83 research outputs found

    Improved orbital solution and masses for the very low-mass multiple system LHS 1070

    Full text link
    We present a refined orbital solution for the components A, B, and C of the nearby late-M type multiple system LHS 1070. By combining astrometric datapoints from NACO/VLT, CIAO/SUBARU, and PUEO/CFHT, as well as a radial velocity measurement from the newly commissioned near infrared high-resolution spectrograph CRIRES/VLT, we achieve a very precise orbital solution for the B and C components and a first realistic constraint on the much longer orbit of the A-BC system. Both orbits appear to be co-planar. Masses for the B and C components calculated from the new orbital solution (M_(B+C) = 0.157 +/- 0.009 M_sun) are in excellent agreement with theoretical models, but do not match empirical mass-luminosity tracks. The preliminary orbit of the A-BC system reveals no mass excess for the A component, giving no indication for a previously proposed fourth (D) component in LHS 1070.Comment: published in A&A, 2008, 484, 429; added CFHT acknowledgemen

    Effects of exercise in people with severe mental illness and recommendations for its implementation as add-on therapy [Abstract]

    Get PDF
    There are many reasons for people with (and without) severe mental illness to exercise regularly. In people with schizophrenia, major depression and bipolar disorder, it has already been shown that regular physical activity as an add-on therapy can improve quality of life and symptom severity. This is particularly important in domains that standard therapy is currently not able to treat sufficiently, such as cognitive deficits. Postulated underlying neurobiological effects include increased volume in hippocampal areas as demonstrated by data of a current clinical trial in people with schizophrenia. Furthermore, regular exercise is essential to counteract the increased cardiovascular morbidity and mortality of people with severe mental illness. However, most people with severe mental illness do not achieve the recommended amount of physical activity and the potential of exercise as an add-on therapy is currently not even close to being fully realized. On the one hand, it is important that mental health staff also considers the physical condition of patients with mental illnesses and counsels them on their health behavior. On the other hand, there is a need for individually adapted training programs delivered by qualified exercise professionals that incorporate motivational and adherence strategies. Examples of barriers and facilitators for the implementation of exercise as an add-on therapy are discussed on the basis of current local projects

    A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei

    Get PDF
    GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an abrupt variable and to have a circumstellar disk with very active accretion. Our monitoring observations in 2009-2011 revealed the star to show sporadic flare events, each with brightening of < 0.5 mag lasting for days. These brightening events, associated with a color change toward the blue, should originate from an increased accretion activity. Moreover, the star also underwent a brightness drop of ~1 mag lasting for about a month, during which the star became bluer when fainter. Such brightness drops seem to have a recurrence time scale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between grain coagulation and planetesimal formation in a young circumstellar disk.Comment: In submission to the Astrophysical Journal, 4 figure

    Implementing a new rubber plant functional type in the Community Land Model (CLM5) improves accuracy of carbon and water flux estimation

    Get PDF
    Rubber plantations are an economically viable land-use type that occupies large swathes of land in Southeast Asia that have undergone conversion from native forest to intensive plantation forestry. Such land-use change has a strong impact on carbon, energy, and water fluxes in ecosystems, and uncertainties exist in the modeling of future land-use change impacts on these fluxes due to the scarcity of measured data and poor representation of key biogeochemical processes. In this current modeling effort, we utilized the Community Land Model Version 5 (CLM5) to simulate a rubber plant functional type (PFT) by comparing the baseline parameter values of tropical evergreen PFT and tropical deciduous PFT with a newly developed rubber PFT (focused on the parameterization and modification of phenology and allocation processes) based on site-level observations of a rubber clone in Indonesia. We found that the baseline tropical evergreen and baseline tropical deciduous functions and parameterizations in CLM5 poorly simulate the leaf area index, carbon dynamics, and water fluxes of rubber plantations. The newly developed rubber PFT and parametrizations (CLM-rubber) showed that daylength could be used as a universal trigger for defoliation and refoliation of rubber plantations. CLM-rubber was able to predict seasonal patterns of latex yield reasonably well, despite highly variable tapping periods across Southeast Asia. Further, model comparisons indicated that CLM-rubber can simulate carbon and energy fluxes similar to the existing rubber model simulations available in the literature. Our modeling results indicate that CLM-rubber can be applied in Southeast Asia to examine variations in carbon and water fluxes for rubber plantations and assess how rubber-related land-use changes in the tropics feedback to climate through carbon and water cycling

    Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel

    Get PDF
    Special thanks to our field assistants in Indonesia (Basri, Bayu and Darwis) and to Frank Tiedemann, Edgar Tunsch, Dietmar Fellert and Malte Puhan for technical assistance. We thank PTPN VI and the owner of the plantation at Pompa Air for allowing us to conduct our research at their plantation. We would also like to thank the Spanish national project GEISpain (CGL2014-52838-C2-1-R) and the DAAD (scholarship from the programme ‘Research Stays for University Academics and Scientist 2018, ref. no. 91687130)' for partly financing A. Meijide during the preparation of this paper.The potential of palm-oil biofuels to reduce greenhouse gas (GHG) emissions compared with fossil fuels is increasingly questioned. So far, no measurement-based GHG budgets were available, and plantation age was ignored in Life Cycle Analyses (LCA). Here, we conduct LCA based on measured CO2, CH4 and N2O fluxes in young and mature Indonesian oil palm plantations. CO2 dominates the on-site GHG budgets. The young plantation is a carbon source (1012 ± 51 gC m−2 yr−1), the mature plantation a sink (−754 ± 38 gC m−2 yr−1). LCA considering the measured fluxes shows higher GHG emissions for palm-oil biodiesel than traditional LCA assuming carbon neutrality. Plantation rotation-cycle extension and earlier-yielding varieties potentially decrease GHG emissions. Due to the high emissions associated with forest conversion to oil palm, our results indicate that only biodiesel from second rotation-cycle plantations or plantations established on degraded land has the potential for pronounced GHG emission savings.This study was financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)— Project-ID 192626868—in the framework of the collaborative German-Indonesian research project CRC990 (subprojects A03, A04 and A05).Spanish national project GEISpain (CGL2014-52838-C2-1-R) and the DAAD (scholarship from the programme ‘Research Stays for University Academics and Scientist 2018, ref. no. 91687130

    What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mitochondrial DNA data in phylogenetics is controversial, yet studies that combine mitochondrial and nuclear DNA data (mtDNA and nucDNA) to estimate phylogeny are common, especially in vertebrates. Surprisingly, the consequences of combining these data types are largely unexplored, and many fundamental questions remain unaddressed in the literature. For example, how much do trees from mtDNA and nucDNA differ? How are topological conflicts between these data types typically resolved in the combined-data tree? What determines whether a node will be resolved in favor of mtDNA or nucDNA, and are there any generalities that can be made regarding resolution of mtDNA-nucDNA conflicts in combined-data trees? Here, we address these and related questions using new and published nucDNA and mtDNA data for <it>Plethodon </it>salamanders and published data from 13 other vertebrate clades (including fish, frogs, lizards, birds, turtles, and mammals).</p> <p>Results</p> <p>We find widespread discordance between trees from mtDNA and nucDNA (30-70% of nodes disagree per clade), but this discordance is typically not strongly supported. Despite often having larger numbers of variable characters, mtDNA data do not typically dominate combined-data analyses, and combined-data trees often share more nodes with trees from nucDNA alone. There is no relationship between the proportion of nodes shared between combined-data and mtDNA trees and relative numbers of variable characters or levels of homoplasy in the mtDNA and nucDNA data sets. Congruence between trees from mtDNA and nucDNA is higher on branches that are longer and deeper in the combined-data tree, but whether a conflicting node will be resolved in favor mtDNA or nucDNA is unrelated to branch length. Conflicts that are resolved in favor of nucDNA tend to occur at deeper nodes in the combined-data tree. In contrast to these overall trends, we find that <it>Plethodon </it>have an unusually large number of strongly supported conflicts between data types, which are generally resolved in favor of mtDNA in the combined-data tree (despite the large number of nuclear loci sampled).</p> <p>Conclusions</p> <p>Overall, our results from 14 vertebrate clades show that combined-data analyses are not necessarily dominated by the more variable mtDNA data sets. However, given cases like <it>Plethodon</it>, there is also the need for routine checking of incongruence between mtDNA and nucDNA data and its impacts on combined-data analyses.</p

    Global transpiration data from sap flow measurements: The SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.This research was supported by the Minis-terio de Economía y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovación (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovación (grant no. CAS16/00207), the Agència de Gestió d’Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institució Catalana de Recerca i Estudis Avançats (Academia Award (JMV)). Víctor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain)

    Detection and Characterization of Planetary Systems with μ\muas Astrometry

    Full text link
    Astrometry as a technique has so far proved of limited utility when employed as either a follow-up tool or to independently search for planetary mass companions orbiting nearby stars. However, this is bound to change during the next decade. In this review, I start by summarizing past and present efforts to detect planets via milli-arcsecond astrometry. Next, I provide an overview of the variety of technical, statistical, and astrophysical challenges that must be met by future ground-based and space-borne efforts in order to achieve the required degree of astrometric measurement precision. Then, I discuss the planet-finding capabilities of future astrometric observatories aiming at micro-arcsecond precision, with a particular focus on their ability to fully describe multiple-component systems. I conclude by putting astrometry in context, illustrating its potential for important contributions to planetary science, as a complement to other indirect and direct methods for the detection and characterization of planetary systems.Comment: 22 pages, 4 figures. Invited contribution at the conference Extrasolar Planets in Multi-Body Systems: Theory and Observations (Torun, Poland, August 25-29, 2008). To appear in the European Astronomical Society Publication Serie

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    corecore