210 research outputs found

    A computer-based testing system to evaluate protective relays as a tool in power system protection education

    Get PDF
    Teaching power system relaying is a fundamental issue in a power system high-level course. However, for an effective instruction of this topic an experience with real equipments can be considered as fundamental. To achieve this purpose, in this paper a new approach for the practical learning of power system relaying is presented. This consists of a computer-based testing system of relay-operating characteristic. Different relay types and developed specific software are also an important piece of the laboratory practice. Using this system it is possible to understand the performance and limitations of different protective relay systems and to test a real relay disoperation. The benefit of using this system is not available through traditional lectures and textbooks

    Exploring EEG Features in Cross-Subject Emotion Recognition

    Get PDF
    Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has always been difficult due to the poor generalizability of features across subjects. Thus, systematically exploring the ability of different EEG features to identify emotional information across subjects is crucial. Prior related work has explored this question based only on one or two kinds of features, and different findings and conclusions have been presented. In this work, we aim at a more comprehensive investigation on this question with a wider range of feature types, including 18 kinds of linear and non-linear EEG features. The effectiveness of these features was examined on two publicly accessible datasets, namely, the dataset for emotion analysis using physiological signals (DEAP) and the SJTU emotion EEG dataset (SEED). We adopted the support vector machine (SVM) approach and the "leave-one-subject-out" verification strategy to evaluate recognition performance. Using automatic feature selection methods, the highest mean recognition accuracy of 59.06% (AUC = 0.605) on the DEAP dataset and of 83.33% (AUC = 0.904) on the SEED dataset were reached. Furthermore, using manually operated feature selection on the SEED dataset, we explored the importance of different EEG features in cross-subject emotion recognition from multiple perspectives, including different channels, brain regions, rhythms, and feature types. For example, we found that the Hjorth parameter of mobility in the beta rhythm achieved the best mean recognition accuracy compared to the other features. Through a pilot correlation analysis, we further examined the highly correlated features, for a better understanding of the implications hidden in those features that allow for differentiating cross-subject emotions. Various remarkable observations have been made. The results of this paper validate the possibility of exploring robust EEG features in cross-subject emotion recognition

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd

    Regressive approach for predicting bearing capacity of bored piles from cone penetration test data

    Get PDF
    © 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. In this study, the least square support vector machine (LSSVM) algorithm was applied to predicting the bearing capacity of bored piles embedded in sand and mixed soils. Pile geometry and cone penetration test (CPT) results were used as input variables for prediction of pile bearing capacity. The data used were collected from the existing literature and consisted of 50 case records. The application of LSSVM was carried out by dividing the data into three sets: a training set for learning the problem and obtaining a relationship between input variables and pile bearing capacity, and testing and validation sets for evaluation of the predictive and generalization ability of the obtained relationship. The predictions of pile bearing capacity by LSSVM were evaluated by comparing with experimental data and with those by traditional CPT-based methods and the gene expression programming (GEP) model. It was found that the LSSVM performs well with coefficient of determination, mean, and standard deviation equivalent to 0.99, 1.03, and 0.08, respectively, for the testing set, and 1, 1.04, and 0.11, respectively, for the validation set. The low values of the calculated mean squared error and mean absolute error indicated that the LSSVM was accurate in predicting the pile bearing capacity. The results of comparison also showed that the proposed algorithm predicted the pile bearing capacity more accurately than the traditional methods including the GEP model

    A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals

    Get PDF
    Properly determining the discriminative features which characterize the inherent behaviors of electroencephalography (EEG) signals remains a great challenge for epileptic seizure detection. In this present study, a novel feature selection scheme based on the discrete wavelet packet decomposition and cuckoo search algorithm (CSA) was proposed. The normal as well as epileptic EEG recordings were frst decomposed into various frequency bands by means of wavelet packet decomposition, and subsequently, statistical features at all developed nodes in the wavelet packet decomposition tree were derived. Instead of using the complete set of the extracted features to construct a wavelet neural networks-based classifer, an optimal feature subset that maximizes the predictive competence of the classifer was selected by using the CSA. Experimental results on the publicly available benchmarks demonstrated that the proposed feature subset selection scheme achieved promising recognition accuracies of 98.43–100%, and the results were statistically signifcant using z-test with p value <0.0001

    A Dynamic Neural Network Architecture with immunology Inspired Optimization for Weather Data Forecasting

    Get PDF
    Recurrent neural networks are dynamical systems that provide for memory capabilities to recall past behaviour, which is necessary in the prediction of time series. In this paper, a novel neural network architecture inspired by the immune algorithm is presented and used in the forecasting of naturally occurring signals, including weather big data signals. Big Data Analysis is a major research frontier, which attracts extensive attention from academia, industry and government, particularly in the context of handling issues related to complex dynamics due to changing weather conditions. Recently, extensive deployment of IoT, sensors, and ambient intelligence systems led to an exponential growth of data in the climate domain. In this study, we concentrate on the analysis of big weather data by using the Dynamic Self Organized Neural Network Inspired by the Immune Algorithm. The learning strategy of the network focuses on the local properties of the signal using a self-organised hidden layer inspired by the immune algorithm, while the recurrent links of the network aim at recalling previously observed signal patterns. The proposed network exhibits improved performance when compared to the feedforward multilayer neural network and state-of-the-art recurrent networks, e.g., the Elman and the Jordan networks. Three non-linear and non-stationary weather signals are used in our experiments. Firstly, the signals are transformed into stationary, followed by 5-steps ahead prediction. Improvements in the prediction results are observed with respect to the mean value of the error (RMS) and the signal to noise ratio (SNR), however to the expense of additional computational complexity, due to presence of recurrent links
    corecore