124 research outputs found

    Development of a Wireless Mobile Computing Platform for Fall Risk Prediction

    Get PDF
    Falls are a major health risk with which the elderly and disabled must contend. Scientific research on smartphone-based gait detection systems using the Internet of Things (IoT) has recently become an important component in monitoring injuries due to these falls. Analysis of human gait for detecting falls is the subject of many research projects. Progress in these systems, the capabilities of smartphones, and the IoT are enabling the advancement of sophisticated mobile computing applications that detect falls after they have occurred. This detection has been the focus of most fall-related research; however, ensuring preventive measures that predict a fall is the goal of this health monitoring system. By performing a thorough investigation of existing systems and using predictive analytics, we built a novel mobile application/system that uses smartphone and smart-shoe sensors to predict and alert the user of a fall before it happens. The major focus of this dissertation has been to develop and implement this unique system to help predict the risk of falls. We used built-in sensors --accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The smart-shoe contains four pressure sensors with a Wi-Fi communication module to unobtrusively collect data. The interactions between these sensors and the user resulted in distinct challenges for this research while also creating new performance goals based on the unique characteristics of this system. In addition to providing an exciting new tool for fall prediction, this work makes several contributions to current and future generation mobile computing research

    Early diagnosis of frailty: Technological and non-intrusive devices for clinical detection

    Get PDF
    This work analyses different concepts for frailty diagnosis based on affordable standard technology such as smartphones or wearable devices. The goal is to provide ideas that go beyond classical diagnostic tools such as magnetic resonance imaging or tomography, thus changing the paradigm; enabling the detection of frailty without expensive facilities, in an ecological way for both patients and medical staff and even with continuous monitoring. Fried's five-point phenotype model of frailty along with a model based on trials and several classical physical tests were used for device classification. This work provides a starting point for future researchers who will have to try to bridge the gap separating elderly people from technology and medical tests in order to provide feasible, accurate and affordable tools for frailty monitoring for a wide range of users.This work was sponsored by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (ERDF) across projects RTC-2017-6321-1 AEI/FEDER, UE, TEC2016-76021-C2-2-R AEI/FEDER, UE and PID2019-107270RB-C21/AEI/10.13039/501100011033, UE

    How Does Technology Development Influence the Assessment of Parkinson’s Disease? A Systematic Review

    Get PDF
    abstract: Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess their disease progression and even to detect signs in their nascent stage for early diagnosis of PD. This review focuses on the use of modern equipment for PD applications that were developed in the last decade. Four significant fields of research were identified: Assistance diagnosis, Prognosis or Monitoring of Symptoms and their Severity, Predicting Response to Treatment, and Assistance to Therapy or Rehabilitation. This study reviews the papers published between January 2008 and December 2018 in the following four databases: Pubmed Central, Science Direct, IEEE Xplore and MDPI. After removing unrelated articles, ones published in languages other than English, duplicate entries and other articles that did not fulfill the selection criteria, 778 papers were manually investigated and included in this review. A general overview of PD applications, devices used and aspects monitored for PD management is provided in this systematic review.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications

    Feasibility of Sensor Technology for Balance Assessment in Home Rehabilitation Settings

    Get PDF
    The increased use of sensor technology has been crucial in releasing the potential for remote rehabilitation. However, it is vital that human factors, that have potential to affect real-world use, are fully considered before sensors are adopted into remote rehabilitation practice. The smart sensor devices for rehabilitation and connected health (SENDoc) project assesses the human factors associated with sensors for remote rehabilitation of elders in the Northern Periphery of Europe. This article conducts a literature review of human factors and puts forward an objective scoring system to evaluate the feasibility of balance assessment technology for adaption into remote rehabilitation settings. The main factors that must be considered are: Deployment constraints, usability, comfort and accuracy. This article shows that improving accuracy, reliability and validity is the main goal of research focusing on developing novel balance assessment technology. However, other aspects of usability related to human factors such as practicality, comfort and ease of use need further consideration by researchers to help advance the technology to a state where it can be applied in remote rehabilitation settings

    Instrumented shoes for daily activity monitoring in healthy and at risk populations

    Get PDF
    Daily activity reflects the health status of an individual. Ageing and disease drastically affect all dimensions of mobility, from the number of active bouts to their duration and intensity. Performing less activity leads to muscle deterioration and further weakness that could lead to increased fall risk. Gait performance is also affected by ageing and could be detrimental for daily mobility. Therefore, activity monitoring in older adults and at risk persons is crucial to obtain relevant quantitative information about daily life performance. Activity evaluation has mainly been established through questionnaires or daily logs. These methods are simple but not sufficiently accurate and are prone to errors. With the advent of microelectromechanical systems (MEMS), the availability of wearable sensors has shifted activity analysis towards ambulatory monitoring. In particular, inertial measurement units consisting of accelerometers and gyroscopes have shown to be extremely relevant for characterizing human movement. However, monitoring daily activity requires comfortable and easy to use systems that are strategically placed on the body or integrated in clothing to avoid movement hindrance. Several research based systems have employed multiple sensors placed at different locations, capable of recognizing activity types with high accuracy, but not comfortable for daily use. Single sensor systems have also been used but revealed inaccuracies in activity recognition. To this end, we propose an instrumented shoe system consisting of an inertial measurement unit and a pressure sensing insole with all the sensors placed at the shoe/foot level. By measuring the foot movement and loading, the recognition of locomotion and load bearing activities would be appropriate for activity classification. Furthermore, inertial measurement units placed on the foot can perform detailed gait analysis, providing the possibility of characterizing locomotion. The system and dedicated activity classification algorithms were first designed, tested and validated during the first part of the thesis. Their application to clinical rehabilitation of at risk persons was demonstrated over the second part. In the first part of the thesis, the designed instrumented shoes system was tested in standardized conditions with healthy elderly subjects performing a sequence of structured activities. An algorithm based on movement biomechanics was built to identify each activity, namely sitting, standing, level walking, stairs, ramps, and elevators. The rich array of sensors present in the system included a 3D accelerometer, 3D gyroscope, 8 force sensors, and a barometer allowing the algorithm to reach a high accuracy in classifying different activity types. The tuning parameters of the algorithm were shown to be robust to small changes, demonstrating the suitability of the algorithm to activity classification in older adults. Next, the system was tested in daily life conditions on the same elderly participants. Using a wearable reference system, the concurrent validity of the instrumented shoes in classifying daily activity was shown. Additionally, daily gait metrics were obtained and compared to the literature. Further insight into the relationship between some gait parameters as well as a global activity metric, the activity âcomplexityâ, was discussed. Participants positively rated their comfort while using the system... (Please refer to thesis for full abstract

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    Effects of age, body height, body weight, body mass index and handgrip strength on the trajectory of the plantar pressure stance-phase curve of the gait cycle

    Get PDF
    The analysis of gait patterns and plantar pressure distributions via insoles is increasingly used to monitor patients and treatment progress, such as recovery after surgeries. Despite the popularity of pedography, also known as baropodography, characteristic effects of anthropometric and other individual parameters on the trajectory of the stance phase curve of the gait cycle have not been previously reported. We hypothesized characteristic changes of age, body height, body weight, body mass index and handgrip strength on the plantar pressure curve trajectory during gait in healthy participants. Thirty-seven healthy women and men with an average age of 43.65 ± 17.59 years were fitted with Moticon OpenGO insoles equipped with 16 pressure sensors each. Data were recorded at a frequency of 100 Hz during walking at 4 km/h on a level treadmill for 1 minute. Data were processed via a custom-made step detection algorithm. The loading and unloading slopes as well as force extrema-based parameters were computed and characteristic correlations with the targeted parameters were identified via multiple linear regression analysis. Age showed a negative correlation with the mean loading slope. Body height correlated with Fmeanload and the loading slope. Body weight and the body mass index correlated with all analyzed parameters, except the loading slope. In addition, handgrip strength correlated with changes in the second half of the stance phase and did not affect the first half, which is likely due to stronger kick-off. However, only up to 46% of the variability can be explained by age, body weight, height, body mass index and hand grip strength. Thus, further factors must affect the trajectory of the gait cycle curve that were not considered in the present analysis. In conclusion, all analyzed measures affect the trajectory of the stance phase curve. When analyzing insole data, it might be useful to correct for the factors that were identified by using the regression coefficients presented in this paper

    Wearable sensing and mining of the informativeness of older adults : physiological, behavioral, and cognitive responses to detect demanding environmental conditions

    Get PDF
    Due to the decline in functional capability, older adults are more likely to encounter excessively demanding environmental conditions (that result in stress and/or mobility limitation) than the average person. Current efforts to detect such environmental conditions are inefficient and are not person-centered. This study presents a more efficient and person-centered approach that involves using wearable sensors to collect continuous bodily responses (i.e., electroencephalography, photoplethysmography, electrodermal activity, and gait) and location data from older adults to detect demanding environmental conditions. Computationally, this study developed a Random Forest algorithm—considering the informativeness of the bodily response—and a hot spot analysis-based approach to identify environmental locations with high demand. The approach was tested on data collected from 10 older adults during an outdoor environmental walk. The findings demonstrate that the proposed approach can detect demanding environmental conditions that are likely to result in stress and/or limited mobility for older adults

    Foot Motion-Based Falling Risk Evaluation for Patients with Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) affects motor functionalities, which are closely associated with increased risks of falling and decreased quality of life. However, there is no easy-to-use definitive tools for PD patients to quantify their falling risks at home. To address this, in this dissertation, we develop Monitoring Insoles (MONI) with advanced data processing techniques to score falling risks of PD patients following Falling Risk Questionnaire (FRQ) developed by the U.S. Centers for Disease Control and Prevention (CDC). To achieve this, we extract motion tasks from daily activities and select the most representative features associated with PD that facilitate accurate falling risk scoring. To address the challenge in uncontrolled daily life environments and to identify the most representative features associated with PD and falling risks, the proposed data processing method firstly recognizes foot motions such as walking and toe tapping from continuous movements with stride detection and fast labeling framework, and then extracts time-axis and acceleration-axis features from the motion tasks, at the end provides a score of falling risks using regression. The data processing method can be integrated into a mobile game to be used at home with MONI. The main contributions of this dissertation includes: (i) developing MONI as a low power solution for daily life use; (ii) utilizing stride detection and developing fast labeling framework for motion recognition that improves recognition accuracy for daily life applications; (iii) analyzing two walking and two toe tapping tasks that are close to real life scenarios and identifying important features associated with PD and falling risks; (iv) providing falling scores as quantitative evaluation to PD patients in daily life through simple foot motion tasks and setups
    • …
    corecore