)/Netherlands Consortium for Healthy Aging (NCHA grant050-060-810). MESA/MESA SHARe is supported by HHS 
(HHSN268201500003I), NIH/NHLBI (contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-
95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169) and HIH/NCATS (contracts UL1-TR-000040, UL1-TR-
001079, UL1-TR-001881, DK063491). MESA SHARe is funded by NIH/NHLBI contract N02-HL-64278, MESA Air is funded by US EPA 
(RD831697) and MESA Spirometry funded by NIH/NHLBI (R01-HL077612). SSR and BMP are supported by NIH/NHLBI grant rare variants 
and NHLBI traits in deeply phenotyped cohorts (R01-HL120393). Cardiovascular Health Study: This CHS research was supported by 
NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, HHSN268200960009C, N01HC55222, 
N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL068986, 
R01HL087652, R01HL105756, R01HL103612, R01HL120393, and R01HL130114 with additional contribution from the National Institute of 
Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 and R01HL085251 from the 
National Institute on Aging (NIA). The provision of genotyping data was suprovidedpported in part by the National Center for Advancing 
Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes 
Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The 
Atherosclerosis Risk in Communities (ARIC) study is carried out as a collaborative study supported by the National Heart, Lung, and 
Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, 
HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). Funding support for “Building on GWAS 
for NHLBI-diseases: the U.S. CHARGE consortium” was provided by the NIH through the American Recovery and Reinvestment Act of 
2009 (ARRA) (5RC2HL102419). DOMK received funding from the Dutch Science Organisation (ZonMW-VENI Grant 916.14.023). The 
genotyping in the NEO study was supported by the Centre National de Génotypage (Paris, France), headed by Jean-François Deleuze. The 
NEO study is supported by the participating Departments, the Division and the Board of Directors of the Leiden University Medical 
Center, and by the Leiden University, Research Profile Area Vascular and Regenerative Medicine. SAPALDIA was supported by the Swiss 
National Science Foundation (grants no 33CS30-148470/1, 33CSCO-134276/1, 33CSCO-108796, , 324730_135673, 3247BO-104283, 
3247BO-104288, 3247BO-104284, 3247-065896, 3100-059302, 3200-052720, 3200-042532, 4026-028099, PMPulDP3_129021/1, 
PMPDP3_141671/1), the Federal Office for the Environment, the Federal Office of Public Health, the Federal Office of Roads and 
Transport, the canton's government of Aargau, Basel-Stadt, Basel-Land, Geneva, Luzern, Ticino, Valais, and Zürich, the Swiss Lung 
League, the canton's Lung League of Basel Stadt/ Basel Landschaft, Geneva, Ticino, Valais, Graubünden and Zurich, Stiftung ehemals 
Bündner Heilstätten, SUVA, Freiwillige Akademische Gesellschaft, UBS Wealth Foundation, Talecris Biotherapeutics GmbH, Abbott 
Diagnostics, European Commission 018996 (GABRIEL), Wellcome Trust WT 084703MA. The Novo Nordisk Foundation Center for Basic 
Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation 
from the Novo Nordisk Foundation (www.metabol.ku.dk). Generation Scotland received core support from the Chief Scientist Office of 
the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. Genotyping of the GS:SFHS 
samples was carried out by the Genetics Core Laboratory at the Edinburgh Clinical Research Facility, University of Edinburgh, Scotland 
and was funded by the Medical Research Council UK.. The Croatia KORCULA study was supported by the Ministry of Science, Education 
and Sport in the Republic of Croatia (108-1080315-0302). JD, JCL, WG and GTOC are supported by NIH/NHLBI Contract 
HHSN268201500001I. Genotyping, quality control and calling of the Illumina HumanExome BeadChip in the Framingham Heart Study 
was supported by funding from the National Heart, Lung and Blood Institute Division of Intramural Research (Daniel Levy and 
Christopher J. O’Donnell, Principle Investigators). The AGES study is supported by the NIH (N01-AG012100), the Iceland Parliament 
(Alþingi) and the Icelandic Heart Association. HABC was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106; NIA 
grant R01-AG028050, and NINR grant R01- NR012459 and was supported in part by the Intramural Research Program of the NIH, 
National Institute on Aging. The HABC genome-wide association study was funded by NIA grant 1R01AG032098- 01A1 and genotyping 
services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the 

 
Page 6 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023



National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. We thank the Jackson Heart Study 
(JHS) participants and staff for their contributions to this work. The JHS is supported by contracts HHSN268201300046C, 
HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung, and Blood 
Institute and the National Institute on Minority Health and Health Disparities. JGW is supported by U54GM115428 from the National 
Institute of General Medical Sciences. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2018 Jackson VE et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The 
author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The 
work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.
How to cite this article: Jackson VE, Latourelle JC, Wain LV et al. Meta-analysis of exome array data identifies six novel genetic loci 
for lung function [version 3; peer review: 2 approved] Wellcome Open Research 2018, 3:4 
https://doi.org/10.12688/wellcomeopenres.12583.3
First published: 12 Jan 2018, 3:4 https://doi.org/10.12688/wellcomeopenres.12583.1 

 
Page 7 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.12583.3
https://doi.org/10.12688/wellcomeopenres.12583.1


Introduction
Measures of lung function act as predictors of mortality and  
morbidity and form the basis for the diagnosis of several diseases, 
most notably chronic obstructive pulmonary disease (COPD), 
one of the leading causes of death globally1. Environmental  
factors, including smoking and exposure to air pollution play a  
significant role in lung function; however there has also 
been shown to be a genetic component, with estimates of the  
narrow sense heritability ranging between 39–66%2–5. Genome-
wide association studies (GWAS) of lung function have iden-
tified associations between single nucleotide polymorphisms 
(SNPs) and lung function at over 150 independent loci to date6–14.  
Associations have also been identified in GWAS of COPD15–19; 
however, the identification of disease associated SNPs has been 
restricted by limited sample sizes. Many signals first identi-
fied in powerful studies of quantitative lung function traits, have 
been found to be associated with risk of COPD, highlighting the  
potential clinical usefulness of comprehensive identification of  
lung function associated SNPs13.

Low frequency (minor allele frequency (MAF) 1–5%) and  
rare (MAF<1%) variants have been largely underexplored by  
GWAS to date. Exome arrays have been designed to facilitate the 
investigation of these low frequency and rare variants, predomi-
nately within coding regions, in large sample sizes. Alongside a 
core content of rare coding SNPs, the exome array additionally 
includes common variation, including tags for previously identi-
fied GWAS hits, ancestry informative SNPs, a grid of markers  
for estimating identity by descent and a random selection of  
synonymous SNPs20.

An earlier version of this article can be found on bioRxiv  
(https://doi.org/10.1101/164426)

Results
We carried out a meta-analysis of exome array data and three 
lung function measures: forced expiratory volume in one second 
(FEV

1
), forced vital capacity (FVC) and the ratio of FEV

1
 to FVC 

(FEV
1
/FVC). These analyses included 68,470 individuals from 

the SpiroMeta and CHARGE consortia in a discovery analysis, 
with follow-up in an independent sample of up to 111,556 indi-
viduals. All studies are listed with their study-specific sample 
characteristics in Table 1, with full study descriptions, including 
details of spirometry and other measurements described in the  
Supplementary Note. The genotype calling procedures imple-
mented by each study (Supplementary Table 1) and quality con-
trol of genotype data are described in the Supplementary Methods. 
We have undertaken both single variant analyses, and gene-based  

associations, which test for the joint effect of several rare variants  
in a gene (see Methods for details).

Meta-analyses of single variant associations
We first evaluated single variant associations between FEV

1
, FVC 

and FEV
1
/FVC and the 179,215 SNPs that passed study level  

quality control and were polymorphic in both consortia. These 
analyses identified 34 SNPs in regions not previously associated 
with lung function, showing association with at least one trait at 
overall P<10-5, and showing association with consistent direction 
and P<0·05 in both consortia (full results in Supplementary  
Table 2, quantile-quantile and Manhattan plots shown in  
Supplementary Figure 1). We followed up these SNP associations 
in a replication analysis comprising 3 studies with 111,556 indi-
viduals. Combining the results from the discovery and replication 
stages in a meta-analysis identified six SNPs in total that were  
independent to known signals and met the pre-defined signifi-
cance threshold (P<2·8×10-7) overall in, or near to FGF10, LY86, 
SEC24C, RPAP1, CASC17 and UQCC1 (Table 2, Supplementary 
Figure 2). A SNP near to the CASC17 signal (rs11654749, r2=0·3 
with rs1859962) has previously been associated with FEV

1
 in a 

genome-wide analysis of gene-smoking interactions, although  
this association was not replicated at the time21; the present  
analysis provides the first evidence for independent replication of 
this signal. A seventh signal was also identified in LCT (Table 2,  
Supplementary Figure 2); whilst this locus has not previously  
been implicated in lung function, this SNP is known to vary in  
frequency across European populations22, and we cannot rule out  
that this association is not an artefact of population structure.  
Our discovery analysis furthermore identified associations  
(P<10-5) in 25 regions previously associated with one or more  
of FEV

1
, FVC and FEV

1
/FVC (Supplementary Table 3).

Generally, the observed effect of the SNPs at the novel signals  
were similar in ever and never smokers; the exception was 
rs1448044 near FGF10, which showed a significant association 
with FVC only in ever smokers in our discovery analysis (ever  
smokers P=1·49×10-6; never smokers P=0·695, Supplementary  
Table 4 and Supplementary Figure 3). In the replication analysis,  
however, this association was observed in both ever and 
never smokers (ever smokers P=3·14×10-5; never smokers  
P=1·40×10-4, Supplementary Table 5). For rs1200345 (RPAP1)  
and rs1859962 (CASC17), associations were most statistically  
significant in the analyses restricted to individuals of European 
Ancestry (Supplementary Table 4 and Supplementary Figure 3), as 
was the association with rs2322659 (LCT), giving further support 
that this association may be due to population stratification.

Meta-analyses of gene-based associations
We undertook Weighted Sum Tests (WST)23 and Sequence  
Kernel Association tests (SKAT)24 to assess the joint effects of  
multiple low frequency variants within genes on lung function 
traits. In our discovery analyses of all 68,470 individuals, we tested 
up to 14,380 genes that had at least two variants with MAF<5% 
and met the inclusion criteria (exonic or loss of function [LOF], 
see Methods for definitions) in both consortia. The SKAT analy-
ses identified 16 genes associated (P<0·05 in both consortia and 
overall P<10-4) with FEV

1
, FVC or FEV

1
/FVC (Supplementary  

Table 6), whilst the WST analyses identified 12 genes  

            Amendments from Version 2

We have added a further limitation to the discussion of the 
paper outlining a recently highlighted issue regarding the trait 
transformation undertaken in our replication analyses. We show 
through sensitivity analyses that our results are not affected by 
this issue (Supplementary Figure 4), but note that future studies 
should avoid such a transformation.

See referee reports

REVISED
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Table 1. Sample characteristics of 11 SpiroMeta and 12 CHARGE studies contributing to the discovery analyses and three studies 
contributing to the replication analyses.

Discovery studies

SpiroMeta studies Total 
sample

n (%) Male Ever 
smokers, 
n (%)

Age, mean 
(SD)

FEV1, 
litres. 
mean (SD)

FVC, 
litres. 
mean 
(SD)

FEV1/FVC, 
mean (SD)

1958 British Birth Cohort (B58C) 5270 2961 (56·2%) 2866 (53·3%) 44·00 (0·00) 3·35 (0·79) 4·29 (1·03) 0·788 (0·09)

Generation Scotland (GS:SFHS) 8164 3413 (41·8%) 3806 (46·6%) 51·59 (13·33) 2·78 (0·87) 3·91 (1·01) 0·710 (0·12)

Cooperative Health Research in the 
Region of Augsburg (KORA F4)

1447 701 (48·5%) 900 (62·2%) 54·82 (9·66) 3·24 (0·85) 4·20 (1·04) 0·771 (0·07)

CROATIA-Korcula cohort 
(KORCULA)

791 296 (36·8%) 418 (52·0%) 55·56 (13·69) 2·72 (0·83) 3·29 (0·95) 0·829 (0·10)

Lothian Birth Cohort 1936 
(LBC1936)

974 501 (50·6%) 554 (55·9%) 69·55 (0·84) 2·38 (0·67) 3·04 (0·87) 0·787 (0·10)

Study of Health in Pomerania 
(SHIP)

1681 831 (49·4%) 955 (56·8%) 52·25 (13·43) 3·29 (0·88) 3·88 (1·03) 0·848 (0·07)

Northern Swedish Population 
Health Study (NSPHS)

880 407 (46·3%) 122 (13·9%) 49·13 (19·96) 2·93 (0·90) 3·53 (1·06) 0·831 (0·09)

Prospective Investigation of the 
Vasculature in Uppsala Seniors 
(PIVUS)

836 413 (49·4%) 426 (51·0%) 70·20 (0·17) 2·44 (0·68) 3·20 (0·87) 0·76 (0·10)

Swiss study on Air Pollution and 
Lung Disease in adults (SAPALDIA)

2707 1379 (50·9%) 1399 (51·7%) 40·86 (10·92) 3·65 (0·83) 4·62 (1·04) 0·794 (0·07)

The Cardiovascular Risk in Young 
Finns Study (YFS)

434 198 (47·3%) 186 (44·4%) 38·88 (5·07) 3·73 (0·75) 4·68 (0·99) 0·800 (0·06)

Finnish Twin Cohort (FTC) 214 0 (0%) 0 (0%) 68·73 (3·31) 2·18 (0·47) 2·79 (0·58) 0·786 (0·08)

Total 23,398

CHARGE studies (European 
Ancestry)

Total 
sample

n (%) Male Ever 
smokers, 
n (%)

Age, mean 
(SD)

FEV1, 
litres. 
mean (SD)

FVC, 
litres. 
mean 
(SD)

FEV1/FVC, 
mean (SD)

AGES-Reykjavik study (AGES) 1566 649 (41·4%) 900 (57·5%) 76·1 (5·62) 2·13 (0·70) 2·87 (0·86) 0·744 (0·09)

Atherosclerosis Risk in 
Communities Study (ARIC)

10,680 5015 (47·0%) 631 (59·1%) 54·3 (5·70) 2·94 (0·77) 3·98 (0·98) 0·738 (0·07)

Cardiovascular Health Study (CHS) 3967 1737 (43·8%) 2089 (52·7%) 72·8 (5·55) 2·11 (0·66) 3·00 (0·86) 0·702 (0·10)

NHLBI Family Heart Study (FAMHS) 1651 718 (43·5%) 698 (42·3) 53·5 (12·60) 2·91 
(0·853)

3·89 (1·05) 0·746 (0·08)

Framingham Heart Study (FHS) 7113 3241 (45·5%) 3780 (53·1) 50·7 (14·12) 3·10 
(0·925)

4·09 (1·12) 0·755 (0·08)

Health Aging and Body 
Composition Study (HABC)

1457 786 (53·2%) 831 (56·5%) 73·7 (2·83) 2·31 (0·66) 3·11 (0·81) 0·741 (0·08)

Health2006 Study 2714 1217 (44·8%) 1577 (58·1%) 49·4 (13·04) 3·13 (0·82) 3·99 (0·99) 0·784 (0·07)

Health2008 Study 687 297 (43·2%) 384 (55·9%) 46·7 (8·22) 3·27 (0·79) 4·13 (0·97) 0·791 (0·06)

Inter99 Study (without pack-years) 1115 549 (49·2%) 1115 (100%) 47·2 (7·76) 3·26 (0·71) 4·12 (0·92) 0·796 (0·07)

Inter99 Study (with pack-years) 4179 2027 (48·5%) 2307 (55·2%) 45·8 (7·95) 3·21 (0·76) 4·10 (0·97) 0·788 (0·08)

Multi-Ethnic Study of 
Atherosclerosis (MESA)

1323 654 (49·4%) 751 (56·8%) 66·0 (9·8) 2·57 (0·76) 3·51 (0·10) 0·733 (0·08)

The Rotterdam Study (RS) 546 299 (54·8%) 382 (70·0%) 79·4 (5·00) 2·27 (0·68) 3·03 (0·86) 0·750 (0·08)

Total 36,998
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(Supplementary Table 7). There was one gene (LY6G6D) that was  
identified in both analyses. These genes were followed up in 
UK Biobank, with two genes, GPR126 and LTBP4, showing  
evidence of replication in the exonic SKAT analysis (P<3·5×10-6);  
however conditional analyses in UK Biobank showed that  
both these associations were driven by single SNPs, that were  
identified in the single variant association analyses and have  
been previously reported in GWAS of these traits (Supplementary 
Table 6 and Supplementary Table 7).

Functional characterization of novel loci
In order to gain further insight into the six loci identified in our  
analyses of single variant associations (excluding LCT), we 
employed functional annotation and assessed whether identi-
fied SNPs in these regions were associated with gene expression  
levels. One of the identified novel SNPs was nonsynonymous,  
three intronic and two were intergenic. We found evidence that 
three of the SNPs may be involved in cis-acting regulation of the  
expression of several genes in multiple tissues (Supplementary 
Table 8).

SNP rs1200345 in RPAP1 is a nonysynomous variant, pre-
dicted to be deleterious by both SIFT (deleterious) and Polyphen  
(possibly damaging) (Supplementary Table 9); RPAP1 is ubiq-
uitously expressed, with high levels of protein detected in the 
lung (Supplementary Table 10). SNP rs1200345 or proxies  
(r2>0·8) were also found to be amongst the most strongly associ-
ated SNPs with expression levels of RPAP1 in several tissues,  
including lung, and with a further six genes in lung tissue  

(Supplementary Table 8), including TYRO3, one of the TAM  
family of receptor tyrosine kinases. TYRO3 regulates several  
processes including cell survival, migration and differentiation 
and is highly expressed in lung macrophages (Supplementary  
Table 10). Evidence of association with gene expression was 
found at two more of the novel signals (sentinel SNPs rs3849969 
and  rs6088813), implicating a further 16 genes. Of note, in blood  
expression quantitative trait loci (eQTL) databases, a proxy of a 
SNP in complete linkage disequilibrium (r2=1) with rs3849969 
(rs3812637) was an eQTL for plasminogen activator, urokinase 
(PLAU).

Discussion
We undertook an analysis of 68,470 individuals from 23 studies 
with data from the exome array and three lung function traits,  
following up the most significant single SNP and gene-based 
associations in an independent sample of up to 111,556 indi-
viduals. There were six SNPs which reached P<10-5 in the  
discovery stage meta-analysis of single variant associations, and 
subsequently met the Bonferroni corrected significance threshold 
for independent replication (P<1·47×10-3, corrected for 34 SNPs 
being tested). In the combined analyses of our discovery and  
replication analyses, these six SNPs met the exome chip-wide  
significance threshold (P<2·8×10-7). One of the SNPs is in a  
region that has previously been implicated in lung function (near 
KCJN2/SOX9)21, whilst the remaining five SNPs, although all  
common, have not previously been identified in other GWAS of  
lung function. In a recent 1000 Genomes imputed analysis of 
lung function (which includes some of the studies contributing to 

Discovery studies

CHARGE studies (African 
Ancestry)

Total 
Sample

n (%) Male Ever smokers, 
n (%)

Age, mean 
(SD)

FEV1, 
litres. 
mean (SD)

FVC, 
litres. 
mean 
(SD)

FEV1/FVC, 
mean (SD)

Atherosclerosis Risk in 
Communities Study (ARIC)

3180 1183 (37·2%) 1680 (59·1%) 53·6 (5·83) 2·48 (0·65) 3·25 (0·82) 0·765 (0·08)

Cardiovascular Health Study (CHS) 624 232 (37·2%) 340 (54·4%) 73·2 (5·49) 1·76 (0·58) 2·48 (0·80) 0·717 (0·11)

Health Aging and Body 
Composition Study (HABC)

943 433 (45·9%) 543 (57·6%) 73·4 (2·90) 1·96 (0·57) 2·61 (0·71) 0·749 (0·09)

Jackson Heart Study (JHS) 2143 793 (36·8%) 688 (31·9%) 52·8 (12·6) 2·43 (0·72) 3·02 (0·86) 0·807 (0·09)

Multi-Ethnic Study of 
Atherosclerosis (MESA)

861 404 (46·9%) 467 (54·2%) 65·6 (9·6) 2·19 (0·66) 2·92 (0·86) 0·756 (0·09)

Total 7721

Replication studies

Study name Total 
Sample

n (%) Male Ever smokers, 
n (%)

Age, mean 
(SD)

FEV1, 
litres. 
mean (SD)

FVC, 
litres. 
mean 
(SD)

FEV1/FVC, 
mean (SD)

UK Biobank 98,657 45,166 (45·8%) 56,404 (57·2%) 56·7 (7·92) 2·75 (0·80) 3·67 (0·98) 0·75 (0·07)

UK Household Longitudinal Study 
(UKHLS) 

7443 3293 (44·2%) 4509 (60·5%) 53·10 
(15·94)

2·89 (0·90) 3·83 (1·08) 0·753 (0·09)

Netherlands Epidemiology of 
Obesity study (NEO) 

5456 2672 (48·0%) 3674 (66·0%) 55·9 (5·9) 3·26 (0·80) 4·26 (1·02) 0·77 (0·07)

Total 111,556
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the present discovery analysis), all of these SNPs showed at least  
suggestive association (2·97×10-3>P>1·28×10-5) with one or  
more lung function trait, but none reached the required  
threshold (P<5×10-6) to be taken forward for replication in that 
analysis12.

We further identified a seventh association with rs2322659 in LCT 
(MAF=23·5%; combined discovery + replication P=1·70×10-9).  
Given SNPs in this region are known to vary in frequency across  
European populations, we cannot dismiss the possibility that this 
association may be confounded by population stratification; hence 
we do not report this signal as a novel lung function locus. For 
SNPs at 7 loci that have been shown to have differences in allele  
frequency between individuals from different regions of the  
UK25, and subsequently European populations (including the  
LCT locus), we undertook a look-up of associations with lung 
function in our discovery analyses. and subsequently across  
European populations26. Aside from the association between the 
LCT locus and FVC, no significant associations were observed 
between SNPs at these loci and any lung function trait, in either 
the analyses restricted to European Ancestry (EA) individuals, 
or in the analysis of EA and African Ancestry (AA) individuals 
combined (Supplementary Table 11); this suggests popula-
tion structure was generally accounted for adequately in our  
analyses.

One of the novel signals was with a nonsynonymous SNP, 
rs1200345 in RPAP1, (MAF=48·8%; P=2·33×10-13), which is 
predicted to be deleterious. This SNP and proxies with r2>0·8  
were also associated with expression in lung tissue of seven  
genes, including RPAP1 and the TAM receptor TYRO3. TAM 
receptors play a role in the inhibition of Toll-like receptors (TLRs)- 
mediated innate immune response by initiating the transcription  
of cytokine signalling genes (SOCS-1 and 3), which limit cytokine 
overproduction and inflammation27,28. It has been shown that 
influenza viruses H5N1 and H7N9 can cause downregula-
tion of Tyro3, resulting in an increased inflammatory cytokine  
response28.

Three further signals were with intronic SNPs in SEC24C 
(MAF=29·4%; P=4·99×10-12), CASC17 (MAF=48·2%;  
P=4·10×10-11), and UQCC1 (MAF=36·7%; P=4·90×10-19). Two 
of these intronic SNPs have previously been implicated in GWAS 
of other traits: rs1859962 in CASC17 with prostate cancer29 and 
rs6088813 in UQCC1 with height30. The CASC17 locus, near 
KCNJ2/SOX9 has also previously been implicated in lung func-
tion, showing significant association with FEV

1
 in a genome-wide 

analysis of gene-smoking interactions; however, this association 
was not formally replicated21. Whilst the individuals utilised in  
the discovery stage of this analysis overlap with those included  
in this previous interaction analysis, the replication stage of the 
present study provides the first evidence of replication for this  
signal in independent cohorts. In the present analysis, there was  
no evidence that the results differed by smoking status.

SNPs rs6088813 in UQCC1 and rs3849969 in SEC24C were 
identified as eQTLs for multiple genes. Whilst our eQTL analysis 
did not include formal tests of colocalisation, a SNP in complete 
linkage disequilibrium with rs3849969 (rs3812637, r2=1) was 

associated with expression of PLAU in blood. The plasmino-
gen activator, urokinase (PLAU) plays a role in fibrinolysis and  
immunity, and with its receptor (PLAUR) is involved in degrada-
tion of the extra cellular matrix, cell migration, cell adhesion and 
cell proliferation31. A study of preterm infants with respiratory  
distress syndrome, a condition characterised by intra-alveolar 
fibrin deposition, found PLAU and its inhibitor SERPINE1 to be 
expressed in the alveolar epithelium, and an increased ratio of  
SERPINE1 to PLAU was associated with severity of disease32.  
Studies in mice have also shown that increased expression of  
Plau may be protective against lung injury, by reducing  
fibrosis33. PLAU has also been found to be upregulated in lung  
epithelial cells subjected to cyclic strain34 and in patients with 
COPD and lung cancer, PLAU was found to be expressed in  
alveolar macrophages and epithelial cells31.

The final two signals were with common intergenic SNPs close  
to LY86 (MAF=36·8%; P=9·74×10-23) and FGF10 (MAF=35·6%; 
P=2·22×10-11). LY86 (lymphocyte antigen 86) interacts with the 
Toll-like receptor signalling pathway, to form a heterodimer, 
when bound with RP10535. The sentinel SNP in the present  
analysis (rs1294421) has previously shown association with 
waist-hip ratio36, whilst an intronic SNP within LY86 (rs7440529, 
r2=0·005 with rs1294421) has been implicated in asthma in two 
studies of individuals of Han Chinese ancestry37,38. FGF10 is a  
member of the fibroblast growth factor family of proteins, and is 
involved in a range of biological processes, including embryonic 
development and morphogenesis, cell growth and repair, tumor 
growth and invasion. Specifically, the FGF10 signalling pathway  
is thought to play an criticial role in the development of the  
lung and in lung epithelial renewal39. A deficiency in Fgf10 
has been demonstrated to lead to a fatal disruption of branching  
morphogenesis during lung development in mice40.

Our discovery analyses included individuals of both EA and 
AA. Two of the identified six novel signals showed inconsistent  
effects in the AA and EA individuals. For these SNPs, the  
associations in AA individuals were not statistically significant, 
and we report associations from the analysis restricted to EA  
individuals only. For the remaining four SNPs similar effects were  
observed in both the EA and AA individuals (Supplementary 
Figure 3). We also examined the effects of the novel SNPs in 
ever smokers and never smokers separately and found these to 
be broadly similar, with the exception of rs1448044 in FGF10, 
which in the discovery analysis showed significant association 
with FVC in ever smokers, whilst showing no association in never 
smokers (P=0·695). However, in our replication stage analyses,  
similar effects were seen in both ever and never smokers for this 
SNP, and the combined analysis of discovery and replication 
stages for this SNP, including both ever and never smokers, met 
the exome chip-wide significance level overall (P=4·22×10-9). We 
also considered whether this signal could be driven by smoking  
behaviour in our discovery stage as our primary analyses in 
SpiroMeta did not adjust for smoking quantity. We undertook a 
look-up of this SNP in the publicly available results of a GWAS 
of several smoking behaviour traits41; there was only weak  
evidence that this SNP was associated with ever versus never  
smoking (P=0·039), and no evidence for association with amount 
smoked (cigarettes per day, P=0·10).
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Through the use of the exome array, we aimed to identify asso-
ciations with low frequency and rare functional variants, thereby 
potentially uncovering some of the missing heritability of lung 
function. However, whilst our discovery analyses identified single 
SNP associations with 23 low frequency variants (Supplementary  
Table 2), we did not replicate any of these findings. Eleven of  
these 23 SNPs we were unable to follow-up in our replication  
studies, due to them either being not genotyped, or monomorphic. 
Overall, limited statistical power is likely to explain our lack of  
convincing single variant associations with rare variants, in  
particular if those variants exhibit only modest effects42. We addi-
tionally investigated the joint effects of low frequency and rare  
variants within genes, on lung function trait, by employing SKAT 
and WST gene-based tests. These analyses identified associations 
with a number of genes that could not attributed to the effect of 
a single SNP. Replication of these gene-based signals proved  
difficult however, as again a number of SNPs included in the  
discovery stage of these analyses were monomorphic, or had 
not been not genotyped in the replication studies. This lead to a  
disparity in the gene unit being tested in our discovery and  
replication samples; hence interpretation of these results was not 
clear-cut. In the end, we were able to replicate only findings with 
common SNPs. This finding is in line with several other stud-
ies of complex traits and exome array data that have been unable 
to report robust associations with low frequency variants43–45 
and it is clear that future studies will require increasingly larger  
sample sizes in order to fully evaluate the effect of variants across 
the allele frequency spectrum. The identification of common SNPs 
remains important, however, as such findings have the potential 
to highlight drug targets46, and these variants collectively could  
have utility in risk prediction.

In our replication analyses using UK Biobank, we applied adjust-
ment for covariates including ancestry principal components, 
before undertaking inverse-normal transformations of the lung 
function phenotypes. Association analyses were then performed 
using these transformed phenotypes. It has recently been 
shown that such transformation has the potential to introduce 
correlations between principal components and phenotypes47; 
we undertook sensitivity analyses for the six reported SNPs 
by repeating the association analyses with phenotypes that 
had been transformed without prior adjustment, with covariate 
adjustment made as part of the SNP-trait association test. We 
found there to be some difference in P-values for some SNP-
trait combinations; however, the six novel SNP associations we 
report all met the replication P-value threshold (P<1·47×10-3) 
in the sensitivity analyses (Supplementary Figure 4). This issue  
may also be relevant to the gene-based tests; however no  
replicated novel gene-based associations were identified in this 
study. Future studies should avoid undertaking adjustment for 
principal components of ancestry prior to trait transformation,  
in order to avoid this potential bias.

This study has identified six common SNPs, independent to  
signals previously implicated in lung function. Additional  
interrogation of these loci could lead to greater understanding of 

lung function and lung disease, and could provide novel targets  
for therapeutic interventions.

Methods
Study design, cohorts and genotyping
The SpiroMeta analysis included 23,751 individuals of EA from 
11 studies, and the CHARGE analysis comprised 36,998 EA  
individuals and a further 7,721 individuals of AA from 12  
studies. Follow-up analyses were conducted in an independent  
sample of up to 111,556 individuals from UK Biobank (2015 
interim release), the UK Household Longitudinal Study (UKHLS) 
and the Netherlands Epidemiology of Obesity (NEO) Study  
(Figure 1). All studies (excluding UK Biobank) were genotyped 
using either the Illumina Human Exome BeadChip v1 or the  
Illumina Infinium HumanCoreExome-12 v1·0 BeadChip. UK 
Biobank samples were genotyped using the Affymetrix Axiom UK 
BiLEVE or UK Biobank arrays.

Statistical analyses
Consortium level analyses: Within the SpiroMeta Consortium, 
each study contributing to the discovery analyses calculated  
single-variant score statistics, along with covariance matrices 
describing correlations between variants, using RAREMETAL-
WORKER48 or rvtests49. For each trait, these summary statistics  
were generated separately in ever and never smokers. Traits were 
adjusted for sex, age, age2 and height, and  inverse normally  
transformed prior to association testing. For studies with unrelated  
individuals, SNP-trait associations were tested using linear  
models, with adjustments made for the first 10 ancestry principal 
components, whilst studies with related individuals utilised linear 
mixed models to account for familial relationships and underlying 
population structure.

Within the CHARGE Consortium, each study generated equiva-
lent summary statistics using the R package SeqMeta50. For each  
trait, summary statistics were generated in ever and never  
smokers separately, and in all individuals combined. The untrans-
formed traits were used for all analyses, adjusted for smoking sta-
tus and pack-years, age, age2, sex, height, height2, centre/cohort. 
Models for FVC were additionally adjusted for weight. Linear 
regression models, with adjustment for principal components 
of ancestry were used for studies with unrelated individuals, and  
linear mixed models were used for family-based studies.

Within each consortium we used the score statistics and variance-
covariance matrices generated by each study to construct both 
single variant and gene-based tests using either RAREMETAL48 
(SpiroMeta) or SeqMeta50 (CHARGE). For single variant  
associations, score statistics were combined in fixed effects 
meta-analyses. Two gene-based tests were constructed: first, the 
Weighted Sum Test (WST) using Madsen Browning weightings23, 
and secondly, the Sequence Kernel Association Test (SKAT)24.  
We performed the SKAT and WST tests using two subsets of  
SNPs: 1) including all SNPs with an overall consortium-wide 
MAF<5% that were annotated as splicing, stopgain, stoploss, or 
frameshift (loss of function [LOF] analysis), and 2) including  
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Figure 1. Study design.

all SNPs meeting the LOF analysis criteria in addition to all  
other nonsynonymous variants with consortium wide MAF<5% 
(exonic analysis). Variants were annotated to genes using  
dbNSFP v2·651 on the basis of the GRCh37/hg19 database.

For both single variant and gene-based associations,  
consortium-level results were generated for ever smokers and 
never smokers separately, and in all individuals combined. Within 
the CHARGE Consortium, results were combined separately for 
the EA and AA studies and also in a trans-ethnic analysis of both  
ancestries.

Combined meta-analysis: The single variant association results 
from the SpiroMeta and CHARGE consortia were combined as 
follows: The genomic inflation statistic (λ) was calculated for  
SNPs with consortium-wide MAF>1%; where λ had a value  
greater than one, genomic control adjustment was applied to the 

consortium level P-values. The consortium-level results were 
then combined using sample size weighted z-score meta-analysis.  
The λ was again calculated for the meta-analysis results 
and genomic control applied, as appropriate. λ values at the  
consortium and meta-analysis level are shown in Supplementary  
Table 13. Since we were interested in identifying low frequency 
and rare variants, we applied no MAF or minor allele count  
(MAC) filter. We identified SNPs of interest as those with an 
overall P<10-5 and a consistent direction of effect and P<0·05 
observed in both consortia. Rather than using a strict Bonferroni 
correction for defining the significance threshold, we adopted 
the more lenient P<10-5 threshold in order to increase the power 
to detect variants with modest effect in our discovery analyses, 
whilst the requirement for consistency in results from the two  
consortia aimed to limit false positives. All SNPs meeting these 
thresholds were followed up in independent replication cohorts.  
Where we identified a SNP within 1Mb of a previously identified 

SpiroMeta:Meta-analysis of
FEV1, FVC and FEV1/FVC in
23,751 EA individuals from 
11 Studies.

CHARGE: Meta-analysis of
FEV1, FVC and FEV1/FVC in
36,998 EA and 7721 AA
individuals from 12 studies.

Overall Meta-analysis of FEV1, FVC and FEV1/FVC in 60,749 EA
and 7721 AA individuals.

Consortium-
level analysis

Combined
meta-analysis

Replication
analysis

Identification of
novel
associations

34 SNPs selected with P<10-5

with at least one trait in
combined meta-analysis and
P<0.05 in both consortium -
level analysis.

SNPs followed up in an
independent sample of up to
111,556 individuals from UK
Biobank, UKHLS and NEO.

6 SNPs meeting exome chip-
wide significance (P<2.8×10-7)
overall identified.

Results from discovery meta-analysis and replication analysis
combined to give overall result.

0 Genes meeting exome chip-
wide significance (P<3-5×10-6)
overall identified.

Genes followed up in an
independent sample of up to
98,657 individuals from UK
Biobank.

27 Genes selected with P<10-4

with at least one trait in
combined meta-analysis and
P<0.05 in both consortium -
level analysis.

Page 14 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023



lung function SNP, we deemed the SNP to represent an  
independent signal if it had r2<0·2 with the known SNP, and if 
it retained a P <10-5, when conditional analyses were carried 
out with the known SNP, or a genotyped proxy, using data 
from the SpiroMeta Consortium, or UK Biobank. Our primary 
meta-analysis included all individuals; we additionally carried 
out analyses in smoking subgroups (ever and never smokers),  
and in the subgroup of individuals of European ancestry only.

For genes which contained at least 2 polymorphic SNPs in both 
consortia, we combined the results of the consortium level gene 
based tests using either z-score meta-analysis (for the WST  
analysis) or Fisher’s Method for combining P-values (in the 
case of SKAT). We identified genes of interest as those with 
P<0·05 observed in both consortia and an overall P<10-4, thresh-
olds again chosen to limit both false positive and false negative  
findings. As in the analyses of single variant associations, our 
primary meta-analyses included all individuals, with secondary  
analyses undertaken in smoking and ancestry specific subgroups.

Replication analyses: All SNP and gene-based associa-
tions were followed up for the trait with which they showed the 
most statistically significant association only. For associations  
identified through the smoking subgroup analyses, we followed 
up associations in the appropriate smoking strata; however, no  
ancestry stratified follow-up was undertaken as replication  
studies included only a sufficient number of individuals of  
European Ancestry.

Single variant associations in UK Biobank were tested in ever  
smokers and never smokers separately, and stratified by  
genotyping array (UK BiLEVE array or UK Biobank array) 
using the score test as implemented in SNPTEST v2·5b452. Traits 
were adjusted for age, age2, height, sex, ten principal compo-
nents and pack-years (ever smokers only), and the adjusted traits 
were inverse normally transformed. Correlations between prin-
cipal components and transformed phenotypes may be intro-
duced where adjustment is made prior to transformation. In this  
analysis, we found any introduced correlations to have no impact 
on the conclusion of our replication analyses; however future 
studies should apply transformation of phenotypes prior to  
covariate adjustment, to avoid this issue. For UKHLS, analyses 
were undertaken analogously to the SpiroMeta discovery studies 
using RAREMETALWORKER, while for NEO, analyses were  
undertaken in the same way as was done in the CHARGE  
discovery studies using SeqMeta. The single variant results 
from all replication studies were combined using sample size 
weighted Z-score meta-analysis. Subsequently, we combined 
the results from the discovery and replication stage analyses and  
we report SNPs with overall exome-wide significance of  
P<2·8×10-7 (Bonferroni corrected for the original 179,215 SNPs 
tested).

We followed up genes of interest (P<10-4) using data from 
UK Biobank only. Summary statistics for UK Biobank were  
generated using RAREMETALWORKER, with gene-based tests 
then constructed using RAREMETAL. Finally, we combined the 
results from the discovery analysis with the replication results in 

an overall combined meta-analysis using either z-score meta- 
analysis (WST) or Fisher’s Method (SKAT). We declared 
genes with overall P<3·5×10-6 (Bonferroni corrected for 14,380 
genes tested) in our combined meta-analysis to be statistically  
significant. For these statistically significant genes, we carried 
out additional analyses using the UK Biobank data in which we  
conditioned on the most significantly associated individual SNP 
within that gene, to determine whether this was a true gene-based 
signal, or whether the association could be ascribed to the single 
SNP (if the conditional P<0·01, then association was deemed  
to not be driven by the single SNP).

Characterization of findings
In order to gain further insight into the loci identified in our  
analyses of single variant associations, we assessed whether these 
regions were associated with gene expression levels in various 
tissues (FDR of 5%, or q-value<0·05), by querying a publically 
available blood eQTL database53 and the GTEx project54 for the 
sentinel SNPs, or any proxy (r2>0·8). We further assessed SNPs 
of interest (and proxies) within a lung eQTL resource based on 
non-tumour lung tissues of 1,111 individuals55–57. Descriptions of  
these resources and further details of the look-ups are provided 
in the Supplementary Methods. Moreover, all sentinel SNPs and  
proxies with r2>0.8 were annotated using ENSEMBL’s  
Variant Effect Predictor (VEP)58; potentially deleterious coding 
variants were identified as those annotated as ‘deleterious’ by  
SIFT59 or ‘probably damaging’ or ‘possibly damaging’ by  
PolyPhen-260. For all genes implicated through the expression  
data or functional annotation, we searched for evidence of  
protein expression in the respiratory system by querying the  
Human Protein Atlas61.

Data availability
Summary level results for all analyses are available on OSF:  
https://doi.org/10.17605/OSF.IO/NSDPJ62 

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

This research has been conducted using the UK Biobank  
Resource. The genetic and phenotypic UK Biobank data are 
available upon application to the UK Biobank (https://www.
ukbiobank.ac.uk/) to all registered health researchers. These data 
are from Understanding Society: The UK Household Longitudi-
nal Study (UKHLS), which is led by the Institute for Social and  
Economic Research at the University of Essex and funded by the 
Economic and Social Research Council. The data were collected 
by NatCen and the genome wide scan data were analysed by the  
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the data can be found on the Understanding Society website  
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Thank you to the authors for responding to and addressing our comments. I have one further 
comment on the replication analysis using UK Biobank data. The sensitivity analyses which the 
authors carried out showed that adjusting for covariates prior to inverse-normalization does affect 
the results. While this does not affect the main conclusions drawn, it may affect the results of the 
gene-based tests, and in addition, other investigators using the methods as a guide may draw 
inappropriate conclusions if adjusting for principal components prior to inverse-normalizing their 
phenotype. Ideally, the UK Biobank analysis should be redone with the appropriate phenotype 
transformation, and the methods and results sections updated accordingly. However, if the 
authors consider that such a revision would be too extensive, given that the conclusions do not 
change, it would at least be helpful to note the issue as a limitation in the discussion and make it 
clear in the methods that adjusting for covariates (such as principal components) should be done 
after inverse-normalising the phenotype – so it can be used appropriately by others.
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Thank you for you approval of our article, and your additional comment. As suggested, we 
have added a further limitation to the discussion of the paper outlining the issue regarding 
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the trait transformation. This has also been noted in the methods. We have also included 
the results of the sensitivity analyses in the supplement (Supplementary Figure 4).  
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The authors have performed a large genome-wide association study in subjects of European 
(36,998 in the discovery set and 111,556 in the replication set) and African (7,721 in the discovery 
set) ancestries for various lung function measures: FEV1, FVC and FEV1/FVC ratio. Both common 
and rare variant analyses are performed, and the effect of smoking on the associations is also 
assessed. The discovery set consisted of CHARGE and SpiroMeta consortia meta analysis using the 
Human Exome array, while the replication set consisted of genotypes on the HumanCoreExome 
array and the UK Biobank’s custom arrays. A total of 7 novel regions were identified by the authors 
that met the overall (discovery+replication) Bonferroni-adjusted P-value of 2.8x10^-7 after 
adjustment for various covariates such as age, sex, height, and ancestry using principal 
components. All identified novel SNPs are of common frequency, and two of the SNPs are in high 
LD with missense variants predicted to be damaging. 
  
Some areas for improvement: 
 

Two rare variant tests were chosen and applied to the data as opposed to choosing a 
combined test (e.g. Derkach et al 2013 Genetic Epidemiology). A combined test would be 
more powerful. 
 

○

The authors should explain why there was an inverse normalization of the traits in ○
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SpiroMeta but not in CHARGE, and provide some sensitivity analysis.   
 
There appear to be very large differences in Effect Allele Frequencies between the discovery 
and replication samples. Do the authors have an explanation for this? This might point to 
local ancestry differences that could be relevant, and should be further investigated. 
 

○

The eQTL analysis could formally investigate colocalization as opposed to cross-referencing 
individual associated SNPs with public repositories, and there are  several different methods 
that achieve this goal: e.g. COLOC, eCAVIAR, Sherlock, RTC or EnLoc. 
 

○

In the replication analyses section, it is stated that “Traits were adjusted for age, age^2, 
height, sex, ten principal components and pack-years (ever smokers only), and inverse 
normally transformed.” For clarity, the authors should be specific about whether the trait 
(FEV1, FVC, or FEV1/FVC) was inverse normalized first and age, age^2, sex, 10 PCs were then 
added as covariates in the genetic association model 
 

○

In the methods section for the rare variant testing Skat appears to be incorrectly referred to 
as a Fisher’s combined method. 
 

○

The authors should provide the justification for their various significance criteria used in 
each of the analyses.  
 

○

The authors should list the MAF alongside the p-values reported in the text for clarity for the 
single variant analysis results

○

 
Is the work clearly and accurately presented and does it cite the current literature?
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If applicable, is the statistical analysis and its interpretation appropriate?
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Are all the source data underlying the results available to ensure full reproducibility?
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Are the conclusions drawn adequately supported by the results?
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Reader Comment 12 Jun 2018
Victoria Jackson 

Thank you the second set of reviewers for your helpful comments. Again, we have 
addressed specific points below, and and made appropriate amendments to the 
manuscript. 
 
1. Two rare variant tests were chosen and applied to the data as opposed to choosing a 
combined test (e.g. Derkach et al 2013 Genetic Epidemiology). A combined test would be more 
powerful. 
 
We agree, a combined test would have been the preferred choice for gene-based 
association testing. However, in this instance, the gene-based tests were chosen due to 
practical reasons, as SKAT and WST, the two tests utilised, were both implemented by the 
meta-analysis software used by the two contributing consortia (RAREMETAL and seqMeta). 
Since this was a meta-analysis, and only summary statistics were available for each study, 
the gene-based tests we were able to utilise were restricted to those implemented by these 
two software packages at the time of the meta-analyses. For example, the suggested 
method by Derkach et al. requires permutation to calculate P-values with adequately 
controlled type 1 errors, which would not have been possible with the summary statistics 
available. 
 
2. The authors should explain why there was an inverse normalization of the traits in SpiroMeta 
but not in CHARGE, and provide some sensitivity analysis. 
 
As mentioned in response to the other reviewers’ comments, we agree that using the raw 
trait in CHARGE and the transformed trait in SpiroMeta was not optimal; by the time we had 
made the decision to combine the results from the two consortia, all studies had already 
completed analyses, and reanalysis across the many cohorts would not have been feasible. 
 
3. There appear to be very large differences in Effect Allele Frequencies between the discovery and 
replication samples. Do the authors have an explanation for this? This might point to local 
ancestry differences that could be relevant, and should be further investigated. 
 
Thank you for highlighting this. There was an error with the effect allele frequencies for the 
replication samples in Supplementary Table 2; these have now been amended, and the 
allele frequencies are more consistent in the discovery and replication samples. Where 
there are still some differences between the discovery and replication allele frequencies, 
these are where the discovery meta-analysis included individuals of both European and 
African ancestry, whereas the replication dataset included individuals of European ancestry 
only. 
 
4. The eQTL analysis could formally investigate colocalization as opposed to cross-referencing 
individual associated SNPs with public repositories, and there are several different methods that 
achieve this goal: e.g. COLOC, eCAVIAR, Sherlock, RTC or EnLoc. 
 
Tests of colocalisation are more usually undertaken in dense genome-wide data, whereas 
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the (often rare) putative causal variants included on the exome array in our study were 
relatively sparsely distributed. Furthermore, we did not have access to the lung eQTL data 
required to undertake a tests of colocalisation. We now acknowledge that the eQTL analysis 
did not include formal tests of colocalisation in the discussion, and in the example we 
highlight the variants are in complete LD. 
 
5. In the replication analyses section, it is stated that “Traits were adjusted for age, age2, height, 
sex, ten principal components and pack-years (ever smokers only), and inverse normally 
transformed.” For clarity, the authors should be specific about whether the trait (FEV1, FVC, or FEV
1/FVC) was inverse normalized first and age, age2, sex, 10 PCs were then added as covariates in 
the genetic association model. 
 
We have clarified in the methods for the replication analysis that “Traits were adjusted for 
age, age2, height, sex, ten principal components and pack-years (ever smokers only), and 
the adjusted traits were inverse normally transformed.” 
 
6. In the methods section for the rare variant testing Skat appears to be incorrectly referred to as 
a Fisher’s combined method. 
 
Within each consortium we generated results for SKAT. Subsequently, we combined the 
SKAT results from the two consortia using Fisher’s Method for combing P-values. We have 
clarified this in the text as “For genes which contained at least 2 polymorphic SNPs in both 
consortia, we combined the results of the consortium level gene based tests using either z-
score meta-analysis (for the WST analysis) or Fisher’s Method for combining P-values (in the 
case of SKAT).”. 
 
7. The authors should provide the justification for their various significance criteria used in each 
of the analyses. 
 
Justification for the SNPs and genes taken forward to the replication stage has now been 
added to the methods: 
“We identified SNPs of interest as those with an overall P<10 -5 and a consistent direction of 
effect and P<0·05 observed in both consortia. Rather than using a strict Bonferroni 
correction for defining the significance threshold, we adopted the more lenient P<10 -5 
threshold in order to increase the power to detect variants with modest effect in our 
discovery analyses, whilst the requirement for consistency in results from the two consortia 
aimed to limit false positives. All SNPs meeting these thresholds were followed up in 
independent replicatizon cohorts.” 
“We identified genes of interest as those with P<0·05 observed in both consortia and an 
overall P<10 -4, thresholds again chosen to limit both false positive and false negative 
findings.” 
The overall thresholds for the combined discovery and replication analyses were based on 
Bonferroni corrected thresholds, as already stated in the text. 
 
8. The authors should list the MAF alongside the p-values reported in the text for clarity for the 
single variant analysis results 
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MAFs and P-values have now been added to the main text for all reported loci.  

Competing Interests: No competing interests were disclosed.
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The authors performed GWAS of FEV1, FVC and FEV1/FVC ratio at 179,215 SNPs from exome 
arrays. They identified 6 common frequency SNPs associated with at least one of these traits. They 
also identified 1 SNP in a region with known frequency differences across European populations 
suggesting that population structure may not have been fully accounted for in their analyses. 
Strengths of the study include the large sample size and comprehensive approach to assessing 
associations with low frequency and rare variants. We have the following concerns. 
  
Main concerns:

The phenotypes seem to have been adjusted for covariates and ancestry specific principal 
components prior to being inverse normally transformed. This transformation has the 
potential to introduce correlations between principal components and the inverse normally 
transformed phenotype (https://www.biorxiv.org/content/early/2017/05/15/137232). Since 
one of the SNPs identified as being associated with the phenotype is known to vary in 
frequency across European populations, and the authors note that they cannot rule out the 
effects of population structure on the identified associations this raises concerns that some 
of the other associations could also be artefacts driven by failure to properly account for 
population stratification. It should explicitly be mentioned in the methods whether 
adjustments were made for ancestry specific principal components prior to inverse normal 
transforming the phenotype in the SpiroMeta Consortium component of the meta analysis 
or was included as a covariate in the phenotype - SNP association analysis. 
 

1. 

Indeed, in the replication analysis in UK Biobank principal components were adjusted for 
prior to inverse normally transforming the data. Was genotyping chip adjusted for in this 

2. 
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cohort (which should be done in the phenotype - SNP analysis)? The UKBiLEVE chip was 
enriched for smokers, which could affect association analyses unless chip is included as a 
covariate. In addition the interim data release (which seems to be what is used here - please 
clarify in the methods whether the data comes from the interim (2015) or full (2017) data 
release) featured some discrepancies between the two chips, which can introduce spurious 
associations especially if adjustment is not made for genotyping chip. 
 
Why was raw trait used in CHARGE but inverse normalised in SpiroMeta Consortium? This 
seems an odd choice  

3. 

 
Minor concerns:

In the discussion, the authors mention that the 6 identified SNPs not attributed to 
population structure passed the Bonferroni significance threshold. They then mention that 
the SNPs ALSO pass Bonferroni corrected significance thresholds in the replication analysis. 
This could be misleading, since not all SNPs passed the Bonferroni threshold in the 
discovery only dataset. 
 

1. 

The authors mention that correction was made for genomic inflation statistic (λ), but 
we could not find the statistics relating to this. The figures should be given in the 
manuscript.

2. 

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.
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Victoria Jackson 

We thank the reviewers for their helpful comments. We have addressed each specific 
comment below, and amended the manuscript correspondingly. 
 
1. The phenotypes seem to have been adjusted for covariates and ancestry specific principal 
components prior to being inverse normally transformed. This transformation has the potential 
to introduce correlations between principal components and the inverse normally transformed 
phenotype (https://www.biorxiv.org/content/early/2017/05/15/137232). Since one of the SNPs 
identified as being associated with the phenotype is known to vary in frequency across European 
populations, and the authors note that they cannot rule out the effects of population structure on 
the identified associations this raises concerns that some of the other associations could also be 
artefacts driven by failure to properly account for population stratification. It should explicitly be 
mentioned in the methods whether adjustments were made for ancestry specific principal 
components prior to inverse normal transforming the phenotype in the SpiroMeta Consortium 
component of the meta analysis or was included as a covariate in the phenotype - SNP 
association analysis. 
 
In the SpiroMeta Consortium component of the analyses, adjustment for ancestry principal 
components (PCs) was not undertaken prior to transformation, rather PCs were adjusted for 
when fitting the SNP-trait associations. This is ambiguous in the text, and so we have 
amended the methods accordingly (Statistical analyses section, new wording below). Given 
that the adjustment for ancestry PCs was undertaken after phenotype transformation, we 
don't expect there to have been an introduction of correlation between the transformed 
trait and population structure. 
 
"Traits were adjusted for sex, age, age2 and height, and inverse normally transformed prior 
to association testing. For studies with unrelated individuals, SNP-trait associations were 
tested using linear models, with adjustments made for the first 10 ancestry principal 
components, whilst studies with related individuals utilised linear mixed models to account 
for familial relationships and underlying population structure." 
 
2. Indeed, in the replication analysis in UK Biobank principal components were adjusted for prior 
to inverse normally transforming the data. Was genotyping chip adjusted for in this cohort (which 
should be done in the phenotype - SNP analysis)? The UKBiLEVE chip was enriched for smokers, 
which could affect association analyses unless chip is included as a covariate. In addition the 
interim data release (which seems to be what is used here - please clarify in the methods whether 
the data comes from the interim (2015) or full (2017) data release) featured some discrepancies 
between the two chips, which can introduce spurious associations especially if adjustment is not 
made for genotyping chip. 
 
In the UK Biobank data, principal components (PCs) were adjusted for prior to 
transformation. As a sensitivity analysis, we have repeated the analysis for the six reported 
SNPs (the LCT SNP was not available in UK Biobank), transforming the phenotypes, and then 
adjusting for all covariates 
(including PCs) during the SNP-trait association test. For comparison, we have done this for 
all six SNPs with all three traits. Comparisons of these two analyses (not adjusted prior to 

 
Page 28 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023



transformation vs with adjustment prior to transformation) are shown here: 
https://doi.org/10.6084/m9.figshare.5959906. For each SNP, the P-value comparison is 
highlighted for the trait we report the association with, and the dashed lines indicate the 
Bonferroni corrected significance threshold for independent replication (P<1·47×10-3). 
Whilst there is a difference in the P-values for some SNP-trait combinations, (more 
significant P-values in the analysis with covariate adjustment prior to transformation for 5 of 
the 6 SNPs), the SNPs all meet the replication P-value threshold in both analyses. 
 
We have clarified in the methods (Study design, cohorts and genotyping section) that the UK 
Biobank data used was from the 2015 interim release. The UK Biobank analysis was 
stratified by smoking status (ever and never) and also chip (UK BiLEVE array and UK Biobank 
array). It was not clear from the methods previously that the analysis was stratified for chip, 
so we have now made this clear in the methods. 
 
We have also tested whether any of the six reported SNPs available in UK Biobank had 
different MAFs in the UK BiLEVE and UK Biobank samples (suggestive of a chip effect); 
however none showed evidence of this: https://doi.org/10.6084/m9.figshare.5959927. 
 
3. Why was raw trait used in CHARGE but inverse normalised in SpiroMeta Consortium? This 
seems an odd choice 
 
We agree that using the raw trait in CHARGE and the transformed trait in SpiroMeta was not 
ideal; however it was not planned to combine the results of these consortia from the outset. 
By the time we had made the decision to combine the results from the two consortia, all 
studies had already completed analyses and it was not feasible for contributing studies to 
repeat the analyses with/out the transformation, as this would have involved a substantial 
amount of reanalysis from contributing studies. Since the effect estimates were not on the 
same scale we could not do an inverse variance weighted meta-analysis; therefore we did a 
P-value based meta-analysis. This analysis should be valid given that appropriate analyses 
were done within each consortium. 
 
Minor concerns: 
1. In the discussion, the authors mention that the 6 identified SNPs not attributed to population 
structure passed the Bonferroni significance threshold. They then mention that the SNPs ALSO 
pass Bonferroni corrected significance thresholds in the replication analysis. This could be 
misleading, since not all SNPs passed the Bonferroni threshold in the discovery only dataset. 
 
We have reworded this section of the discussion as follows: "There were six SNPs which 
reached P<10-5 in the discovery stage meta-analysis of single variant associations, and 
subsequently met the Bonferroni corrected significance threshold for independent 
replication (P<1·47×10 3, corrected for 34 SNPs being tested). In the combined analyses of 
our discovery and replication analyses, these six SNPs met the exome chip-wide significance 
threshold (P<2·8×10-7)." 
 
2. The authors mention that correction was made for genomic inflation statistic (λ), but we could 
not find the statistics relating to this. The figures should be given in the manuscript. 
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We have added Supplementary table 13 to the supplement.  

Competing Interests: No competing interests were disclosed.

 
Page 30 of 30

Wellcome Open Research 2018, 3:4 Last updated: 03 MAR 2023


