1,064 research outputs found

    Fourier-transform infrared spectroscopy for typing of vancomycin-resistant Enterococcus faecium: performance analysis and outbreak investigation.

    Get PDF
    Vancomycin-resistant Enterococci, mainly Enterococcus faecium (VREfm), are causing nosocomial infections and outbreaks. Bacterial typing methods are used to assist in outbreak investigations. Most of them, especially genotypic methods like multi-locus sequence typing (MLST), whole genome sequencing (WGS), or pulsed-field gel electrophoresis, are quite expensive and time-consuming. Fourier-transform infrared (FT-IR) spectroscopy assesses the biochemical composition of bacteria, such as carboxyl groups in polysaccharides. It is an affordable technique and has a faster turnaround time. Thus, the aim of this study was to evaluate FT-IR spectroscopy for VREfm outbreak investigations. Basic performance requirements like reproducibility and the effects of incubation time were assessed in distinct sample sets. After determining a FT-IR spectroscopy cut-off range, the clustering agreement between FT-IR and WGS within a retrospective (n: 92 isolates) and a prospective outbreak (n: 15 isolates) was investigated. For WGS an average nucleotide identity (ANI) cut-off score of 0.999 was used. Basic performance analysis showed reproducible results. Moreover, FT-IR spectroscopy readouts showed a high agreement with WGS-ANI analysis in clinical outbreak investigations (V-measure 0.772 for the retrospective and 1.000 for the prospective outbreak). FT-IR spectroscopy had a higher discriminatory power than MLST in the outbreak investigations. After determining cut-off values to achieve optimal resolution, FT-IR spectroscopy is a promising technique to assist in outbreak investigation as an affordable, easy-to-use tool with a turnaround time of less than one day. IMPORTANCE Vancomycin-resistant Enterococci, mainly Enterococcus faecium (VREfm), are a frequent cause of nosocomial outbreaks. Several bacterial typing methods are used to track transmissions and investigate outbreaks, whereby genome-based techniques are used as a gold standard. Current methods are either expensive, time-consuming, or both. Additionally, often, specifically trained staff needs to be available. This study provides insight into the use of Fourier-transform infrared (FT-IR) spectroscopy, an affordable, easy-to-use tool with a short turnaround time as a typing method for VREfm. By assessing clinical samples, this work demonstrates promising results for species discrimination and reproducibility. FT-IR spectrosopy shows a high level of agreement in the analysis of VREfm outbreaks in comparison with whole genome sequencing-based methods

    Fourier-transform infrared spectroscopy for typing of vancomycin-resistant Enterococcus faecium: performance analysis and outbreak investigation

    Get PDF
    Vancomycin-resistant Enterococci, mainly Enterococcus faecium (VREfm), are causing nosocomial infections and outbreaks. Bacterial typing methods are used to assist in outbreak investigations. Most of them, especially genotypic methods like multi-locus sequence typing (MLST), whole genome sequencing (WGS), or pulsed-field gel electrophoresis, are quite expensive and time-consuming. Fourier-transform infrared (FT-IR) spectroscopy assesses the biochemical composition of bacteria, such as carboxyl groups in polysaccharides. It is an affordable technique and has a faster turnaround time. Thus, the aim of this study was to evaluate FT-IR spectroscopy for VREfm outbreak investigations. Basic performance requirements like reproducibility and the effects of incubation time were assessed in distinct sample sets. After determining a FT-IR spectroscopy cut-off range, the clustering agreement between FT-IR and WGS within a retrospective (n: 92 isolates) and a prospective outbreak (n: 15 isolates) was investigated. For WGS an average nucleotide identity (ANI) cut-off score of 0.999 was used. Basic performance analysis showed reproducible results. Moreover, FT-IR spectroscopy readouts showed a high agreement with WGS-ANI analysis in clinical outbreak investigations (V-measure 0.772 for the retrospective and 1.000 for the prospective outbreak). FT-IR spectroscopy had a higher discriminatory power than MLST in the outbreak investigations. After determining cut-off values to achieve optimal resolution, FT-IR spectroscopy is a promising technique to assist in outbreak investigation as an affordable, easy-to-use tool with a turnaround time of less than one day. IMPORTANCE Vancomycin-resistant Enterococci, mainly Enterococcus faecium (VREfm), are a frequent cause of nosocomial outbreaks. Several bacterial typing methods are used to track transmissions and investigate outbreaks, whereby genome-based techniques are used as a gold standard. Current methods are either expensive, time-consuming, or both. Additionally, often, specifically trained staff needs to be available. This study provides insight into the use of Fourier-transform infrared (FT-IR) spectroscopy, an affordable, easy-to-use tool with a short turnaround time as a typing method for VREfm. By assessing clinical samples, this work demonstrates promising results for species discrimination and reproducibility. FT-IR spectrosopy shows a high level of agreement in the analysis of VREfm outbreaks in comparison with whole genome sequencing-based methods

    Bacterial but no SARS-CoV-2 contamination after terminal disinfection of tertiary care intensive care units treating COVID-19 patients

    Full text link
    BACKGROUND In intensive care units (ICUs) treating patients with Coronavirus disease 2019 (COVID-19) invasive ventilation poses a high risk for aerosol and droplet formation. Surface contamination of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) or bacteria can result in nosocomial transmission. METHODS Two tertiary care COVID-19 intensive care units treating 53 patients for 870 patient days were sampled after terminal cleaning and preparation for regular use to treat non-COVID-19 patients. RESULTS A total of 176 swabs were sampled of defined locations covering both ICUs. No SARS-CoV-2 ribonucleic acid (RNA) was detected. Gram-negative bacterial contamination was mainly linked to sinks and siphons. Skin flora was isolated from most swabbed areas and Enterococcus faecium was detected on two keyboards. CONCLUSIONS After basic cleaning with standard disinfection measures no remaining SARS-CoV-2 RNA was detected. Bacterial contamination was low and mainly localised in sinks and siphons

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Hepatoprotective effects of Spirulina maxima in patients with non-alcoholic fatty liver disease: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Non-alcoholic fatty liver diseases range from simple steatosis to non-alcoholic steatohepatitis. The "two hits" hypothesis is widely accepted for its pathogenesis: the first hit is an increased fat flux to the liver, which predisposes our patient to a second hit where increasing free fatty acid oxidation into the mitochondria leads to oxidative stress, lipoperoxidation and a chain reaction with increased ROS. Clinical indications include abdominal cramps, meteorism and fatigue. Most patients, however, are asymptomatic, and diagnosis is based on aminotransferase elevation and ultrasonography (or "brilliant liver"). Spirulina maxima has been experimentally proven to possess <it>in vivo </it>and <it>in vitro </it>hepatoprotective properties by maintaining the liver lipid profile. This case report evaluates the hepatoprotective effects of orally supplied Spirulina maxima.</p> <p>Case presentation</p> <p>Three Hispanic Mexican patients (a 43-year-old man, a 77-year-old man and a 44-year-old woman) underwent ultrasonography and were treated with 4.5 g/day of Spirulina maxima for three months. Their blood samples before and after the treatment determined triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase and low-density lipoprotein cholesterol levels. The results were assessed using ultrasound.</p> <p>Conclusion</p> <p>Treatment had therapeutic effects as evidenced by ultrasonography and the aminotransferase data. Hypolipidemic effects were also shown. We conclude that Spirulina maxima may be considered an alternative treatment for patients with non-alcoholic fatty liver diseases and dyslipidemic disorder.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Identification and recovery of ATLAS18 strip sensors with high surface static charge

    Get PDF
    The new all-silicon Inner Tracker (ITk) is being constructed by the ATLAS collaboration to track charged particles produced at the High-Luminosity LHC. The outer portion of the ITk detector will include nearly 18,000 highly segmented and radiation hard silicon strip sensors (ATLAS18 design). Throughout the production of 22,000 sensors, the strip sensors are subjected to a comprehensive suite of mechanical and electrical tests as part of the Quality Control (QC) program. In a large fraction of the batches delivered to date, high surface electrostatic charge has been measured on both the sensors and the plastic sheets between which the sensors are packaged for shipping and handling rigidity. Aggregate data from across QC sites indicate a correlation between observed electrical failures and the sensor/plastic sheet charge build up. To mitigate these issues, the QC testing sites introduced recovery techniques involving UV light or flows of ionizing gas. Significant modifications to sensor handling procedures were made to prevent subsequent build up of static charge. This publication details a precise description of the issue, a variety of sensor recovery techniques, and trend analyses of sensors initially failing electrical tests (IV, strip scan, etc.)

    Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    Get PDF
    ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P&lt;0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS
    corecore