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Abstract: The increased use of sensor technology has been crucial in releasing the potential for
remote rehabilitation. However, it is vital that human factors, that have potential to affect real-world
use, are fully considered before sensors are adopted into remote rehabilitation practice. The smart
sensor devices for rehabilitation and connected health (SENDoc) project assesses the human factors
associated with sensors for remote rehabilitation of elders in the Northern Periphery of Europe. This
article conducts a literature review of human factors and puts forward an objective scoring system
to evaluate the feasibility of balance assessment technology for adaption into remote rehabilitation
settings. The main factors that must be considered are: Deployment constraints, usability, comfort
and accuracy. This article shows that improving accuracy, reliability and validity is the main goal
of research focusing on developing novel balance assessment technology. However, other aspects
of usability related to human factors such as practicality, comfort and ease of use need further
consideration by researchers to help advance the technology to a state where it can be applied in
remote rehabilitation settings.

Keywords: accuracy; balance; clinical diagnosis; rehabilitation; remote sensing; sensor systems;
wearable sensors

1. Introduction

Health care services are facing demands relating to an increased number of elderly
people becoming physically inactive [1]. They are also having to deal with frailty, diabetes,
neurodegenerative or cardiovascular diseases, and injuries linked to falling that result
in cognitive, physical and psychological consequences, such as dementia, lack of inde-
pendence and isolation. Remote rehabilitation presents a potential solution to deal with
the increased health care service demands in relation to a growing elderly population [2].
Remote rehabilitation has the potential to enhance the quality of service, decrease costs and
reduce the demand for resources such as nurses, health practitioners, specialists, rooms and
beds. Patients who live in remote and scarcely populated areas can have widening access
to services while avoiding unnecessary travel [3]. The success of remote rehabilitation
depends heavily on the practicality and usability of the technology—in particular wearable
sensor systems [4]—and consequently the quality of the service that can be provided using
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the sensors. The quality of service is highly interconnected with the capabilities of the
technology and the clinical effectiveness of the algorithms, but also relies on human factors
such as the health practitioner’s knowledge on how to operate these technologies and on
how to interpret the information appropriately. Technologies used for remote rehabilitation
provide easier access to vital health care services such as physiotherapy. The economic case
for the use of these technologies in averting falls and fractures in the elderly population is
clear. For example: In 2012/2013, the average cost of treating a hip fracture in the first year
was about £14,264 in the UK and the cost in Western Europe was about 14,429 euro [5].

Focusing on monitoring the physical capacity of elderly people, the smart sensor
devices for rehabilitation and connected health (SENDoc) project aims to evaluate the
use of wireless sensor technologies in remote rehabilitation settings. Currently, there are
many off-the-shelf technologies available, while other research-led prototypes are under
development. It is important to consider that many of the core sensors used as the basis to
create these technologies have been developed within the last 15 years and thus provide
a sound technological underpinning. What these sensors measure and where they are
located depend on the actual health parameters being monitored and analysed [6,7].

One of the key parameters which can be measured using sensor technology is balance.
In order to perform all activities of daily living, a person must possess good balance control
while at rest or moving. Balance refers to a person’s ability to keep their centre of mass in
the base of support and requires coordination of the sensory, neural and musculoskeletal
systems. These systems have been shown to deteriorate as people age and issues relating
to poor balance, such as reduced safe mobility and increased falls risk, are more prevalent
as age increases [8].

1.1. Clinical Approaches to Assess Balance

While reviewing potential technologies that support remote assessment of balance
is the core aim of this paper, it is important to first establish context and consider how
assessment of balance is currently performed. Balance assessment is most frequently
performed in clinical settings in order to analyse specific skills relating to balance control.
Balance is assessed using standardised or non-standardised assessments. Standardised
assessments fall into 1 of 3 categories: (1) Self-reported or clinician rated scales; (2) single-
task performance measures to assess one or two important aspects of postural control;
and (3) multiple task batteries. Self-reported scales rely on patients’ self-recall over a long
period of time, which can be considered a weakness, while batteries require more time and
supplementary administrative personnel and equipment. In terms of usability, single-task
performance is more straightforward with minimal equipment needed and nominal time
to complete. However, single task performance can be subjective as its administration can
vary among settings, making it difficult to compare results. The Berg Balance Scale, using a
battery of 14 different tasks, is commonly used as the gold standard in measuring balance
and assessing falls risk [9,10].

Despite the availability of standardised assessments, research has shown that non-
standardised assessments, such as observing movements and perturbations, are more
commonly used by physiotherapists in real-world clinical settings. Sibley et al. (2013) found
that 15.4% of physiotherapists used a standardised measure, 79.1% used non-standardised
approaches and 5.5% used both approaches [11]. In addition, the research also found that,
out of 357 responses from practising physiotherapists, only one used technology to aid
in the assessment of balance. The authors concluded that cost, difficulties with use of the
equipment and interpretation of the data are the main factors in explaining why technology
solutions have such limited usage in clinical settings. It is clear that in order for clinicians
to adapt assessment techniques into their day to day practice, regardless of whether the
technique is dependent on technology or not, the technique must be simple, cost-effective
and easy to administer. Remote assessment of balance using sensors presents a potential
solution for a simple, cost-effective and easy to administer balance assessment technique if
appropriate sensor devices and measurement techniques can be utilised.
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1.2. Analysis of the State of the Art

In the literature, within the last few years, there have been a number of reviews
published focusing on balance assessment technology.

Gordt et al. [12] conducted a review related to the use of training, augmented by
wearable sensors, for enhancing gait, functional performance and balance. Most of the
studies reviewed consider older adults both healthy and those with a condition (frailty,
Parkinson etc). Diaz et al. [13] provides a review of the progress in the field of wearable
technology in balance, Range of Motion (RoM) and gait. Contributions of this article
include introducing a taxonomy for rehabilitation assessment, discussing various aspects of
wearable sensor technologies (energy consumption, obtrusiveness, cost etc.) and discussing
parameters used to define ROM, balance and gait. Leirós-Rodríguez et al. [14] reviewed
articles that explore the use of accelerometers in assessing elderly balance. In particular,
the review focused on early identification of fall risk, exploring gait and static balance
and balance level classification. The authors state that accelerometers are more efficient in
assessing balance than force platform as they are more affordable, easier to implement and
quicker in providing measurements.

In terms of specific pathologies, Parkinson’s Disease (PD) is a condition that may
greatly benefit from innovative sensor monitoring technologies related to balance. Hub-
ble et al. [15] review sensor technologies to assess standing balance and walking stabil-
ity in patients with PD. The review indicates that gait/balance assessment technology
enables more accurate stratification of patients based on fall risk when compared to
clinical tests such as Timed Up and Go (TUG) and Berg Balance Scale (BBS) etc. Por-
ciuncula et al. [16] conducted a review of general wearable sensors systems, not exclu-
sively balance assessment, in clinical applications and settings such as orthopaedic and
neurologic rehabilitation.

Ghislieri et al. [17] conducted a detailed review of 47 research articles focused on
sensors used for measuring/assessing standing balance. Characteristics of the sensor
systems such as sensor type/placement, parameters and validation methods were reviewed.
A conclusion made by the authors was that sensor technology could enable easy balance
assessment in clinics and remote settings. However, the authors did not go as far as to
assess practicality and usability issues that could affect the adaption of the technology in
clinics or remote based settings.

Previous work has already shown that in order for the monitoring technology to be
adopted by older adults, the technology must be easy to use and not impair mobility and
independence [18]. Usability challenges must therefore be addressed in order to implement
a technology that is practical, unobtrusive, well-received by older adults, and ultimately
achieves health benefits. However, despite the growing number of articles supporting
the use of sensor technology for balance assessment, there are still significant gaps in
our understanding of the technology. In particular, existing literature reviews in the
area do not consider human factors associated with potential real-world use of balance
assessment technology.

The number of commercially available sensor systems, including those capable of
assessing balance, has increased significantly over the last decade. As the number of avail-
able sensors types has increased, it has become increasingly more difficult for clinicians
to identify appropriate sensor systems for specific use cases including balance assess-
ment. While considering sensors and technologies, clinicians and patients must have
objective methodologies available to evaluate different balance assessment technologies
available. The research objective is therefore to define a methodology that can be used to
objectively evaluate different sensor systems for their potential to be adapted in remote
rehabilitation settings.

2. Methodology

As part of the process of developing an objective assessment tool, a literature review
of the state of the art was conducted on balance assessment technology. When considering
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real-world settings, remote rehabilitation settings are of particular relevance for balance as-
sessment sensor technology. The review therefore considered potential barriers to adapting
balance assessment technology in remote rehabilitation. Proving the real-world effective-
ness of sensor systems has been a notable challenge that has deferred transferring their
use from research to practice [7]. Therefore, the review focused on the current state of the
art and attempts to improve understanding of balance assessment technology. Following
the literature review data collection phase of this work, we will set out a methodology to
construct an objective assessment rubric using data collected in the literature review.

2.1. Literature Review

The literature review used the five key phases for research synthesis, which are namely:
(1) Identifying the research question, (2) identifying relevant studies, (3) study selection,
(4) gathering data, and (5) collating, summarising, and reporting the results.

In order to identify relevant research articles for the review, a search was conducted
to discover articles relating to balance assessment technology for elders. The search
was carried out on well-established research databases, such as MEDLINE/Pubmed,
PLOS ONE, KARGER, Elsevier and IEEE. Only publications in English were considered.
The publication period investigated was 2010 to June 2019. The initial search criterion was
based on the following search terms: (balance) AND (“assessment” OR “test”) AND (“older
adults” OR “elderly” OR “ageing”) AND (“IMU” OR “accelerometer” OR “camera” OR
“force plate” OR “wearable sensor”). Only studies specifically utilizing sensor technology
such as wearable sensors, force plates and camera-based systems to assess balance in
older adults were included. Studies focusing on balance interventions were not included.
A second review stage involved screening titles, abstracts and publications, and those
which did not meet the aforementioned criteria were excluded. Studies were only included
if the sensor deployment and sensor setup procedure were sufficiently described such
that characteristics of deployment and human factors could be commented on. Finally,
the full texts of the remaining publications were assessed and those that were ineligible-for
not covering the set criteria -were excluded. After the review stages were completed,
23 studies were finally included in this literature review. The review selection stage was
conducted by one author. Figure 1 provides an overview of the paper selection phase of
the review process.

Figure 1. Results of Search and Screening process.

Using the 23 studies, barriers to adaption were independently identified by three
researchers. Identified barriers were then collated and synthesised and broad themes
related to barriers to adaption were established.
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2.2. Development of an Objective Assessment Tool

Using the themes identified in the Literature review process, the aim is to develop a
scoring rubric composed of separate scoring components to objectively assess the feasibility
of a particular technology being deployed in real-world remote rehabilitation settings.
Based on results of the literature review, a set of independent scoring components will
first be defined. For each scoring component, a clear set of criteria used to assess that
component with be designed.

Each of the scoring components will be assigned a weighting factor. The weighting fac-
tors will be defined by three authors with real-world professional rehabilitation experience
and who were directly involved in the literature review process described in the previous
section. Each author will independently assign a weighting to each of the components.
Final weights will be assigned by calculating the median of the weights assigned by the
3 independent raters.

Each criterion will be graded using a Likert Scale. After scoring, all criteria within each
component should first be averaged. If a criterion cannot be assessed, due to unavailable
information, that score should be marked as null and the average calculation should only
consider available scores. After scores are calculated for all components, the overall score
should be calculated by multiplying each score by its weighting factor and summing the
weighted scores.

3. Results
3.1. Literature Review Results

Table 1, presented below, provides a summary of the key information extracted from
the reviewed work during the gathering and collation phases of the review. The table
details the author of each study, what the research focuses on, and a description of the study
cohort. Information on the sensors or technology used for the balance assessment and how
this is deployed is provided: Whether (and if so, where) it is worn on the participant or
the technology is installed in the environment. The findings of the study are presented in
the penultimate column. The final column discusses the human factors of the technology
that the researchers in this article have inferred based on a combination of information
available in the research articles and by utilising their expert knowledge of the sensors
systems which have been deployed.

Table 1. Balance assessment using technology literature review summary.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Walsh et al. (2011) [19]

To assess the validity and
reliability of a portable
quantitative balance
measurement technology
compared to the force
plate (the gold standard)
Cohort: 2 participants (1M,
29; 1F, 22)

AMTI (Advanced
Mechanical Technology)
force plates
Tactex high density (HD)
pressure sensor mat
SHIMMER IMU sensor
(used for syncing pressure
sensor and force plate
systems)
Participant stands on
pressure mat wearing
IMU sensor

• The two Berg Balance Scale
(BBS) estimates of each
participant in successive
trials, using lasso model with
automatic segmentation of
data, have a mean absolute
error of 1.44 points
• The proposed technique
predicts accurate functional
balance of the elderly people
and has the potential to act as
a surrogate of BBS test.
However, the cohort is too
small, only 2 participants

• Portable alternative to a
force plate system means
there is potential for
remote use
• Laptop is used to collect
data and needs trained
professional to operate,
making system
appropriate for
community care or use in
care facilities
• Additional IMU unit
required for syncing adds
complexity to the setup
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Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Greene et al. (2012) [20]

Using body worn sensor
data to predict falls in
community dwelling
Cohort: 226 participants
(62M; 164F; 60+ years old;
mean 71.5 ± 6.7)

Shimmer sensors (IMUs)
mounted on the left and
right shanks to quantify
gait and lower limb
movement while
performing the TUG test

• Results obtained through
cross validation yielded a
mean classification accuracy
of 79.69% (mean 95%, CI:
77.09–82.34)
• The quantification of
movement during the TUG
test using sensors could lead
to a robust method assessing
future fall risk
• Results were significantly
(p < 0.0001) more accurate
than those obtained using
BBS and manual TUG

• The setup is deemed as
quite unobtrusive due to
two sensor setup
• The system is deemed as
easy to don/doff due to
shank sensor location
• Shimmer units have
limited storage space and
require commercial grade
software to analyse results

Kearns et al. (2012) [21]

Fall prediction and
standardized gait and
balance assessments:
Focused on analysing the
variability in voluntary
movement paths of
assisted living facility
(ALF) residents.
The authors observed
greater movement
variability in the week
preceding a fall.
Cohort: 69 participants
(16M; 53F; mean age
76.9 ± 11.9)

Tele-surveillance
technology
4 room mounted sensors
and one participant worn
ubisense compact tag

• Logistic regression analysis
revealed odds of failing
increased 2.548 (p = 0.021)
for every 0.1 increase in
fractal D, and a having a fall
in the prior year increased
odds of falling (OR 0.976
p = 0.08) but it was no
significant
• Fallers had more variable
stride to stride velocities and
required more activities of
daily living assistance

• The wrist-mounted
compact tag worn by
participants was found to
be uncomfortable by 38%
of the cohort
• The sensor was able to
be mounted to
participants walking aid
without affecting results
or accuracy
• The trial lasted for one
year, thus technology
deemed appropriate for
long term use
• The expense and setup
of the system (4 room
mounted tracking sensors)
makes it more suitable for
a carehome environment

Barelle, Houel and
Koutsouris (2014) [22]

Focused on creating a falls
model based on cluster
analysis (accessible
biomechanics predictors).
The study focusses on
assessing whether or not
there is gait impairment,
which is correlated with
loss of physical function
and fall risk.
Cohort: 18 participants in
3 groups (6 healthy elders
(3F, 3M; 65+); 6 fallers (3F,
3M; 65+); 6 healthy control
(3F, 3M; 24–26))

VICON motion capture
system composed of 8
Infrared (IR) video
cameras was used to track
33 external reflective
markers located on
the participant

• ANOVA used to analyse
differences between healthy
controls, healthy elders and
fallers. In terms of stride to
stride parameters and Active
ROM (AROM) for the hip,
the knee and the ankle
• 8% decreased of the knee
AROM in the elderly is found
compared to the young
• Only significant differences
appear in stride length and
step length as well as hip and
knee AROM between young
and elderly including fallers.
These deviation remains with
comparing the three groups
with p < 0.07

• Vicon system deemed
difficult and cumbersome
to don/doff as 33 markers
are required to be worn
• 8 cameras required for
system to operate means
system is not easily
transportable or
transferable thus
inappropriate for remote
use
• Expert knowledge
required to set up and
operate system
• Bulky clothes cannot be
worn when using system



Sensors 2021, 21, 4438 7 of 24

Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Reynard et al.
(2014) [23]

Early gait stability index
to prevent falls (Assessing
Local Dynamic Stability
(LDS) to small
perturbations)
Cohort: 83 patients with
mild to moderate gait
disorders (35F, 48M; mean
age 44 ± 14)
40 healthy control (20F,
20M; mean age 40 ± 9)

Physilog system (IMUs) by
GaitUp was used to record
trunk (at the level of the
L3–L4) accelerations along
three axes: Medio-lateral
(ML), vertical (V) and
antero-posterior (AP)
Single IMU sensor
attached to trunk with
elastic belt

• The Local Dynamic Stability
(LDS) measured in short over
ground walking tests seems
sufficiently reliable.
• LDS assessed along the
medio-lateral axis offered the
highest repeatability and
discriminative power.
Intrasession repeatability in
the patients was 0.89 and the
smallest detectable difference
was 16%.
• LDS was substantially
lower in the patients than in
the controls (33% relative
difference, standardized
effect size 2.3)

• The Physilog system is
deemed easy to don/doff
due to one sensor setup
with elastic belt
• System is lightweight so
would not be cumbersome
to wear for extended
periods of time
• Bespoke software
required to analyse results

Finkelstein and Jeong
(2015) [24]

Assessing autonomic
balance by analysing the
activity of the autonomous
nervous system. This is
achieved through
analysing heart rate
variability (HRV) during a
cycling exercise
Cohort: 5 participants
(healthy)

BN-RSPE, BIOPAC
Systems, Wireless
electrocardiogram (ECG)
device
9 pre-gelled and
disposable ECG electrodes
worn on the chest (LL
Electrode series,
Lead-Lok)

• Discriminant function
analysis was conducted to
investigate a potential value
of discrimination among
elders and patients with heart
diseases
•When cross-validated
classification was performed
that was using the
leave-one-out method,
overall 86.7% of originally
grouped cases were
correctly classified

• The wireless ECG is
deemed difficult to
don/doff due to the 9
electrode setup which
requires precise
positioning on chest.
• The ECG electrodes
require gel to make
contact with human
skin–this is invasive and
may not be perceived as
comfortable by patients.
• Health care professional
required to setup ECG
sensors and take readings
thus system is not suitable
for remote use

Ràbago, Dingwell and
Wilken (2015) [25]

Determining the
between-session reliability
and minimum detectable
change values of
temporal-spatial,
kinematic variability,
and dynamic stability
measures during three
types of perturbed gait
(used to identify
dysfunction associated
with gait instability)
Cohort: 20 participants
(young healthy adults)

Vicon Motion Systems
composed of 24 IR
cameras to track 57
reflective markers located
on hand, arm, head, trunk,
pelvis, thigh, leg and
foot segments

• Participants during session
1 exhibited a significant 8%
increase (p = 0.001, d = 0.35)
in mean speed walking
compared to unperturbed
participants with no
significant change in speed
walking
• Participants walked at an
average speed of 1.20 ±
0.04 m/s across all walking
conditions. In response to all
perturbation conditions
• All temporal-spatial,
kinematic variability and
dynamic stability measures
demonstrated fair to excellent
between-session reliability.

• Vicon system deemed
difficult and cumbersome
to don/doff as 57 markers
are required to be worn
• 24 cameras required for
system to operate means
system is not easily
transportable or
transferable thus
inappropriate for remote
use
• Expert knowledge
required to set up and
operate system
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Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Ayena et al. (2016) [26]

Improving and facilitating
the methods to assess risk
of falling at home among
elders by computing the
risk of falling in real time
daily activities
Cohort: 29 participants
(17 elders, 59–79 (10
healthy, 7 Parkinson’s
Disease); 12 healthy
adults)

Custom made
instrumented insole with
Bluetooth capability
connected to a
Smartphone.
This device comprises a
set of sensors such as
accelerometers (located in
electronic board), force
sensors and bending
variable sensor
Insoles placed inside
participants shoes

• Results suggest that there is
a relationship between OLST
score and the risk of falling
based on centre of pressure
measurement
• The risk of falling depends
on type of ground (ground
properties such as compliance
and coefficient of friction)
• The main finding of this
work is that this model could
be used to simulate the
balance capability and could
be implemented inside the
embedded microcontroller of
the insole in real-time

• Initial calibration
required in clinic using
tether-release system
• Insole is designed to be
worn in every day life;
home monitoring is dealt
with using a mobile phone
app serious game for
exercise
• Insole deemed easy to
don/doff, pairs to mobile
phone, and has been
designed with home
rehabilitation in mind

Hong et al. (2016) [27]

Assessing the stability of
human postural balance
by using a force plate
Cohort: 40 participants
split in two groups
group 1: 20 participants
(10F, 10M; 65–73 years old;
mean age 68.7 ± 2.96)
group 2: 20 participants
(10F, 10M; 18–24 years old;
mean age 20.1 ± 1.29)

Force plate (custom
made-Piezo electric force
transducers were
positioned in 4 corners)
Participant stands on plate

• The proposed features are
not only robust to intertrial
variability but also more
accurate than one of the most
effective COP features and
two recently proposed COM
features in classifying the
older and younger age
groups
• The proposed approach
reduces the force sensor
requirements from 3D to 1D,
substantially reducing the
cost of the force plate
measurement system

• Force plates are not
suitable for home/remote
rehabilitation. They are a
research grade device
intended for use in clinics.
They are very expensive,
large and cumbersome.
• The approach would be
difficult and expensive to
be transferred to a remote
or home-based setting

Howcroft, Lemaire,
and Kofman (2016) [28]

Gait-based sensor
assessment for fall-risk,
which involves identifying
the sensors, the location
and modelling method
Cohort: 100 participants
(mean age 75.5 ± 6.7; 76
non-fallers, 24 fallers)

Pressure-sensing insoles
(F-Scan 3000E, Tekscan)
and tri-axial
accelerometers (X16-1C,
Gulf Coast Data Concepts)
IMUs were worn at the
posterior head, posterior
pelvis, and lateral left and
right shanks (just above an
ankle with a band)

• The best performing model
was a multi-layer perceptron
neural network with input
parameters from
pressure-sensing insoles and
head, pelvis, and left shank
accelerometers (accuracy =
84%, F1 score = 0.600, MCC
score = 0.521)
• Head sensor-based models
had the best performance of
the single-sensor models for
Single-Task (ST) gait
assessment
• ST gait assessment models
outperformed models based
on dual-task (DT) walking or
clinical assessment data

• Impractical in remote
settings due to
combination of head,
pelvis, shank and insole
mounted sensors.
• Accelerometers are
likely to be perceived
uncomfortable and
difficult to don/doff
• Remote monitoring
difficult due to both
hardware comms
limitations and only
research grade software
being available

Mohler et al. (2016) [29]

Using sensor-based
measures of gait, balance
and Physical Activity (PA)
in community dwelling
Cohort: 119 participants
(95F, 24M; 65 years +;
mean age 78.46 ± 8.4

LEGSysTM; BioSensics
Five small inertial sensors
are tri-axial accelerometer
and gyroscope attached to
the shins above ankles,
thighs above knees,
and lower back close to
the sacrum

• Balance deficit and PA were
independent fall predictors in
pre-frail and frail groups.
They were not sensitive to
predict prospective falls in
the non-frail group
• Even thought gait
performance deteriorated as
frailty increased, gait was not
a predictor of prospective
falls when participants were
stratified based on
frailty status

• Impractical and
cumbersome in remote
settings due to 5 sensor
setup (shins, thighs,
and lower back). Correct
placement of sensors
tricky without expert
• Accelerometers are
likely to be perceived
uncomfortable and
difficult to don/doff due
to quantity and placement
• Research grade software
required to analyse results
for feedback
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Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

van Lummel et al.
(2016) [30]

Assessing the quality of
life of an individual
(health status, functional
status and physical
activity) related to Sit to
Stand test (STS)
Cohort: 51 female
participants 64 years +
(mean age 83 ± 6.9)

IMU sensor Dynaport
Hybrid was used
(durations, sub durations
and kinematics), physical
activity was followed for
1 week with an activity
monitor (laying, sitting,
standing and locomotion)
One IMU sensor worn in
an elastic belt worn
around the waist and fixed
over the lower back

• The manually recorded STS
test was not significantly
associated with the health
status (p = 0.475) and
functional status (p = 0.055),
while the instrumented STS
times were both (p = 0.009).
• Duration’s of the Dynamic
sit to stand phase of the
instrumented STS showed
more significant associations
with health status, functional
status and daily physical
activity (all p = 0.001) than
the static phases standing
and sitting (p = 0.043–0.422)

• Deemed easy to
don/doff due to one
sensor setup
•Worn by participants in
study for 1 week so
deemed comfortable for
use over long periods of
time
• Commercial software
required to process signals
and analyse results

van Schooten et al.
(2016) [31]

Assessing physical activity
and daily life gait quality
(in terms of stability,
variability, smoothness
and symmetry) and
determine their predictive
ability for time-to-first-and
second falls
Cohort: 319 participants
(163F, 156M; 65–99 years
old; mean age 75.5 ± 6.9)

Dynaport Move Monitor
by McRoberts tri-axial
accelerometer
One IMU sensor placed in
an elastic belt and worn
around the waist, fixed
over the lower back (fifth
lumbar vertebra, L5)

• Gait characteristics-walking
speed, stride length, stride
frequency, intensity,
variability and smoothness,
symmetry and
complexity-were often
moderately to highly
correlated (>0.4)
• The cross-validated
prediction models had
adequate to high accuracy
(time dependent AUC of
0.66–0.72 for time to first fall
and 0.69–0.76 for second fall)
• Daily life gait quality
obtained from a single
accelerometer on the trunk is
predictive for falls

• Deemed easy to
don/doff due to one
sensor setup
•Worn by participants in
study for 8 days so
deemed comfortable for
use over long periods of
time
• Commercial software
required to process signals
and analyse results

Zihajehzadeh and Park
(2016) [32]

Walking speed is assessed
to study human health
status through IMU
sensors in the wrist.
Walking speed variation
or change in its trajectories
can be linked to cognitive
impairment, multiple
sclerosis, Parkinson’s
disease, risk of falls,
kidney disease and
adverse effects of aging
(disability and
hospitalization)
Cohort: 15 participants
(9M, 6F; mean age 27 ± 4)

Xsens MTiG-700 IMU and
the Global (accelerometer,
magnetometer and
gyroscope) worn on the
left wrist
The Positioning System
(GPS) is only used in the
outdoor walking trial of
this study

• Results show that the use of
the pca-acc variable can
significantly improve the
walking speed estimation
accuracy when compared to
the use of raw acceleration
information (p < 0.01)
•When the Gaussian process
regression is used,
the resulting walking speed
estimation accuracy and
precision is about 5.9% and
4.7%, respectively

• Deemed easy to
don/doff due to one
sensor wrist-worn setup
• No tricky sensor locating
required as sensor is
wrist-worn on a piece of
elastic
• Study with participants
lasted for 12 min however
comfort is not deemed to
be an issue as wearing
IMU is comparable to
wearing a watch
• Research grade software
required to analyse results
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Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Kikkert et al.
(2017) [33]

Falls prediction - Dynamic
parameters of gait-gait
control (balance)
Cohort: 61 participants
(41F, 20M; 70 years+)

Dynaport1 MiniMod,
McRoberts
A tri-axial accelerometer
attached to the lower back
at the level of the third
lumbar spine segment to
measure medio-lateral
(ML) and
anterior-posterior (AP)
trunk accelerations

• Classification accuracy of
models (1), (2) and (3) were
0.86, 0.90 and 0.93. Specificity
in the third model was 80% in
comparison to 72% and 60%
reached by models (2) and (1),
respectively. Sensitivity
values were 92%, 89% and
92% for models (1), (2) and
(3), respectively
• Results show that
combining gait-speed and
speed related measures with
dynamic gait measures will
increase specificity and thus
classification accuracy

• Deemed easy to
don/doff due to one
sensor setup
•Worn by participants in
study for a 160m walk,
however same sensor has
been worn in other studies
for >1 week. Comfort
therefore unlikely to be an
issue
• Specific locating at third
lumbar spine segment
means training would be
required for users to
correctly position while at
home
• Commerical software
required to process signals
and analyse results

Ocampo et al.
(2017) [34]

Analysing muscle fatigue
for enhancing
performance of existing
fall detection systems
Cohort: 20 healthy
participants

Surface
ElectroMyoGraphy
(SEMG) for muscle fatigue
information and
accelerometer (ACC)
sensors
5 SMEG sensors on leg
and 2
Accelerometers worn

• Results showed that the
combination of SEMG and
ACC data have relatively
increased the accuracy of fall
detection systems
• Linear regression was used
to estimate the CT and EMG
MPFT values. Two separate
paired-samples t-tests were
used to compare the mean
absolute and %MVIC values
for CT and EMG MPFFT.
In addition, a Pearson
correlation was used to
determine the relationship
between the absolute CT and
EMG MPFFT values.
An alpha of p < 0.05 was
considered
statistically significant

• The system is deemed
difficult to don/doff due
to complex 7 sensor setup
• The sensors need precise
positioning and thus a
trained professional to
assist
• The SMEG sensors are
attached to the body using
elastic bands. This may
not be comfortable for
extended periods of time
• Commercial grade
software required to
process data

Shahzad et al.
(2017) [35]

Obtaining an objective,
cost-effective,
and unsupervised method
to obtain functional
balance and mobility
assessment-based fall-risk
of community-dwelling
older adults
Cohort: 23 participants
(16F, 7M; 60+ years old;
mean age 72.87 ± 8)

Shimmer-Single triaxial
accelerometer sensor
attached on the lower back
between the L3-L5
vertebrae by means of
elasticised bandages to
measure the trunk
acceleration

• High correlation (p = 0.90)
and low root-mean-square
error (1.66) was observed
between the two estimates of
each subject
• The average value of the
estimates achieved low RMSE
error (2.78) with respect to
clinical BBS score, which
demonstrate that the
proposed technique predicts
accurate functional balance of
the elderly people and has
the potential to act as a
surrogate of BBS test in an
unsupervised setting
• The elderly people can
assess their balance any time
at-home without the need of
physiotherapist/expert

• Deemed easy to
don/doff due to one
sensor setup,
although training would
be required to ensure
correct positioning was
achieved
• Single sensor is neither
cumbersome nor weighty,
so deemed acceptable to
wear for longer periods of
time. Some comfort issues
may arise over prolonged
use of elastic belt
• Sensors stream data to
bespoke MATLAB
application over bluetooth,
and a trained observer
annotates the datastream
in this
particular experiment.
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Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Jafari et al. (2018) [36]

To understand the
mechanism behind the
reduced ability to
maintain balance in any
posture or activity.
Studying the performance
of the central nervous
system (CNS) as a
controller of the body,
while maintaining the
balance in some postures
or activities
Cohort: 45 participants
(18M, 27F; 70+ years old;
mean age 75.2 ± 4.5)

Qualisys Oqus 4 system:
An Optic system with
eight cameras for 3D
motion capture): A full
body marker model with a
total of 60 pieces of 10 mm
round reflective markers
Noraxon DTS 16 channel:
A wireless system for
EMG collection

• Results show that the
model is capable to adapt to
the changes in the input
signals and predicts the
normalized and rectified
EMGs with high accuracy
(Average RMSE = 0.06 µV for
all subjects in the test data
set)
• The overall scheme can
adapt to physical body
characteristics of different
subjects, the changes of
multiple sensory inputs and
successfully predict the
muscle activity based on the
optimum number of
sensory inputs

• System deemed very
difficult to don/doff due
to 4 sensor EMG sensor
setup which requires
precise positioning and
gels applied
• Optic system requires
60 markers placed on the
body, again with precise
positioning meaning a
trained professional is
required
• The cost and complexity
of this systems means it is
not suitable for home use

Levy, Thralls,
and Kviatkovsky
(2018) [37]

Examining the current
validity and 3-day
test-retest reliability of the
Balance Tracking System
Cohort: 96 participants in
total (57F, 39M; mean age
73.5 ± 7.79)

BTrackS–a portable force
plate. Participant stands
on force plate.

• BTrackS demonstrated
good validity using Peason
product moment correlations
(r > 0.90).
• Test-retest reliability using
ICCs was excellent (0.83) and
calculated MDC for Eyes
Open (9.6 cm) and Eyes
Closed (19.4 cm) conditions,
and suggested that postural
sway changes of these
amounts are meaningful
• BTrackS has the potential to
identify meaningful changes
in balance that may
warrant intervention

• BTrackS is portable,
affordable,
and lightweight sensor
plate intended for clinical
use
• The system connects to a
laptop via USB thus
requiring a medical
professional on site to
operate
• Interpreting data
recorded requires expert
knowledge and thus is not
appropriate for home
user use.

Virmani et al.
(2018) [38]

Assess gait and balance in
healthy non-fallers
Cohort: 75 participants
(42F, 33M; aged 21–79;
mean age 46.9 ± 17.1)

Zeno Walkway,
Prokinetics (PKMAS)
Pressure sensor mat which
participant walks on.

• Stepwise multivariate
analysis of all 31 parameters
assessed from three different
gait paradigms showed weak
but significant correlations in
age with (a) stride to stride
variability in (b) integrated
pressure of footsteps and (c)
mean stride length on dual
task and (d) mean step width
on tandem gait (R2 = 0.382, t
= 2.26 p = 0.026)
• There were weak but
significant age-related
changes in objective
measures of steady state gait
and balance. Impaired
contrast sensitivity, not visual
acuity, correlates with
decreased stride-length and
mean steady state stride
length was not a parameter in
the final model. As one ages,
there is more variability in
the pressure applied while
stepping and the length of
each stride

• Zeno Walkway 20′ × 4′

pressure sensor
impregnated mat intended
for clinical use
• Size and cost of device
not suitable for home use
• Research grade
Protokinetic Movement
Software required
for analysis
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Table 1. Cont.

Research Rational/Focus on and
Cohort

Sensors/Technology
Used and Deployment Findings Human Factors

Coni et al. (2019) [39]

Apply factor analysis of
sensor-based physical
capability assessment to
transform a battery of
sensor-based functional
tests into a clinically
applicable assessment tool
Cohort: 304 participants
(141M, 163F; 65–98 years
old; mean age 80.9 ± 6.4)

Galaxy SII or Galaxy SIII,
Samsung: Accelerometer
range ±2 g and gyroscope,
was worn at the lower
back (fifth lumbar
vertebra, L5), taken as
reference of the body
COM, by means of an
elastic waist belt.
A custom Android
application was used for
recording tri-axial inertial
signals (Anteroposterior,
AP, Mediolateral, ML,
Vertical, V) from the
embedded sensors

• Instrumented tests
provided 73 sensor-based
measures, out of which
Exploratory Factor Analysis
identified a fifteen-factor
model which is suitable for
physical capability
assessment of older adults
• EFA reduced the number of
sensor-based measures taken
from instrumented functional
tests and find domains with
clear functional meaning
• The research shows that
instrumented functional
testing has the potential to
advance the quality of
current mobility assessments

• Deemed easy to
don/doff due to single
device setup
• Only worn by
participants in study for a
7 m walk and 5 STS tests.
Mobile phone likely to feel
heavy to wear in an
elasticated belt for a
prolonged period of time
• Custom android app
records accelerometer
measurements and
processed afterwards
using MATLAB

Tang et al. (2019) [40]

Estimating Berg Balance
Scale and Mini Balance
Evaluation System Test
Scores
Cohort: 30 participants
(13M, 17F; mean age 76 ±
10.5)

Custom made pressure
sensitive insole
comprising three pressure
sensors, were located
inside of each participant’s
shoe (Bluetooth
communication devices
were clipped outside of
the shoe)
The accelerometer
ADXL330 from Analog
devices was worn on the
hip (worn in a pouch)

• The results show that the
wearable sensor system has a
capability to estimate the
Berg Balance Scale and Mini
Balance Evaluation System
Test scores with absolute
mean errors and standard
deviations 6.07 ± 3.76 and
5.45 ± 3.65, respectively
• The results demonstrate
high agreement with falls
history based risk assessment

• The insoles are deemed
easy to don/doff and have
been designed to fit in
participants own shoes
• The hip-worn
accelerometer is also
deemed easy to don/doff
and position correctly due
to use of pouch
• Data from sensors
collected on smartphone
and processed offline

In order to gain further insight and understand the synergies between the state-of-
the-art research in balance assessment technologies, six reoccurring key themes were
identified underpinning each of the 23 research works. These were namely (1) human
factors determining real-world use; (2) balance assessment methodology; (3) research
objectives; (4) sensor placement; (5) analysis techniques; and (6) methods of evaluation.
Detailed below is information extracted under each of these six themes.

3.1.1. Human Factors Determining Real-World Use

From reviewing the 23 selected works, results show that the majority of research
focuses only on one aspect of the usability of the sensors, which is their accuracy. The re-
viewed research does not consider, in any detailed way, aspects of usability related to
human factors such as comfort, ease of mounting, technical proficiency and other practical-
ities related to cost, time and space.

Unobtrusive sensing is one of the key human factors that must be considered for a
sensor system to be feasible in real-world home rehabilitation settings. Wearable sensors
were the most frequently used technology in the reviewed works. In order for wearable
sensors to be usable and practical for the intended demographic, they need to be unobtru-
sive, the number of sensors used needs to be minimized and the placement of the sensors
on the body must allow for easy donning and doffing and be comfortable for participants
to wear over long periods. In reviewing works related to wearable sensors, we gathered
information related to these key characteristics such as unobtrusiveness, number of sensors,
location of sensors and potential comfort and donning/diffing issues.

Five of the reviewed studies used multiple sensors placed at different locations such
as two sensors at the left and right shank [20,26] and five sensors at the left shank and
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thigh, right shank and thigh and sacrum [29]. Discomfort and difficulty in donning and
doffing are major issues relating to usability in these studies.

While many studies minimized the number of sensors to a single sensor [23,30–33,35,41,42],
comfort or difficulties with donning and doffing remains a significant problem. For example,
some of the sensors utilized have not been designed to be worn on the body such as Shimmer
sensors and sensors in mobile phones. However researchers are employing them because they
have access to the raw data and are safe to use. Elastic straps or bandages are generally used
to mount sensors on the body [28,35], yet mounting sensors at very specific locations on the
back is difficult to perform by participants and is generally performed by trained researchers.
While easy to don and doff, waist mounted straps or bandages can be uncomfortable to wear
for longer periods, and some studies can take from 24 h to one week.

Wearable sensors other than IMUs, such as wrist-worn location sensors [21], instru-
mented insoles [26] and Surface EMG sensors [34] were also utilized. While it is likely that
a wrist-worn device may be the best option in relation to comfort and ease of donning
and doffing, Kearns et al. [21] reported that 38% of older adult participants in their study
disliked wearing a wristband-based device.

Similarly, insole based sensors present a potentially unobtrusive form factor for sens-
ing gait parameters. However issues in relation to long term comfort could arise from
incorrect fitting of insole to the participants shoes. Using insoles in conjunction with shoes
already owned by the participant could also reduce available area for the participants feet
to comfortably fit into the shoe.

Portable Surface EMG based sensors have potential to detect biological/anatomical
issues, such as muscle fatigue, that could be indicative of balance issues and risk of falls.
However, these technologies in their current form are still not feasible for home based
rehabilitation settings. While SEMG technology has advanced in terms of miniaturisation
and use or wireless technologies, donning and doffing of these sensors require placement
of the electrodes at very specific anatomical sites such as M. Quadriceps Femoris [34]. This
requires that an expert be present in order to set the device up.

Multiple studies are observed utilizing force plates as a comparison metric, and two
of the reviewed studies [19,27] propose a force plate-based system to measure balance.
Despite this, force plate-based systems are highly unlikely to be utilized in home-based
rehabilitation due to installation, cost and space related issues. Camera-based motion
capture systems (i.e., Vicon) were utilized in three of the reviewed studies [22,25,36]. It
was observed that camera-based systems are as impractical for a home-based rehabilitation
setting as the force plate systems. This is due to cost, space and installation issues. Camera-
based systems are also difficult to use and require trained experts to be present to don and
doff markers and operate the system software. In addition, camera-based systems could
potentially be viewed as invasive from a privacy point of view.

The biggest issue in relation to feasibility of balance assessment technology being
utilized in real-world home rehabilitation settings is the lack of human factors being con-
sidered by the research. While several metrics such as accuracy, specificity, reliability and
test-retest reliability, are evaluated by most studies, these metrics only address one dimen-
sion of a multidimensional issue. Balance assessment technology needs to be assessed, not
only in terms of accuracy, but also in terms of usability and practicality.

While there is limited quantitative evidence presented in the works related to comfort
and usability, we can review participation levels in different long term study’s and make
some judgement on promising sensor types for home rehabilitation. One of the most
promising sensor types is a small wearable IMU sensor mounted on an elastic belt which is
worn around the hip. This sensor type was successfully used in two studies to record data
for up to eight days with 51 and 319 participants aged 65 and over [30,31].

3.1.2. Balance Assessment Methodology

Sixteen out of the 23 research studies were related to the creation of data models
and four out of 23 are related to evaluating the validity and reliability of the sensor
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system [19,23,25,37]. Fourteen out of the 23 studies use Inertial Measurement Unit (IMU)
sensors on their own or combined with the use of other types of sensors. This corresponds
to about 60.86% of all the reviewed studies. Eight out of the 23 studies (34.78% of the
complete data set) focused on research conducted with Force plates, pressure sensors and
insoles. Tele-surveillance and motion camera systems, and Electro Myo Stimulation (EMS)
and Electrocardiograms (ECGs) were 17.39% and 13.04%, respectively. Thus, out of the
reviewed studies, the most frequently researched sensors were IMU’s. These were most
frequently located on the lower back or pelvis since it is close to the centre of mass of
the body.

The cohort size in these studies varied from two participants in [19] to 319 participants
in [31]. For most of these studies, an inclusion criteria was utilized stating that elderly
healthy participants should be able to walk with and without aid for a specific period of time
(e.g., 6 min in the research by Howcroft, Lemaire, and Kofman [28] or 3 min in the research
by Kikkert et al. [33]), or alternatively a specific distance in meters (e.g., 20 m in the studies
conducted by van Lummel et al. [30]), or be able to rise unassisted. In addition, in the
majority of studies elders have to be cognitively intact [20] or perform the Mini-Mental
State Examination (MMSE) and obtain a score larger than 18 or 19 out of 30 points [30,31].
When fallers were recruited, studies were asking for at least one fall in the previous 6 to
12 months. In some of these studies, the patients and their proxies were the ones reporting
the time, place and circumstances of the fall. This could be seen as a weakness since they
will have to recall the event with accuracy and facts. In some cases, participants did not
alter normal gait owed to neurological disorders or orthopaedic injuries.

3.1.3. Research Objectives

From the 23 reviewed papers, research was categorised into three key main pur-
poses: (1) Understanding the underlying biological/anatomical functional causes creating
disturbances in balance [24,32,34,36]; (2) identifying the falls or diagnosing balance is-
sues [20,26–28,30,33,38,39,41,42]; and (3) identifying the factors (external or internal to a
person) in order to predict when falls will happen [21,22,29,31,35].

The first category focuses on understanding if the biological/anatomical problems
which create a disturbance in balance can be identified by sensors in some way. The articles
in this category focus on assessing cognitive impairment linked to walking speed variation
and walking trajectories [32], muscle fatigue [34], or indicators of functioning of the Central
Nervous System (CNS) [36] or autonomous nervous system [24]. In order to achieve the
goal of evaluating underlying biological/anatomical problems, the sensors used by the
reviewed works (e.g., EMG) required complex setup and mounting at very specific body
locations by an expert.

Research in the second category focused on assessing balance to identify issues in
balance or a fall in order to raise an alarm or produce a notification. Trying to identify
patterns of fallers from non-fallers was key for this objective. Encouragingly, works
reviewed in this category commonly used light and easy to don/doff IMU sensors worn at
various locations on the body to detect signals specific to fall occurrences.

The third category relates to fall prediction, where research is not only focused on
internal factors to the person but can also focused on analysing the environmental, physical
and socio-economic factors involved. Cameras are commonly used alongside wearable
sensors to gain awareness of the environment. Many fall prediction studies focused on
community dwelling environments. When multiple wearable sensors were used in addition
to cameras, problems of synchronization and labelling were common, raising concerns
about real-world use in rehabilitation settings. Fall prediction also requires monitoring
for longer periods of times, e.g., 1 week or 24 h, or distances, e.g., 30 m. This can be
challenging as time and space are the main constraints in walking tests, as can be seen
in [32], and the difficulty of distinguishing the activities of daily living automatically [31,41].
Balance assessment techniques based on functional tests often require expert supervision
in controlled environments. The requirement for an expert to be present clearly presents
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an issue in adapting the techniques for remote rehabilitation settings. A few studies did
focus on remote assessment of balance without an expert [26,35], which rely on a standard
test (One Leg Standing Test—OLST) or a series of standard tests (Timed-Up and Go Test—
TUGT; Alternative Step Test—AST; Five Times Sit to Stand Test—FTSS) in combination with
wearable sensors to assess participants. In the case of [26] research focuses on assessing
the stability of the participants on different kinds of ground: Concrete, parquet, sand and
gravel, and in the case of [35], the correlation of standard tests with the Berg Balance Scale
(BBS) was compared (in this study p is equal to 0.86).

3.1.4. Sensor Placement

Of the 23 studies reviewed, 14 utilized accelerometer-based technology as part of
the proposed system. Eight of these studies utilized a single sensor setup where the ac-
celerometer was mounted either around the waist with an elastic strap [30,31,33,41,42],
on the back with elastic tape or bandages [23,35] or on the wrist with an elastic strap [32].
Research has also focused on identifying the most suitable location to attain an accurate
measurement with the minimum number of sensors possible. This has been of particular in-
terest since, as previously mentioned, adding wearable sensors increases the complexity in
synchronization and interpretation (all combinations of sensors might need to be assessed).
For example, Howcroft et al. [28] conducted experiments to assess which sensor location
could be used to best identify fall risk. One IMU sensor mounted on the head performed
best at identifying fall risk when participants performed a Single-Task (ST), i.e., a task
without a cognitive load. The main reason behind this outcome is that the measurements
attained are connected to visual input and upper body stability. After the head location,
the next best location for an IMU sensor to be placed was on the pelvis or lower back
as this is very near to the bodies Centre Of Mass (COM). In contrast, when participants
performed a Dual Task (DT), which are tasks cognitively loaded, IMU sensors mounted
on the pelvis were the most accurate when identifying fall risk. A sensor mounted on the
head will clearly pose more problems for long term remote based monitoring. The pelvis
location is less obtrusive, more comfortable and easier to monitor than the head location.
Furthermore, smartphones equipped with accelerometers can be placed in this location
easily as seen in [30]. The accuracy of the IMU sensors can be increased when combined
with EMGs as can be observed in [33], reaching an accuracy of 89.7% using ten-fold cross
validation in a fall detection system.

While there is a number of works which focus on identifying accurate sensor locations,
few works consider the most comfortable or practical location when assessing sensor
location. While it is encouraging that there is an increased focus on reducing the need for
multiple sensors, the comfort and practicality of a single sensor should still be given more
consideration and quantitatively evaluated.

3.1.5. Analysis Techniques

Regarding the analysis techniques employed in these studies, it was found that sup-
port vector machines and neural networks were the best modelling technique for fall risk
classification in [28]. For example, the best performing model was a multi-layer perceptron
neural network with input parameters from pressure-sensing insoles and head, pelvis,
and left shank accelerometers. This model attained 84% accuracy (F1 score = 0.600, MCC
score = 0.521). One of the problem faced when analysing the data was dealing with several
derived features from gait, which are highly correlated [39]. Labelling the information in
order to be selected and differentiating noise from the relevant data is another challenge.
Moreover, there is no consensus among researchers about the threshold that should be used
in the algorithms employed. Both problems can be observed in [41]. Intra Class Correlation
Coefficients (ICCs) were obtained and compared [23]. Correlations, their strength and
principal component analysis were used when trying to identify the best factors to use in a
model [30], or the biological functional causes of disrupted balance [24]. Logistic, Linear
and Gaussian process regressions are used to create classifications models [21,32,34].
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Methodologies used to train and evaluate machine learning classification models
also need to be considered when assessing barriers to adaption in real-world remote
rehabilitation settings. Machine learning models are known to over-fit on the training
data it is provided. Inappropriate training and evaluation methodologies will therefore
present an overly optimistic measurement of performance which will likely significantly
reduce when presented with real-world data that it has never seen. Not using a hold out
test set, optimising feature selection algorithms with data that includes test data and over
reliance on cross validation are some of the common methodologies that overestimate
performance [43].

For example, some fall risk prediction works use cross validation summary statistics
as the only means to evaluate the model performance [20,33]. However, recent research
shows that cross validation is unreliable on small data-sets (N < 1000) similar to those
in the reviewed works [44]. Additionally, model and feature selection procedures are
commonly ambiguous and not described in sufficient detail in a number of the reviewed
works. In order to report performance metrics that will be reflective of performance in real-
world conditions, it is vital that testing data is never be used to inform the model or feature
selection procedure. Practices such as performing feature selection on all data (training and
test data) or hyper-parameter tuning to maximise test set performance can significantly
over-estimate model performance. In the relevant papers reviewed, model and feature
selection procedures are frequently ambiguous and it is unclear how hyper-parameters
and features were selected [33]. In order to deploy systems to uncontrolled real-world
setting such as remote rehabilitation settings, the effectiveness of the system at dealing
with new unseen data should be robust and evaluation procedures should be employed to
reflect this.

3.1.6. Methods of Evaluation

In order to assess the effectiveness of balance assessment technology, the reviewed
papers commonly compare the measurements being made by the technology against an
arbitrary ground truth measure. There are several different ground truth measures used in
the reviewed papers. The gold standard for assessing balance is a force plate that measures
postural sway through the calculation of centre of pressure (COP). COP was utilized in 5 of
the reviewed studies [19,26–28,37].

Fall identification or prediction technologies use the number of actual falls as ground
truth measures [26,31,41]. In some cases, falls were simulated as part of the study [34]
and results showed that phases that are encountered in simulated falls are not found in
real falls, highlighting the importance of recording data in real-life conditions. In all fall
related studies, occurrence of falls is self-reported by the participant or by the participants’
family or caregivers. It is important to note that self-reported measures may be inaccurate
in participants with cognitive decay.

In studies not dealing directly with falls identification or prediction, clinical balance
assessments are utilized for comparison. In the reviewed papers, the most frequently
used balance assessment tests for technology evaluation were BBS, TUG, STS and FTSS.
Accurate timing of task performance is vital for most functional tests such as BBS and TUG.
The literature shows that sensors increase the accuracy of these tests by enabling a more
accurate recording of the timing of task performance. Four of the reviewed works show
that instrumented tests such as TUG, Berg balance Score, STS/FTSS and Alternate Step
Test (AST) are more accurate when using sensors [20,30,35,39].

While clinical balance assessments are useful for making direct comparisons with
health research, the balance assessments can impose constraints upon the evaluations
based on existing limitations in the design of the balance test. Due to the subjective nature
of Berg Balance Scale (BBS), a minimum variation of four points in clinical assessment of
BBS is needed to ensure a true change in an elder’s functional balance [45]. In spite of the
quantification of movement during the TUG, using sensors might lead to a more robust
method of assessing balance as seen in [20]. Some movement patterns related with fall risk
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might not be captured by the conventional clinical test. Short walking tests (e.g., the 10-m
walking test) to assess balance are subject to bias due to their brevity while longer tests are
less accepted due to space and time constraints in clinical exams [32].

It is clear that sensors can improve the accuracy of functional balance tests by removing
some of the quantification errors. This is important for potential use of sensors in remote
rehabilitation. By removing the need for a clinician to quantify the performance of the task,
it could enable direct transfer of functional test performance from clinical settings to remote
settings [26,35]. However, other issues remain, such as ensuring that patient performance
of the task is correct.

Reviewing the 23 papers, and the different comparison measures used, it is evident
that there is no standard measure used to evaluate balance. The measure employed is
dependent on several factors including; study goals, time, space and facilities available,
participants’ physical ability and researchers’ preferences. Of the 23 reviewed papers, no
paper specifically evaluated the technology in terms of its usability or practicality.

3.2. Objective Assessment Components

Based on results of the literature review process, it is clear that both system accuracy
and human factors must be considered when assessing a particular technology. While
techniques to assess system accuracy, such as comparison with BBS, are well documented,
objective assessment of human factors is less defined. Analysis of results from the literature
review shows that the current state of the art in balance assessment technology needs to
address a number of critical components required for adaption in remote rehabilitation.
Based on the literature review, and analysis of the six key themes, four scoring components
that should be assessed when evaluating the feasibility of a sensor system for remote
rehabilitation were identified. These scoring components were: (1) Deployment constraints,
(2) usability, (3) comfort, (4) accuracy. This section discusses relevant information gathered
in the literature review that is relevant to each of the four components

3.2.1. Deployment Constraints

Features such as technology size, installation practicalities, cost and data streaming
capability were some of the most common issues found in this category. A move away
from large lab-based technology and towards smaller and cheaper technology, such as IMU
sensors, is a simple solution to this problem.

3.2.2. Usability

Usability issues not only concerns traditional software user experience but also con-
siders device usability. While software user experience was rarely discussed or considered
in any of the reviewed works, the clinicians ability to review and assess relevant data
quickly and easily is vital for the success of any remote rehabilitation system. It has already
been shown that clinicians fail to adopt clinic-based technologies due to usability based
issues [11] and it stands to reason that clinicians will also fail to adopt remote rehabilitation
technology if they are not usable. Another aspect of usability that also needs to be consid-
ered is usability from the patients aspect. The reviewed works show balance assessment
technology can operate without the need for patients to interact with software. However,
in remote settings there will be a requirement for patients to interact with physical devices.
A common usability issue found in the reviewed works related to users needing to don and
doff the device. We highlight potential issues related to donning and doffing such as hard
to reach locations like the back, donning/doffing multiple devices and donning/doffing
devices that require placement at specific anatomical locations. Considering the reduced
range of motion and dexterity of older adults, these issues in relation to donning and doff-
ing are of particular concern. Utilising easy to reach mounting locations and simple to use
strap mechanisms are some potential solutions that can be employed to solve these issues.
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3.2.3. Comfort

Comfort is another key barrier that will affect patient adherence levels in any wearable
sensing application. It is vital that the wearable device does not impair mobility and
independence [18]. Physical discomfort can be caused by use of large/multiple sensors,
unnatural sensor locations, use of poor mounting materials and sensors and/or mounting
materials that inhibit body movement. Social comfort refers to how socially comfortable a
user is in wearing a device. It can be crucial in the long term adoption of wearable sensors
and relates to users perceptions of the device’s aesthetics [46]. While comfort was not
explicitly assessed in any of the reviewed works, the use of a small wearable IMU sensor
mounted on a waist mount elastic belt which is worn around the hip was successfully used
in two studies to record data for up to eight days with 51 and 319 participants aged 65
and over [30,31]. Good adherence levels for 350+ older adults over a one week period is
encouraging and indicates that physical and social comfort was acceptable.

While considering deployment, usability and comfort, we therefore conclude that a
single small wearable IMU is the technology most likely to work in remote rehabilitation
setting. If worn around the waist, using a belt based attachment, or on the wrist, using a
watch like attachment, IMUs could potentially be accepted by older adults for common
daily usage. It was observed that IMU sensors were the most used sensors in the reviewed
works employed to assess balance and that they are located preferably near the centre
of mass, on the lower back. If only one sensor is used, measurements can be extremely
effective if an IMU sensor is located either at the head or at the lower back, as can be
observed in [31]. Here, research focused on demonstrating data from a single accelerometer
located in the trunk whilst performing daily life gait can be predictive of falls (0.66–0.72 for
time to the first fall and 0.69–0.76 for the second fall).

3.2.4. Accuracy

Accuracy is another issue we highlight as a potential barrier to adaption in remote
rehabilitation settings. While deployment, usability and comfort are all issues relating to
end user accepting and adopting the technology, issues of generalised performance relate
to differences between system performance in experiments and system performance in
real-world conditions. Specifically, we note that it is likely that performance reported in a
number of reviewed works are over-optimistic due to issues with training and evaluation
procedures. It is vital that performance metrics are representative of how a system will
perform when deployed in real-world settings. In order to report performance that will
generalise to new unseen participants, it is suggested that researchers use practices such
as a single holdout test set and perform model and feature selection only on training
data. A major issue for researchers in accurately assessing accuracy is getting a large
enough sample size. It is more difficult to assess the potential of technology for real-world
deployment when the sample size is small.

While it is difficult to assess the trade-off between accuracy and cost due to the limited
information on the cost of some devices reviewed, it appears that there is a correlation
between device accuracy and device cost.

3.3. Objective Assessment Rubric

As defined in the methodology, in order to develop an assessment rubric, weighting
factors are assigned to each of the scoring components as defined by independent raters.
Results of the independent weighting process, using the median score of three expert raters,
were: Deployment Constraints = 0.1, Usability = 0.35, Comfort = 0.2, Accuracy = 0.35.

To analyse the degree of agreement between expert raters (Physios 1–3), we calculated
Cohen’s Kappa regarding the perceived priority order of the components comprising
the Rubric. Physios 2 and 3 had a Kappa (κ) of 1, corresponding to a perfect agreement,
which was significant below 0.05 level (0.01). The order given by them was (1) usability,
(2) generalised performance, (3) comfort, (4) deployment constraints. Physios 2 and 3
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disagreed with Physio 1 in generalised performance (1) and usability (2). This Kappa
(0.333) was weak and not significant (0.248).

In addition to calculating weighting factors for the rubric, assessment criteria need
to be defined based on results of scoring component analysis and based on results of the
literature review. For each of the three human factor-based components (Deployment,
Usability, Comfort), a set of assessment criteria was defined which should be considered
when evaluating the feasibility of the component in real-world remote rehabilitation set-
tings. For Deployment, the criteria relates to portability, data collection infrastructure and
consumer availability. For the usability component, criteria such as peripheral equipment,
software usability and battery/power requirements must be considered. Moreover, for the
comfort component, sensor invasiveness and donning/doffing must be considered. When
accuracy is also included, a total of nine criteria were identified: (1) Portability, (2) data
collection infrastructure, (3) consumer accessibility, (4) peripheral equipment, (5) software
usability, (6) power consumption, (7) sensor invasiveness, (8) donning and doffing and
(9) accuracy.

The score for each component is calculated using the average scores of the criteria
within that component. For example, scores for portability, data collection infrastructure
and cost should be averaged to calculate a rating for the Deployment component. If a
criterion cannot be assessed, due to unavailable information, that score should be marked
as null and the average calculation should only consider available scores. After scores
are calculated for the four components, the overall score is calculated by multiplying
each score by its weighting factor and summing the four weighted scores. Results of the
rubric development process are shown in Table 2. The rubric includes the four scoring
components and associated weights and a description of each criterion.

Table 2. Grading Rubric.

Category Factor Description Score 1–5 Weighting Factor
Portability How easy is the technology to move to a persons home?
Data collection
infrastructure

Does the technology come with remote data access to support
clinician remote access?

Deployment
Constraints

Consumer Accessibility Is the technology affordable and widely available?

0.10

Usability

Peripheral Equipment Is additional supporting hardware/technology required for
operation?

Software Usability Is the supporting software user friendly for patient? (older
adults)

Power Consumption Does the device support long term [+1 week] data recording
between charges?

0.35

Invasiveness of sensors Are sensors comfortable or do they restrict physical activity?
Comfort

Donn/Doffing Are the sensors easy to put on and off for the patient?
0.2

Performance Accuracy Ability to perform measurements within an acceptable error
rate? 0.35

3.4. Objective Assessment Results

In this section, results of the objective assessment tool applied to the 23 studies
identified in the literature are presented. Two authors, who did not contribute to defining
the assessment tool weightings, independently rated each article under each of the nine
assessment criteria. For each article, component scores for raters 1 and 2 were averaged
to calculate an average score for each of the four scoring components. An overall score
was then calculated by applying the weighting factor to each component score and then
summing the four weighted scores. Table 3 details the average score assigned by the rater
for each component as well as the total weighted score. Note that the table is sorted with
highest scoring articles appearing at the top of the table.
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Table 3. Average Assessment Scores.

Paper and Technology
Pre-Weighted Component Scoring

Weighted Score
Deployment Usability Comfort Performance

[31] Dynaport MM (accelerometer) 0.633 0.633 1.000 0.800 0.765
[26] Smart insoles 0.833 0.667 0.850 0.700 0.732
[39] Mobile phone accelerometer 0.867 0.633 0.650 0.800 0.718
[30] Dynaport Hybrid (IMU) 0.600 0.633 0.950 0.700 0.717
[37] Force plate 0.567 0.533 0.950 0.800 0.713
[23] Physilog (acceletometer) 0.633 0.633 0.650 0.800 0.695
[27] Force plate 0.433 0.500 0.800 0.900 0.693
[20] 2 Shimmer sensors (accelerometer) 0.633 0.633 0.600 0.800 0.685
[33] Dynaport1 Minimod (accelerometer) 0.667 0.667 0.600 0.700 0.665
[32] wrist-worn IMU 0.633 0.533 0.900 0.600 0.640
[35] Shimmer (accelerometer) 0.767 0.533 0.650 0.700 0.638
[21] Tele-surveillance 0.300 0.600 0.750 0.700 0.635
[40] Smart insoles and 1 accelerometer 0.700 0.633 0.650 0.600 0.632
[38] Pressure mat 0.433 0.533 0.750 0.700 0.625
[19] Pressure mat and Shimmer 0.433 0.500 0.800 0.700 0.623
[36] Qualisys (8 cameras) 0.333 0.533 0.250 1.000 0.620
[29] LEGSys (5 accelerometers) 0.633 0.500 0.300 0.900 0.613
[25] Vicon 0.267 0.533 0.300 0.900 0.588
[22] Vicon 0.267 0.500 0.500 0.800 0.581
[28] Smart insoles and 4 accelerometers 0.600 0.500 0.300 0.800 0.575
[34] 5 SEMG and 2 acceleromters 0.433 0.533 0.400 0.700 0.555
[24] Wireless ECG 0.500 0.433 0.300 0.700 0.506

4. Discussion

Technology supported balance assessment techniques offer a number of advantages
over traditional non-standardised and standardised clinical assessments such as BBS and
TUG. Technology can ensure that the administration of the assessment is objective and
that results are quantitative. Technology supported balance assessment also possesses
desirable characteristics that give it potential to be used in remote settings without the
need for patients to travel to clinics and without the need for clinicians to administer.
For example, the literature shows that longer periods of monitoring may lead to more
accurate balance assessments. If indeed longer periods of monitoring are required, then
sensor-based systems in remote settings are the most feasible option.

A literature review revealed that balance assessment technology for older adults is
mainly focused on understanding the cause of poor balance, identifying falls or predicting
risk of falls in the future. All 23 reviewed research studies focused on the validity, reliability
and accuracy of the technologies, sensor systems, and data models. In contrast, very few
of these studies had a specific focus on the human factors of the sensor systems such as
comfort or practicality. However, for a rehabilitation sensor to be feasible in real-world
conditions, it must be comfortable to wear or mounted in a fixed position, accurate enough
to identify compensatory movements, affordable, widely available, not require calibration,
and be robust with regard to patient characteristics [42].

Using knowledge gained from the literature review, this work defined four key re-
quirements needed for remote rehabilitation applications. We propose that these four
requirements should be considered when evaluating remote rehabilitation applications
such as balance assessment technologies. In applying the proposed assessment tool to the
literature, results revealed that works utilising either a single accelerometer device [30,31],
a smartphone embedded sensor [39], or an insole based device [26] scored well in all
criteria based on average scores assigned by two independent raters. While works utilis-
ing multiple different sensors generally scored well when just measuring accuracy, once
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Deployment, Usability and Comfort factors are considered, these works generally scored
much lower.

It is clear, based on a number of works scoring well in our objective assessment
rubric, that technology is advancing in a positive direction. Sensors, particularly small
accelerometer based devices, show excellent potential to be utilised to assess balance in
remote rehabilitation settings. By scoring well in most criteria, it is possible to put human
factors at the core of the design without compromising significantly on accuracy.

In the future, as the research area continues to grow, it is important that researchers
give human factors a more central focus if we are to realise the potential of sensor based
balance assessment in remote settings. Retrospectively improving the usability of a sys-
tem that, for example, achieved excellent accuracy but requires the use of impractical,
uncomfortable and difficult to use systems is an extremely challenging task. Rather than
researchers starting with accuracy as the main goal, consideration should be first given to
the human factors associated with any selected sensors and assessment protocols. Research
goals should then focus on increasing the accuracy of these more practical and usable
systems. We propose that researchers should consider our proposed assessment tool, based
on the 9 defined criteria, when designing and evaluating new technology.

This work formed part of SENDoc and influenced other elements of the project which
involve testing sensors on elderly people in clinic settings, and in their communities in the
northern periphery of Europe. This includes collecting views of using the sensors.

5. Conclusions

This work discussed the importance of accurate and objective clinical balance as-
sessment methods. A review was conducted on the state of the art related to technology
enabled balance assessment methods and their potential to be utilised in remote rehabil-
itation settings. As part of the literature review, a set of six key themes were identified
and discussed. Results of the literature review led to the creation of an objective assess-
ment rubric based on four scoring components comprising a total of 9 assessment criteria.
Each criterion was identified based on its importance in real-world deployment of remote
rehabilitation technology, and a weighting to each criterion was decided through three
independent physiotherapists.

Most clinical balance tests are subjective, but the addition of technology for monitoring
the process enhances objectivity and changes it into a quantitative assessment. Even with
the increased accuracy that sensors can bring to standardised tests, it was observed that
non-standardised methods of assessing balance are still frequently used in clinical settings
due to their simplicity in administering. In order for technology to be used to support
remote assessment of balance, it must therefore be simple and easy to administer for
clinicians. Ease of use must also be considered from the patients point of view. In particular
the technology must not impair mobility or independence for the patient. Therefore,
by supplying a methodology to facilitate a more objective assessment of potential solutions
for remote rehabilitation, we can ensure that barriers to real-world adaption, such as
usability, are considered much earlier in the design.

It was observed that further research in other usability features of the technology
or wearable sensor systems, such as the practicality and comfort, is required in order to
better understand potential barriers to adaption in home rehabilitation. Research studies
have a tendency to only focus on the accuracy and the validity/reliability. Considering
human factors at research conception is key to progress. Doing so will ensure the develop-
ment of more practical systems which will be more likely to be adopted into real-world
rehabilitation settings and thus have a positive impact on a person’s quality of life.

As the number of commercially available sensor systems are increasing, it has become
increasingly more difficult for clinicians to identify appropriate sensor systems for specific
use cases including balance assessment. While considering sensors and technologies, it
is vital that clinicians and researchers have objective methodologies available to evaluate
different balance assessment technologies available. This paper proposes an objective
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assessment tool to evaluate the different sensor systems for their potential to be adapted
in a remote rehabilitation setting. When applying the tool to the literature, it is clear that
there is significant potential for technology to be deployed in remote rehabilitation settings.
However, there still remains some issues which should be the focus of future work. These
issues relate to an increased focus on objectively assessing the usability of systems and
supporting software.
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