1,041 research outputs found

    Last scattering, relic gravitons and the circular polarization of the CMB

    Get PDF
    The tensor contribution to the VV-mode polarization induced by a magnetized plasma at last scattering vanishes exactly. Conversely a polarized background of relic gravitons cannot generate a VV-mode polarization. The reported results suggest that, in the magnetized Λ\LambdaCDM paradigm, the dominant source of circular dichroism stems from the large-scale fluctuations of the spatial curvature.Comment: 8 pages, no figure

    Breakdown of adiabatic invariance in spherical tokamaks

    Get PDF
    Thermal ions in spherical tokamaks have two adiabatic invariants: the magnetic moment and the longitudinal invariant. For hot ions, variations in magnetic-field strength over a gyro period can become sufficiently large to cause breakdown of the adiabatic invariance. The magnetic moment is more sensitive to perturbations than the longitudinal invariant and there exists an intermediate regime, super-adiabaticity, where the longitudinal invariant remains adiabatic, but the magnetic moment does not. The motion of super-adiabatic ions remains integrable and confinement is thus preserved. However, above a threshold energy, the longitudinal invariant becomes non-adiabatic too, and confinement is lost as the motion becomes chaotic. We predict beam ions in present-day spherical tokamaks to be super-adiabatic but fusion alphas in proposed burning-plasma spherical tokamaks to be non-adiabatic.Comment: 6 pages, 8 figure

    The evolution of electron overdensities in magnetic fields

    Get PDF
    When a neutral gas impinges on a stationary magnetized plasma an enhancement in the ionization rate occurs when the neutrals exceed a threshold velocity. This is commonly known as the critical ionization velocity effect. This process has two distinct timescales: an ion–neutral collision time and electron acceleration time. We investigate the energization of an ensemble of electrons by their self-electric field in an applied magnetic field. The evolution of the electrons is simulated under different magnetic field and density conditions. It is found that electrons can be accelerated to speeds capable of electron impact ionization for certain conditions. In the magnetically dominated case the energy distribution of the excited electrons shows that typically 1% of the electron population can exceed the initial electrostatic potential associated with the unbalanced ensemble of electrons

    Double-layer shocks in a magnetized quantum plasma

    Full text link
    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter HH associated with the Bohm potential and the positron to electron density ratio δ\delta. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E

    Birefringence, CMB polarization and magnetized B-mode

    Full text link
    Even in the absence of a sizable tensor contribution, a B-mode polarization can be generated because of the competition between a pseudo-scalar background and pre-decoupling magnetic fields. By investigating the dispersion relations of a magnetoactive plasma supplemented by a pseudo-scalar interaction, the total B-mode polarization is shown to depend not only upon the plasma and Larmor frequencies but also on the pseudo-scalar rotation rate. If the (angular) frequency channels of a given experiment are larger than the pseudo-scalar rotation rate, the only possible source of (frequency dependent) B-mode autocorrelations must be attributed to Faraday rotation. In the opposite case the pseudo-scalar contribution dominates and the total rate becomes, in practice, frequency-independent. The B-mode cross-correlations can be used, under certain conditions, to break the degeneracy by disentangling the two birefringent contributions.Comment: 8 pages, 2 figure

    What happens when the geomagnetic field reverses?

    Full text link
    During geomagnetic field reversals the radiation belt high-energy proton populations become depleted. Their energy spectra become softer, with the trapped particles of highest energies being lost first, and eventually recovering after a field reversal. The radiation belts rebuild in a dynamical way with the energy spectra flattening on the average during the course of many millennia, but without ever reaching complete steady state equilibrium between successive geomagnetic storm events determined by southward turnings of the IMF orientation. Considering that the entry of galactic cosmic rays and the solar energetic particles with energies above a given threshold are strongly controlled by the intensity of the northward component of the interplanetary magnetic field, we speculate that at earlier epochs when the geomagnetic dipole was reversed, the entry of these energetic particles into the geomagnetic field was facilitated when the interplanetary magnetic field was directed northward. Unlike in other complementary work where intensive numerical simulations have been used, our demonstration is based on a simple analytical extension of Stormer's theory. The access of GCR and SEP beyond geomagnetic cut-off latitudes is enhanced during epochs when the Earth's magnetic dipole is reduced, as already demonstrated earlier.Comment: 12 pages, 3 figures (at the end of file), paper accepted for AGU Geophysical Monograph on "Dynamics of the Earth's Radiation Belts and Inner Magnetosphere". Editors : D.Summers, I.R.Mann, D.N.Baker, and M.Schul

    An electrically powered binary star?

    Get PDF
    We propose a model for stellar binary systems consisting of a magnetic and a non-magnetic white-dwarf pair which is powered principally by electrical energy. In our model the luminosity is caused by resistive heating of the stellar atmospheres due to induced currents driven within the binary. This process is reminiscent of the Jupiter-Io system, but greatly increased in power because of the larger companion and stronger magnetic field of the primary. Electrical power is an alternative stellar luminosity source, following on from nuclear fusion and accretion. We find that this source of heating is sufficient to account for the observed X-ray luminosity of the 9.5-min binary RX J1914+24, and provides an explanation for its puzzling characteristics.Comment: accepted by MNRA

    Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices

    Full text link
    NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H II regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc
    corecore