734 research outputs found

    A service oriented architecture for engineering design

    Get PDF
    Decision making in engineering design can be effectively addressed by using genetic algorithms to solve multi-objective problems. These multi-objective genetic algorithms (MOGAs) are well suited to implementation in a Service Oriented Architecture. Often the evaluation process of the MOGA is compute-intensive due to the use of a complex computer model to represent the real-world system. The emerging paradigm of Grid Computing offers a potential solution to the compute-intensive nature of this objective function evaluation, by allowing access to large amounts of compute resources in a distributed manner. This paper presents a grid-enabled framework for multi-objective optimisation using genetic algorithms (MOGA-G) to aid decision making in engineering design

    Human activity recognition making use of long short-term memory techniques

    Get PDF
    The optimisation and validation of a classifiers performance when applied to real world problems is not always effectively shown. In much of the literature describing the application of artificial neural network architectures to Human Activity Recognition (HAR) problems, postural transitions are grouped together and treated as a singular class. This paper proposes, investigates and validates the development of an optimised artificial neural network based on Long-Short Term Memory techniques (LSTM), with repeated cross validation used to validate the performance of the classifier. The results of the optimised LSTM classifier are comparable or better to that of previous research making use of the same dataset, achieving 95% accuracy under repeated 10-fold cross validation using grouped postural transitions. The work in this paper also achieves 94% accuracy under repeated 10-fold cross validation whilst treating each common postural transition as a separate class (and thus providing more context to each activity)

    A Novel Workload Allocation Strategy for Batch Jobs

    Get PDF
    The distribution of computational tasks across a diverse set of geographically distributed heterogeneous resources is a critical issue in the realisation of true computational grids. Conventionally, workload allocation algorithms are divided into static and dynamic approaches. Whilst dynamic approaches frequently outperform static schemes, they usually require the collection and processing of detailed system information at frequent intervals - a task that can be both time consuming and unreliable in the real-world. This paper introduces a novel workload allocation algorithm for optimally distributing the workload produced by the arrival of batches of jobs. Results show that, for the arrival of batches of jobs, this workload allocation algorithm outperforms other commonly used algorithms in the static case. A hybrid scheduling approach (using this workload allocation algorithm), where information about the speed of computational resources is inferred from previously completed jobs, is then introduced and the efficiency of this approach demonstrated using a real world computational grid. These results are compared to the same workload allocation algorithm used in the static case and it can be seen that this hybrid approach comprehensively outperforms the static approach

    Computational steering of a multi-objective genetic algorithm using a PDA

    Get PDF
    The execution process of a genetic algorithm typically involves some trial-and-error. This is due to the difficulty in setting the initial parameters of the algorithm – especially when little is known about the problem domain. The problem is magnified when applied to multi-objective optimisation, as care is needed to ensure that the final population of candidate solutions is representative of the trade-off surface. We propose a computational steering system that allows the engineer to interact with the optimisation routine during execution. This interaction can be as simple as monitoring the values of some parameters during the execution process, or could involve altering those parameters to influence the quality of the solutions produce by the optimisation process

    Deep Learning Meets Cognitive Radio: Predicting Future Steps

    Get PDF
    Learning the channel occupancy patterns to reuse the underutilised spectrum frequencies without interfering with the incumbent is a promising approach to overcome the spectrum limitations. In this work we proposed a Deep Learning (DL) approach to learn the channel occupancy model and predict its availability in the next time slots. Our results show that the proposed DL approach outperforms existing works by 5%. We also show that our proposed DL approach predicts the availability of channels accurately for more than one time slot

    Multi-objective evolution of artificial neural networks in multi-class medical diagnosis problems with class imbalance

    Get PDF
    This paper proposes a novel multi-objective optimisation approach to solving both the problem of finding good structural and parametric choices in an ANN and the problem of training a classifier with a heavily skewed data set. The state-of-the-art CMA-PAES-HAGA multi-objective evolutionary algorithm [41] is used to simultaneously optimise the structure, weights, and biases of a population of ANNs with respect to not only the overall classification accuracy, but the classification accuracies of each individual target class. The effectiveness of this approach is then demonstrated on a real-world multi-class problem in medical diagnosis (classification of fetal cardiotocograms) where more than 75% of the data belongs to the majority class and the rest to two other minority classes. The optimised ANN is shown to significantly outperform a standard feed-forward ANN with respect to minority class recognition at the cost of slightly worse performance in terms of overall classification accuracy

    Multi-objective evolutionary design of robust controllers on the grid

    Get PDF
    Coupling conventional controller design methods, model based controller synthesis and simulation, and multi-objective evolutionary optimisation methods frequently results in an extremely computationally expensive design process. However, the emerging paradigm of grid computing provides a powerful platform for the solution of such problems by providing transparent access to large-scale distributed high-performance compute resources. As well as substantially speeding up the time taken to find a single controller design satisfying a set of performance requirements this grid-enabled design process allows a designer to effectively explore the solution space of potential candidate solutions. An example of this is in the multi-objective evolutionary design of robust controllers, where each candidate controller design has to be synthesised and the resulting performance of the compensated system evaluated by computer simulation. This paper introduces a grid-enabled framework for the multi-objective optimisation of computationally expensive problems which will then be demonstrated using and example of the multi-objective evolutionary design of a robust lateral stability controller for a real-world aircraft using H ∞ loop shaping

    CMA-PAES: Pareto archived evolution strategy using covariance matrix adaptation for multi-objective optimisation

    Get PDF
    The quality of Evolutionary Multi-Objective Optimisation (EMO) approximation sets can be measured by their proximity, diversity and pertinence. In this paper we introduce a modular and extensible Multi-Objective Evolutionary Algorithm (MOEA) capable of converging to the Pareto-optimal front in a minimal number of function evaluations and producing a diverse approximation set. This algorithm, called the Covariance Matrix Adaptation Pareto Archived Evolution Strategy (CMA-PAES), is a form of (μ + λ) Evolution Strategy which uses an online archive of previously found Pareto-optimal solutions (maintained by a bounded Pareto-archiving scheme) as well as a population of solutions which are subjected to variation using Covariance Matrix Adaptation. The performance of CMA-PAES is compared to NSGA-II (currently considered the benchmark MOEA in the literature) on the ZDT test suite of bi-objective optimisation problems and the significance of the results are analysed using randomisation testing. © 2012 IEEE

    A Multi objective Approach to Evolving Artificial Neural Networks for Coronary Heart Disease Classification

    Get PDF
    The optimisation of the accuracy of classifiers in pattern recognition is a complex problem that is often poorly understood. Whilst numerous techniques exist for the optimisa- tion of weights in artificial neural networks (e.g. the Widrow-Hoff least mean squares algorithm and back propagation techniques), there do not exist any hard and fast rules for choosing the structure of an artificial neural network - in particular for choosing both the number of the hidden layers used in the network and the size (in terms of number of neurons) of those hidden layers. However, this internal structure is one of the key factors in determining the accuracy of the classification. This paper proposes taking a multi-objective approach to the evolutionary design of artificial neural networks using a powerful optimiser based around the state-of-the-art MOEA/D- DRA algorithm and a novel method of incorporating decision maker preferences. In contrast to previous approaches, the novel approach outlined in this paper allows the intuitive consideration of trade-offs between classification objectives that are frequently present in complex classification problems but are often ignored. The effectiveness of the proposed multi-objective approach to evolving artificial neural networks is then shown on a real-world medical classification problem frequently used to benchmark classification method
    corecore