5,276 research outputs found

    Dynamic parameters of structures extracted from ambient vibration measurements: an aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions

    Get PDF
    During the past two decades, the use of ambient vibrations for modal analysis of structures has increased as compared to the traditional techniques (forced vibrations). The Frequency Domain Decomposition method is nowadays widely used in modal analysis because of its accuracy and simplicity. In this paper, we first present the physical meaning of the FDD method to estimate the modal parameters. We discuss then the process used for the evaluation of the building stiffness deduced from the modal shapes. The models considered here are 1D lumped-mass beams and especially the shear beam. The analytical solution of the equations of motion makes it possible to simulate the motion due to a weak to moderate earthquake and then the inter-storey drift knowing only the modal parameters (modal model). This process is finally applied to a 9-storey reinforced concrete (RC) dwelling in Grenoble (France). We successfully compared the building motion for an artificial ground motion deduced from the model estimated using ambient vibrations and recorded in the building. The stiffness of each storey and the inter-storey drift were also calculated

    Fast Color Space Transformations Using Minimax Approximations

    Full text link
    Color space transformations are frequently used in image processing, graphics, and visualization applications. In many cases, these transformations are complex nonlinear functions, which prohibits their use in time-critical applications. In this paper, we present a new approach called Minimax Approximations for Color-space Transformations (MACT).We demonstrate MACT on three commonly used color space transformations. Extensive experiments on a large and diverse image set and comparisons with well-known multidimensional lookup table interpolation methods show that MACT achieves an excellent balance among four criteria: ease of implementation, memory usage, accuracy, and computational speed

    On Euclidean Norm Approximations

    Full text link
    Euclidean norm calculations arise frequently in scientific and engineering applications. Several approximations for this norm with differing complexity and accuracy have been proposed in the literature. Earlier approaches were based on minimizing the maximum error. Recently, Seol and Cheun proposed an approximation based on minimizing the average error. In this paper, we first examine these approximations in detail, show that they fit into a single mathematical formulation, and compare their average and maximum errors. We then show that the maximum errors given by Seol and Cheun are significantly optimistic.Comment: 9 pages, 1 figure, Pattern Recognitio

    The Determinants of Private Fixed Investment and the Relationship between Public and Private Capital Accumulation in Turkey

    Get PDF
    The purpose of this study is to analyse the determinants of private fixed investment spending in Turkey over the period 1970–96, which covers years of both financial repression and financial liberalisation. A reformulated neoclassical investment model and a reformulated flexible accelerator investment model have been tested for the Turkish economy. The results obtained support the accelerator principle and the crowding out hypothesis, that is, public and private sector investments have been found to be substitutes. Furthermore, the hypothesis that the volume of funds is as important as the cost of funds used in financing private fixed investment has been verified. On the other hand, the so-called McKinnon-Shaw hypothesis has not been completely verified because the effect of the medium-term real lending rate on private fixed investment has been found to be negative but statistically insignificant. Finally, the financial and liberalisation programmes that have been implemented since 1983 have not yet shown any noticeable positive effects on private investment.

    Optical modeling of organic electronic devices

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.Includes bibliographical references (p. 51-53).Organic materials, with their superior photoluminescence and absorbance properties have revolutionized the technologies for displays and solar energy conversion. Due to the large transition dipoles, the localization of excited states or excitons in organic materials necessitates optical models that extend beyond classical far field methods. In this thesis we propose an extended near field calculation method using dyadic Green's functions and demonstrate the applications of both our extended model and traditional far field models for different types of devices such as surface plasmon detectors, cavity organic light emitting devices and organic photovoltaics with external antennas.by Kemal Celebi.S.M

    Approximate Lesion Localization in Dermoscopy Images

    Full text link
    Background: Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. Methods: In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms. Results: The method is tested on a set of 428 dermoscopy images. The localization error is quantified by a metric that uses dermatologist determined borders as the ground truth. Conclusion: The results demonstrate that the method presented here achieves both fast and accurate localization of lesions in dermoscopy images
    • …
    corecore