698 research outputs found
Indirect ultraviolet photodesorption from CO:N2 binary ices - an efficient grain-gas process
UV ice photodesorption is an important non-thermal desorption pathway in many
interstellar environments that has been invoked to explain observations of cold
molecules in disks, clouds and cloud cores. Systematic laboratory studies of
the photodesorption rates, between 7 and 14 eV, from CO:N2 binary ices, have
been performed at the DESIRS vacuum UV beamline of the synchrotron facility
SOLEIL. The photodesorption spectral analysis demonstrates that the
photodesorption process is indirect, i.e. the desorption is induced by a photon
absorption in sub-surface molecular layers, while only surface molecules are
actually desorbing. The photodesorption spectra of CO and N2 in binary ices
therefore depend on the absorption spectra of the dominant species in the
subsurface ice layer, which implies that the photodesorption efficiency and
energy dependence are dramatically different for mixed and layered ices
compared to pure ices. In particular, a thin (1-2 ML) N2 ice layer on top of CO
will effectively quench CO photodesorption, while enhancing N2 photodesorption
by a factors of a few (compared to the pure ices) when the ice is exposed to a
typical dark cloud UV field, which may help to explain the different
distributions of CO and N2H+ in molecular cloud cores. This indirect
photodesorption mechanism may also explain observations of small amounts of
complex organics in cold interstellar environments.Comment: 21 pages 5 figure
Exponentially growing bubbles around early super massive black holes
We addressed the so far unexplored issue of outflows induced by exponentially
growing power sources, focusing on early supermassive black holes (BHs). We
assumed that these objects grow to by z=6 by
Eddington-limited accretion and convert 5% of their bolometric output into a
wind. We first considered the case of energy-driven and momentum-driven
outflows expanding in a region where the gas and total mass densities are
uniform and equal to the average values in the Universe at . We derived
analytic solutions for the evolution of the outflow, finding that, for an
exponentially growing power with e-folding time , the late time
expansion of the outflow radius is also exponential, with e-folding time of
and in the energy-driven and momentum-driven limit,
respectively.
We then considered energy-driven outflows produced by QSOs at the center of
early dark matter halos of different masses and powered by BHs growing from
different seeds. We followed the evolution of the source power and of the gas
and dark matter density profiles in the halos from the beginning of the
accretion until . The final bubble radius and velocity do not depend on
the seed BH mass but are instead smaller for larger halo masses. At z=6, bubble
radii in the range 50-180 kpc and velocities in the range 400-1000 km s
are expected for QSOs hosted by halos in the mass range
.
By the time the QSO is observed, we found that the total thermal energy
injected within the bubble in the case of an energy-driven outflow is
erg. This is in excellent agreement with the value
of erg measured through the detection of
the thermal Sunyaev-Zeldovich effect around a large population of luminous QSOs
at lower redshift. [abridged]Comment: 17 pages and 14 figures. Typos corrected. It matches the version
published in A&
Wavelength-Dependent UV Photodesorption of Pure and Ices
Context: Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: and are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption.
Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure and thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic and isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: photodesorption mainly occurs through excitation of the state and subsequent desorption of surface molecules. The observed vibronic structure in the photodesorption spectrum, together with the absence of formation, supports that the photodesorption mechanism of is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of and integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between and photodesorbed molecules per incoming photon.Astronom
Muscle fiber conduction velocity is more affected after eccentric than concentric exercise
It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States
Using the data accumulated in 2002-2004 with the DO detector in
proton-antiproton collisions at the Fermilab Tevatron collider with
centre-of-mass energy 1.96 TeV, the branching fractions of the decays B ->
\bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X
and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0
\mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) =
(0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+
\nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) =
(0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu
X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot
BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge
conjugated states are always implied.Comment: submitted to Phys. Rev. Let
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Fitness efficacy of vibratory exercise compared to walking in postmenopausal women
In this study, we compared the efficacy of 8 months of low-frequency vibration and a walk-based program in health-related fitness. Twenty-seven postmenopausal women were randomly assigned into two groups: whole-body vibration (WBV) group (n = 18) performed three times/week a static exercise on a vibration platform (6 sets of 1-min with 1 min of rest, with a 12.6 Hz of frequency and an amplitude of 3 mm); walk-based program (WP) group (n = 18) performed three times/week a 60-min of walk activity at 70-75% of maximal heart rate. A health-related battery of tests was applied. Maximal unilateral concentric and eccentric isokinetic torque of the knee extensors was recorded by an isokinetic dynamometer. Physical fitness was measured using the following tests: vertical jump test, chair rise test and maximal walking speed test over 4 m. Maximal unilateral isokinetic strength was measured in the knee extensors in concentric actions at 60 and 300 degrees /s, and eccentric action at 60 degrees /s. After 8 months, the WP improved the time spent to walk 4 m (20%) and to perform the chair rise test (12%) compared to the WBV group (P = 0.006, 0.002, respectively). In contrast, the comparison of the changes in vertical jump showed the higher effectiveness of the vibratory exercise in 7% (P = 0.025). None of exercise programs showed change on isokinetic measurements. These results indicate that both programs differed in the main achievements and could be complementary to prevent lower limbs muscle strength decrease as we age [ISRCTN76235671]
- …
