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Abstract 

Daily activity reflects the health status of an individual. Ageing and disease drastically affect all 

dimensions of mobility, from the number of active bouts to their duration and intensity. Performing less 

activity leads to muscle deterioration and further weakness that could lead to increased fall risk. Gait 

performance is also affected by ageing and could be detrimental for daily mobility. Therefore, activity 

monitoring in older adults and at-risk persons is crucial to obtain relevant quantitative information about 

daily life performance. Activity evaluation has mainly been established through questionnaires or daily logs. 

These methods are simple but not sufficiently accurate and are prone to errors. With the advent of 

microelectromechanical systems (MEMS), the availability of wearable sensors has shifted activity analysis 

towards ambulatory monitoring. In particular, inertial measurement units consisting of accelerometers and 

gyroscopes have shown to be extremely relevant for characterizing human movement. However, monitoring 

daily activity requires comfortable and easy-to-use systems that are strategically placed on the body or 

integrated in clothing to avoid movement hindrance. Several research-based systems have employed 

multiple sensors placed at different locations, capable of recognizing activity types with high accuracy, but 

not comfortable for daily use. Single-sensor systems have also been used but revealed inaccuracies in 

activity recognition. 

To this end, we propose an instrumented shoe system consisting of an inertial measurement unit 

and a pressure sensing insole with all the sensors placed at the shoe/foot level. By measuring the foot 

movement and loading, the recognition of locomotion and load bearing activities would be appropriate for 

activity classification. Furthermore, inertial measurement units placed on the foot can perform detailed gait 

analysis, providing the possibility of characterizing locomotion. The system and dedicated activity 

classification algorithms were first designed, tested and validated during the first part of the thesis. Their 

application to clinical rehabilitation of at-risk persons was demonstrated over the second part. 

In the first part of the thesis, the designed instrumented shoes system was tested in standardized 

conditions with healthy elderly subjects performing a sequence of structured activities. An algorithm based 

on movement biomechanics was built to identify each activity, namely sitting, standing, level walking, 

stairs, ramps, and elevators. The rich array of sensors present in the system included a 3D accelerometer, 

3D gyroscope, 8 force sensors, and a barometer allowing the algorithm to reach a high accuracy in 

classifying different activity types. The tuning parameters of the algorithm were shown to be robust to small 

changes, demonstrating the suitability of the algorithm to activity classification in older adults. 
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Next, the system was tested in daily life conditions on the same elderly participants. Using a 

wearable reference system, the concurrent validity of the instrumented shoes in classifying daily activity 

was shown. Additionally, daily gait metrics were obtained and compared to the literature. Further insight 

into the relationship between some gait parameters as well as a global activity metric, the activity 

“complexity”, was discussed. Participants positively rated their comfort while using the system. 

Afterwards, the potential of analyzing postural transitions with the instrumented shoes system was 

presented. The transition duration, an important parameter of daily mobility evaluation, was calculated 

based on the insole and compared to reference force plate measurements in laboratory conditions, achieving 

low overall errors. An algorithm for transition detection was developed and tested, revealing high detection 

accuracy. The transition duration evaluated in real life conditions was somewhat different from trunk inertial 

measurement. Overall, the instrumented shoes were deemed usable for transition detection and duration 

estimation in daily life. 

In the second part, the instrumented shoes and dedicated algorithms were used in clinical 

rehabilitation of post-surgery hip fracture patients, measured at baseline after surgery and follow-up two 

weeks later. Objective activity, load, gait, and complexity metrics were sensitive to recovery and were 

complementary to a standard clinical score. 

The instrumented shoes were also employed in the rehabilitation assessment of stroke patients. 

Again, objective metrics revealed patient recovery and changed similarly to clinical test scores.  

The thesis results highlighted the importance of accurate activity classification and contributed a 

rich set of objective metrics that could be used by clinicians to better assess rehabilitation outcomes and 

provide individualized and tailored treatment. The results also indicate that numerous other applications 

could benefit from the instrumented shoes in the future, including orthopedics, sports, and larger cohort 

studies of daily life monitoring in older adults. 

 

Keywords: physical behavior, activity classification, gait analysis, instrumented shoes, 

complexity, postural transition, older adults, hip fracture, stroke 
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Résumé 

L’activité quotidienne reflète l’état de santé d’une personne. L’âge et les maladies affectent 

l’activité quotidienne dans toutes les dimensions, du nombre de périodes, leur durée et leur intensité. Etre 

moins actif engendre une détérioration des muscles et provoque un affaiblissement qui peut augmenter le 

risque de chutes. La qualité de la marche est également affectée par l’âge et peut être nuisible à la mobilité 

quotidienne. En conséquence, le suivi de l’activité chez les sujets âgés est crucial pour obtenir des 

informations pertinentes concernant la mobilité quotidienne. L’évaluation de l’activité est généralement 

établie par des questionnaires ou un cahier de notes journalières. Ces méthodes sont simples mais pas 

suffisamment précises et peuvent contenir des erreurs. L’apparition de systèmes micro-électromécaniques 

(MEMS) et la disponibilité de capteurs embarqués a réorienté l’analyse de l’activité vers un suivi 

ambulatoire. En particulier, les capteurs inertiels constitués d’accéléromètres et de gyroscopes ont démontré 

une excellente capacité à analyser le mouvement humain. Cependant, les systèmes embarqués ou intégrés 

dans les habits doivent être confortables et faciles d’utilisation pour ne pas gêner le mouvement. Plusieurs 

systèmes utilisés en recherche sont basés sur une multitude de capteurs placés à différentes positions du 

corps, et sont capables de reconnaitre le type d’activité avec une précision élevée. Néanmoins, ces systèmes 

ne sont pas agréables pour une utilisation quotidienne. Des systèmes à capteur unique ont été également 

utilisés mais leur précision quant à la classification du type d’activité était plus faible. 

A cet effet, nous suggérons une chaussure instrumenté qui consiste d’un capteur inertiel et une 

semelle de pression avec les capteurs intégrés dans la chaussure ou sous le pied. La reconnaissance des 

différents types d’activité pourrait alors être effectuée à partir du mouvement global du pied et des forces 

agissant sous la plante du pied. De plus, les capteurs inertiels placés sur le pied peuvent effectuer une analyse 

précise de la marche, offrant ainsi la possibilité de caractériser la locomotion. Le système et l’algorithme de 

classification d’activité ont d’abord été conçus, testés et validés pendant la première partie de la thèse. Leur 

application en réhabilitation clinique avec des personnes à risque a été mise en évidence durant la deuxième 

partie. 

Pendant la première partie de la thèse, le système conçu a été testé selon des conditions standardisées 

avec des sujets âgés sains effectuant une séquence d’activité structurée. Un algorithme basé sur la 

biomécanique du mouvement a été élaboré pour identifier chaque activité ou posture, notamment être assis, 

être debout, marche à plat, monter/descendre les escaliers, marcher en pente, et prendre l’ascenseur. Le 

grand nombre de capteurs incorporés dans le système soit un accéléromètre 3D, un gyroscope 3D, 8 capteurs 
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de force, et un baromètre a permis d’obtenir une précision élevée pour la classification des différents types 

d’activité. Les paramètres de réglage de l’algorithme ont démontré une bonne fiabilité face à des 

changements mineurs. L’algorithme est donc utilisable pour la classification du type d’activité chez les 

personnes âgées. 

Par la suite, le système a été testé en situation réelle avec les mêmes participants. La validité des 

chaussures instrumentées pour classifier l’activité journalière a été démontrée en comparaison à un système 

de référence. Par ailleurs, des paramètres de marches ont été obtenus et comparés à la littérature. La relation 

entre les paramètres de marche et un indice global d’activité, la « complexité », a été évalué. Les participants 

à l’étude ont jugé l’utilisation du système confortable. 

Le potentiel des chaussures instrumentés à analyser des transitions posturales a été présenté ensuite. 

La durée d’une transition, qui est un paramètre important dans l’évaluation de la mobilité quotidienne, a été 

calculée grâce aux signaux de la semelle et comparée en laboratoire à une plateforme de force Le système 

produit des erreurs faibles. Un algorithme de détection des transitions en conditions réelles a été développé 

et présente une précision élevée. Globalement, les chaussures instrumentées ont démontré de bonnes 

performances pour la détection des transitions posturales et la mesure de leurs durées au quotidien. 

Pendant la deuxième partie de la thèse, les chaussures instrumentées et les algorithmes dédiés ont 

été utilisés dans une étude clinique de réhabilitation post-opératoire chez des personnes âgées ayant souffert 

d’une fracture de hanche. Ces personnes ont été évaluées en deux fois : un à deux jours postopératoire et 

deux semaines suivant la première mesure. Les paramètres objectifs d’activité, de force plantaire, de marche, 

et de complexité se sont améliorés conjointement à la récupération, elle-même attestée par des scores 

cliniques. 

Les chaussures instrumentées ont aussi été utilisées pour le suivi de la réhabilitation de personnes 

ayant souffert d’un accident vasculaire cérébral, évalués à l’admission au centre hospitalier et avant la sortie. 

Dans cette étude, les paramètres objectifs ont aussi évolué avec la récupération d’une manière comparable 

et complémentaire aux scores cliniques. 

Les résultats de cette thèse ont mis en évidence l’importance de classifier l’activité précisément et 

proposent un ensemble riche des paramètres objectifs utilisables par les cliniciens afin de mieux évaluer les 

programmes de réhabilitation et proposer des traitements adaptés à chaque individu. Les résultats indiquent 

aussi la possibilité d’utiliser le système dans d’autres applications comme en orthopédie, en sport, ou même 

pour des études de cohorte chez les personnes âgées.  

Mots clés: activité quotidienne, classification, analyse de la marche, chaussure instrumentée, 

complexité, transition posturale, personnes âgées, fracture de hanche, accident cérébral vasculaire
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Chapter 1  

Introduction 

1 What is physical activity? 

One of the earliest technical definitions was proposed by Caspersen et al. [1], stating that “Physical 

activity is defined as any bodily movement produced by skeletal muscles that results in energy expenditure”, 

and that “the energy expenditure can be measured in kilocalories”. This definition tightly links physical 

activity to metabolic equivalent of task (or METs) and as such does not fully cover activity aspects, 

especially activity dynamics and time series. Recently, the term physical behavior was suggested as an 

“umbrella term which includes the behavior of a person in terms of body postures, movements, and/or daily 

activities in his/her own environment” [2]. Another noteworthy definition is that of Activities of Daily 

Living or ADL, which describes the habitual activities that individuals perform, in their everyday life, such 

as taking care of themselves and their environment, dressing, brushing teeth, and cleaning [3]. 

This overview focuses on the measurement of physical behavior and its implications on health in 

healthy and at-risk populations. The components of daily behavior as well as measurement techniques are 

exemplified in Figure 1-1. In this thesis, two aspects of physical behavior are studied: monitoring of physical 

activity in terms of basic activities, locomotion periods, and postures, as well as characterizing gait 

parameters and postural transitions. Physical activity and daily activity are used interchangeably throughout 

the thesis, and are mainly characterized by frequency, intensity, time, and type. These four dimensions are 

usually referred to as the FITT principle [4]: 

- Frequency: quantified as number of occurrences of the activity in a specific timespan (e.g. day or 

week) 

- Intensity: can be related to the energy expenditure of each activity, but also to other parameters such 

as movement speed or amplitude 

- Time: duration of each occurrence of the activity (commonly referred to as activity bout) 
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- Type: such as sitting, standing, walking, climbing up or down stairs, walking up and down slopes, 

picking up objects and lying down 

Changes in-between activity types usually result from a transition, the most important being sitting to 

standing and vice versa. These transitions allow the passage from sedentary state to locomotion, and their 

inclusion in activity characterization is thus relevant. In this context, it is important to define sedentary 

behavior: from a metabolic perspective, sedentary is any behavior during which less than 1.5 MET are 

expended. In terms of posture, this mainly corresponds to lying and sitting [5]. An additional dimension that 

can be constructed from the FITT principle is the daily activity pattern or distribution, often described as 

the percentage of time spent in each activity/posture, but more importantly as the activity time series; i.e. 

the succession of activities and transitions between the different states. These characteristics form the basis 

of what is sought by activity monitoring systems and algorithms. 

 

 

Figure 1-1 - Overview of physical behavior. Red rectangles indicate topics relevant to the thesis. Adapted from © Lowe et al. [6] 

 

2 Why is it important to measure daily activity? 

The World Health Organization has specific recommendations for adults (aged 18-64) and older 

adults (aged 65 or older) suggesting either 150min weekly of moderate activity or 75min of higher intensity 
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activity, or any combination leading to a sufficient total activity time1,2. However, more than half the U.S. 

population and especially older adults, for example, do not reach these activity levels [7]. This proportion 

is similar in adolescents [8]. This is a rather negative outlook, since increased activity levels are linked to 

lower risks of chronic diseases and mobility problems [9]. This is highly marked in older adults since chronic 

diseases and injuries cause a substantial burden on healthcare systems.  

Approximately 35-40 % of community dwelling, healthy older adults aged 65 or more experience 

at least one fall every year, and the fall incidence rate increases with age [10]. Fear of falling is manifestly 

prevalent within this population of older adults with up to 65 % in some populations, leading in many cases 

to a significant decline in activity levels [11] (although to a certain extent, a minimum avoidance of some 

activities can be beneficial in fall prevention, especially activities that carry inherent fall risk). Thus, 

increased activity avoidance can lead to a reduced quality of life (QOL). This is depicted by the spiral of 

frailty, Figure 1-2, a chain of events leading to more detrimental effects on daily mobility and health [12]. 

As people age, their activity performance declines, causing an increased risk of falling. This in turn leads to 

activity avoidance and increased fear of falling. This results in muscle weakness which leads back to further 

decline in mobility. In contrast, certain activities accompanied by well suited exercise programs have shown 

potential in maintaining balance, strength, endurance, bone density; and functional ability; which in turn 

can lead to a better QOL and reduce the risk of falling [13]. 

 

 

Figure 1-2 - Spiral of frailty 

 

                                                      
1 http://www.who.int/dietphysicalactivity/factsheet_olderadults/en/ (accessed 26.05.2016) 
2 http://www.who.int/dietphysicalactivity/physical-activity-recommendations-18-64years.pdf?ua=1 (accessed 
26.05.2016) 
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Consequently, data on daily activity are of crucial interest to the medical community in both healthy 

and diseased persons, with an emphasis on older adults and populations at risk of mobility impairments. 

Since older adults spend most of their time in sedentary behavior, it is more relevant to measure sedentary 

time rather than energy expenditure (which could be more suitable to highly active persons, e.g. athletes). 

Continuous activity monitoring could allow the prediction of functional decline by looking at the evolution 

of sedentary and active time. Having accurate daily activity profiles could help clinicians improve 

recommendations as well as rehabilitation programs and strategically tailor these to each individual’s needs 

[14]. Through activity monitoring, clinicians could give precise and timely feedback to change the sedentary 

behavior of older persons. In clinical practice, activity monitoring could help evaluate a rehabilitation 

intervention in longitudinal studies and could have an impact on recovery strategies. To further elaborate 

on activity monitoring possibilities in daily life, different techniques are presented in the next section. 

3 Overview of daily activity monitoring techniques 

Daily activity assessment falls under one of two main categories: self-report or objective 

measurements [15]. Self-report is mostly subjective and is based on questionnaires or diaries/logs, whereas 

objective measures rely on relevant features assessed through sensors and monitoring devices, as well as 

direct observation. In the following, direct observation is treated as a separate category because it rarely 

resorts to sensors. 

3.1 Self-report 

Questionnaires administered by clinicians and daily logs filled by individuals are relatively easy 

and inexpensive, therefore they can be commonly used for population-wide activity assessment [16]. They 

require no material other than pen and paper (or a computer device for electronic questionnaires), take a 

short time to administer, and require little post-processing [17]. They can additionally inform about the 

environmental factors affecting activity [17]. However, their reliability is quite limited because of poor 

individual recall of activities performed over a past week or month [18]. This is particularly problematic 

with some populations including children, older adults, and persons with dementia [15]. Questionnaires and 

logs are also prone to underestimation of sedentary bouts and overestimation of higher intensity activity. 

Their use for long-term physical behavior assessment is therefore questionable especially in diseased 

populations. 
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3.2 Direct observation 

Direct observation has the advantage of being by itself a ground-truth measurement, since the 

activity observed is the true activity. It could also rely on technology in the form of specifically dedicated 

logging software [19]. Important questions arise from using direct observation such as when to monitor, for 

how long, in what environment, etc… It is arguably impossible to monitor continuously through direct 

observation, since the presence of an observer can affect the behavior of monitored persons. From a 

logistical point of view, there would be unsurmountable difficulties and time constraints for logging and 

post-processing [16]. This limits the use of direct observation to short bouts of activity in a constrained 

environment such as the lab or the clinic.  

3.3 Technology-based monitoring 

Monitoring human activity through technology has expanded rapidly in recent years. Wearable and 

stationary sensors have been developed to allow direct measurement of movement, which in turn is 

translatable into activity profiles using the FITT principle. 

3.3.1 Stationary home systems 

Monitoring daily activity at home through sensors at fixed locations is one application of the “smart 

home” concept. In terms of dedicated activity classification, video recording has been chiefly used. To 

reduce extensive and tedious post-processing, features from 2D images have been extracted and used as 

inputs for machine learning algorithms to separate subjects from the environment and identify movement 

patterns [20], [21]. Recently, developments in depth-sensitive through systems such as Kinect® have 

provided 3D alternatives to video-based activity classification [22]. 

Besides video monitoring, devices such as radio frequency identification chips (RFID), infrared, 

proximity, position, light, humidity, and temperature sensors are embedded at strategic locations inside the 

user’s home to measure daily movement [23], [24]. One example of such sensors is shown in Figure 1-3: 

passive infrared sensors attached to the ceiling measure gait speed in a corridor every time a subject passes 

through it [25]. 
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Figure 1-3 - An example of fixed at-home sensors for activity monitoring. The arrows indicate the locations of the passive 
infrared sensors, adapted from © Hagler et al. [25] 

 

The main issue with stationary home systems, especially when using video recording, is ethical: 

video is perceived as the most invasive activity monitoring technique [26]. Other issues of home monitoring 

include limitation to the indoors home environment, potential image/sensor obstruction, complicated setup, 

and high cost. 

3.3.2 Wearable sensors 

Recent developments in microelectromechanical systems (MEMS) have led to the miniaturization 

of sensors, making it possible to use them for direct measurement of human body movements. 

Accelerometers and gyroscopes have been predominantly used, usually combined in an inertial 

measurement unit (IMU). Other sensors include magnetometers, GNSS (Global Navigation Satellite 

System), goniometers, ECG (electrocardiogram) electrodes, humidity, temperature, barometers, and plantar 

force/pressure sensors [27], [28]. Besides the suitable form-factor, wearable sensors have several 

advantages. They can be directly placed on the body or integrated into clothing, collect data continuously 

and autonomously (at a certain frequency) both indoors and outdoors, store data on internal memory or 

transmit in real-time [29]. They also provide a low-cost monitoring solution and can be found in several 

devices such as smartphones. 

However, several issues are associated with using wearable sensors. These systems do not directly 

measure the activity itself, but rather kinematics such as acceleration/angular velocity, or GPS position. 

Consequently, algorithms are required to interpret such input data and classify/characterize activity 

Infrared passive sensors 
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accordingly. The location of these sensors on the body is also a critical aspect. Both the interpretation and 

the location of the sensors’ recordings will be further discussed in section 4. Autonomy is a limiting factor 

in wearable monitoring, owing to the use of compact batteries to power the different components thus 

limiting power supply. A tradeoff between autonomy and factors such as number or type of sensors, their 

sampling rates, the data recording mode (internal logging or transmitting to a receiver) is necessary and 

generally depends on the final application. Nevertheless, wearable sensors have been used to monitor daily 

activities for up to one week [30] using adequate combinations of sensor types and sampling rate. 

 

In conclusion, wearable sensors are a viable solution for daily activity monitoring provided that 

classification algorithms are accurate in translating sensor data into activity classes. Wearable sensors offer 

a reasonable compromise between the excellent accuracy of direct observation and the intrusiveness of video 

monitoring, while providing additional advantages such as simple setup and small system size. 

4 Activity classification from wearable sensors 

Analyzing physical behavior requires the knowledge at each specific window of observation of the 

activity, posture or transition taking place. The most common approach is through machine learning 

algorithms [31]. Sequentially, this requires a data preprocessing step (e.g. filtering, normalization, 

synchronization) followed by feature extraction. Features can be extracted in the time domain (e.g. statistical 

features such as mean, standard deviation, range), in the frequency domain (e.g. dominant frequency, 

wavelet coefficients), as well as from other methods (e.g. sensor inclination or area under the curve). They 

are calculated from signal windows that are usually of fixed length and can present overlaps. This approach 

is termed epoch-based feature extraction. Feature reduction and selection are then necessary to reduce the 

dimensionality of the problem and avoid redundancies. Finally, the classifier is trained on a data subset (e.g. 

a random 2/3 selection) and, to ensure the classifier generalizability, tested on the remaining unseen data. A 

variant of this technique in activity classification is to use cross-validation, typically by the “leave one out” 

method, where data is trained on all but one subject and tested on the remaining subject, before repeating 

the process for the entire sample size. The algorithm can then be used to classify new instances of activity 

that were not seen in training or testing phases. Several algorithms have been used to classify activity types 

including hidden Markov models [32], support vector machines [33], and neural networks [34]. These 

techniques require archetypal training data in order to be usable across populations. 

Besides machine learning, expert-based algorithms exist, relying mainly on signal events or features 

that are representative of activity types, such techniques are referred to as event-driven [35]. A typical 
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expert-based classification scheme using a hierarchical binary decision tree is illustrated in Figure 1-4. The 

advantages of such methods include generalizability, simple implementation, and low number of features. 

Furthermore, using a fixed window size can drown activities that are much shorter than the window length 

[36], e.g. postural transitions. Event-driven techniques overcome this problem, provided that events are 

reliably detected.  

 

 

Figure 1-4 - Decision tree framework for activity classification based on expert-based features (© Mathie et al. [37]) 

 

A relevant consideration for activity classification through wearable sensors is sensor location [38]. 

Depending on the robustness of the algorithm used, classifiers may have varying results based on the sensor 

location [39]. Several researchers have resorted to multi-sensor systems with more than one body location 

(generally the shank, hip, and trunk) and showed that activity can be classified with high accuracy, 

exceeding 95%, using such configurations in structured protocols [40], [41]. Few studies have used 

multi-sensor configurations to validate activity classifiers in real life [42]–[46]. Accuracies exceeding 90% 
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for some activities were often reported. However, these systems are impractical for daily life monitoring 

because of their required number of sensors and setup complexity. Single sensor solutions have been also 

applied in daily life classification validation [47]–[49] again with a wide range of accuracies between 70-

90%. Interestingly, studies comparing performances of algorithms validated in the lab and applied in real 

life conditions generally reported a substantial decrease in classification accuracy [46], [50], [51]. It is 

therefore essential to get data from real-life measurements rather than in-lab measurements to better train 

activity classification algorithms with more representative activities and postures than what could be 

achieved in structured protocols. 

It is important to note, at this stage, that quality of the ground truth labels of the activity used in 

classification plays a big part in terms of accuracy. Most studies used video or direct observation, but some 

employed self-annotation and therefore the reliability of the ground truth is questionable. It has recently 

been suggested that a wearable system with high accuracy could be used as reference for concurrent 

validation, simplifying post-processing tasks related to video monitoring or direct labeling [52]. Several 

more recommendations for performing viable activity classification validations can be found in [52], [53]. 

 

In conclusion, it appears that single sensor locations could be valid for activity classification, but in 

addition to algorithm rules, the choice of location and number of sensors is crucial. In this thesis we selected 

the foot/shoe as the most suitable candidate location, based on assumptions detailed in Chapter 1, section 7, 

using a system that incorporates a number of sensors, all placed at the same location. An overview of 

instrumented shoes is presented in the following section. 

4.1 Brief overview of instrumented shoe systems 

In recent years, a large number of studies have focused on the design of sensors placed at the shoe 

level or embedded in shoes/insoles. These studies are reviewed in Chapter 2. Instrumented shoes are systems 

that incorporate inertial sensors (accelerometers, gyroscopes) mainly placed on the shoes and/or plantar 

pressure sensors inserted between the foot and the shoe. Some research prototypes and commercial devices 

have integrated all the sensors in an insole to be simply inserted in the shoes. Systems with sensors integrated 

directly inside the shoes (i.e. encapsulated under the actual shoe insole) also exist. Instrumented shoe 

systems have been used for multiple applications such as activity classification, gait analysis, load 

monitoring, clinical mobility assessment, and feedback. These applications are also detailed in Chapter 2. 
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5 Applications of wearable sensors to real-life activity monitoring 

Studies reporting on activity profiling during daily life with wearable sensors in healthy adults are 

numerous. Sensors have been used to describe walking bouts and their distributions [54], other studies have 

focused on sedentary and active time measurements [55]–[59]. Populations of particular interest to this 

thesis are healthy and frail older adults as well as stroke patients. In healthy older adults, besides 

accelerometers placed on the thigh, most systems have only reported activity counts and/or step information 

[60]. There has been relatively few daily activity monitoring studies in frail older adults [61]. In a recent 

review it was shown that step count and locomotion bout analysis has been the predominant outcome of 

daily monitoring in stroke patients [62]. It was also evident that patients have less walking bouts at home 

compared to healthy adults [63]. Activity counts were used to determine active time in stroke patients, 

correlating well with physical capacity test scores [64]. Sedentary vs active time was assessed from an 

accelerometer placed at the ankle revealing that patients spent more than 93% of time in sedentary postures 

[65]. Monitoring of stroke patients using accelerometers placed in the pocket emphasized the need to 

measure activity for several days because of inter-day variability [66]. 

Many of the aforementioned studies, especially when looking at sedentary time, were based on 

actigraphy or activity counts, a technique that has been shown to correlate well with energy expenditure in 

specific conditions, but lacks information about the type of movement and its environment (indoor, outdoor), 

movement quantity such as speed or range of motion and the quality of the movement such as variability 

symmetry, or coordination. For example, estimating energy expenditure of walking on slopes using activity 

counts revealed large errors compared to reference measurement [67]. Therefore activity counts do not 

provide a complete characterization of the movement. Studies where sitting, standing, and walking were 

evaluated mainly used a single sensor placed either on the thigh or trunk, providing postural profiling, but 

again no other description such as the type of locomotion and gait parameters or quality and quantity of 

postural transitions. Therefore the number of applications remains rather low, especially with at-risk 

populations. Furthermore, there have been no studies reporting on the use of instrumented shoes in daily 

life monitoring.  

 

In this thesis, one of the objectives is to characterize activities in daily life by performing gait and 

postural transition analysis for each walking bout or transition event, as well as a complexity metric (detailed 

in the following section). This has the potential of being much more informative than activity counts/METs 

or simple posture allocations, especially in rehabilitation studies (Chapters 6 and 7).  
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6 A note about physical behavior complexity 

Research has shown that some physiological signals studied as time series exhibit non-linear and 

non-stationary dynamics: the organism does not always tend to go for an equilibrium state under healthy 

conditions [68]. Furthermore, two signals with similar overall mean and standard deviation do not 

necessarily reveal the same temporal patterns, therefore indicators of health and disease conditions could be 

missed by overlooking the signal patterns [69]. Further examination using fractal analysis, multi-scale 

entropy, approximate entropy, and Lyapunov exponents [70] show that the variations, over time, of heart 

rate and human locomotion have non-linear or “complex” behavior. The link between loss of complex 

behavior and aging/disease was made in the early 1990s. It was found that aging is accompanied by a 

deterioration in the human adaptation mechanisms and thus older adults are less capable of dealing with the 

same environmental stresses that younger persons are exposed to [71]. As a result, complexity decreases 

with aging and this implies that the organism adapts less to environmental inputs, thus paving the way to 

frailty [68] as depicted in Figure 1-5. 

 

 

Figure 1-5 - Ageing and loss of complexity, (© Lipsitz [68]) 
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The components of physical behavior are multidimensional and their interconnections are similarly 

complex [72]. In relation to this study, Paraschiv-Ionescu et al. [73] demonstrate that patterns of physical 

activity have inherent fractal properties and can be used to discern healthy subjects from subjects suffering 

chronic pain or disease. In a later study [74] they propose a physical activity barcoding scheme that can 

reliably provide a global picture of the activities (walking, sitting, lying), postural transitions, and most 

importantly activity patterns throughout the day using a complexity metric. Similar analyses are performed 

in Chapter 4 of this thesis, therefore a brief description of activity barcodes is relevant. Activity labels are 

obtained from a wearable sensor system [41] and separated into sedentary (sitting/lying), standing, and 

walking. For each activity, information about the movement intensity is obtained from the sensors. For 

sedentary and standing, thresholds are applied the trunk acceleration to obtain different barcode “states”, 

numerical identifiers that are represented in color codes with warmer colors indicating higher activity 

intensity (Figure 1-6). As for walking, both the duration and the cadence play a role in defining the barcode 

states. It can be directly inferred from Figure 1-6 that the top plot corresponding to a chronic pain patient is 

less rich in both state intensity and transitions between states, compared to a healthy person (bottom plot). 

Further analysis with the Lempel-Ziv complexity metric revealed that complexity is lower for patients 

compared to healthy persons, and could also be an indicator of the pain intensity [74].  
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Figure 1-6 - Physical activity barcodes with color coding scale. Top: chronic pain patient, bottom: healthy person, 
© Paraschiv-Ionescu et al. [74] 

 

Measuring physiological complexity has been accomplished using several methods, including: 

fractals, approximate entropy, multiscale entropy, Lyapunov exponents, and power law analysis [69], [75]–

[78]. A comprehensive review of variability metrics that can be used to assess complexity can be found in 

[70]. 

 

One of the goals of this thesis is to show that the analysis of the complexity of physical behavior, 

through activity barcodes, is a metric that is highly sensitive to rehabilitation induced changes, and that it 

complements classical measures of posture, activity, and gait. 
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7 Concluding remarks and thesis objectives 

Based on the literature survey in daily activity monitoring, it is clear that there exists a tradeoff 

between number of sensors placed at different body locations and activity classification accuracy. On one 

hand, placing a large number of sensors is hindering and uncomfortable; on the other, a low number of 

sensors usually resulted in lower classification accuracy. Furthermore, whereas several applications of 

wearable sensors to activity monitoring in daily life of healthy older adults have been presented, such studies 

were less frequent with respect to patient rehabilitation monitoring. 

Therefore, the objectives of the thesis are: 

- Design an instrumented shoes system containing several sensors that are all placed in a single 

location, the foot/shoe, providing high accuracy as well as comfort and unobtrusiveness. The 

selection of this location was based on the assumptions that foot load, orientation and elevation 

could inform about different components of physical activity. 

- Design of algorithms for activity classification capable of detecting the basic postures (sitting, 

standing, and walking) as well as locomotion types (level, stairs, and ramps) and activities with 

elevation change (e.g. elevator use). The algorithms should be robust and provide a high accuracy 

for the detection of each activity type. 

- Technical validation of the activity classifier in controlled and free settings in terms of classifier 

performance, revealing a large number of parameters that could be obtained from the instrumented 

shoe system including activity, gait, postural transitions, and complexity. 

- Design of a postural transition detection and characterization algorithm, which is capable of highly 

accurate recognition of transition type, as well as estimating its duration. 

- Application of the instrumented shoes in rehabilitation monitoring, with an emphasis on the 

evolution of available metrics and their sensitivity to rehabilitation changes. 

8 Thesis outline 

This thesis has two main scientific sections: system and algorithm design (Chapters 3, 4, and 5) and 

clinical application (Chapters 6 and 7) of the proposed instrumented shoes, Figure 1-7. 
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Figure 1-7 - Thesis outline  

 

Chapter 1 introduces physical behavior and the relevance of activity monitoring in real life 

conditions, with an emphasis on activity monitoring techniques using wearable sensors. 

 

Chapter 2 reviews the state of the art in shoe-based measurement systems, especially in terms of 

activity classification, gait analysis, and clinical/rehabilitation monitoring of diseased persons. 

 

Chapter 3 presents the design of instrumented shoes system and activity classification algorithm. 

The algorithm is validated in terms of classification accuracy and sensitivity to tuning parameters. This was 

done in quasi-real life conditions within a structured protocol with healthy older adult volunteers. 

 

Chapter 4 extends the use of instrumented shoes for activity classification in real life conditions, 

demonstrating the classification accuracy without the presence of an observer using a wearable reference 

system. Gait analysis results are reported and physical behavior complexity is introduced. 

 

Chapter 5 deals with the specific case of postural transitions, providing the design of an algorithm 

for transition detection and classification as well as the characterization of transition durations: a crucial 

parameter in daily life mobility. Total force measurement during transitions is also presented in this chapter. 
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Chapter 6 draws upon algorithms of Chapters 3, 4, and 5 and reports the suitability of using 

instrumented shoes for rehabilitation monitoring of hip fracture inpatients. Activity profile, load, gait 

analysis, and complexity assessment constitute four analysis dimensions of rehabilitation that could be 

monitored with the proposed system. Sensitivity to change is performed to identify the most meaningful 

metrics. 

 

Chapter 7 describes rehabilitation outcomes of post stroke inpatients using the same parameters 

defined in Chapter 6, to identify which metrics are determinant of mobility improvement during 

rehabilitation at the clinic before discharge. 

 

Chapter 8 includes concluding remarks and future perspectives related to the use of instrumented 

shoes in movement analysis. 
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Chapter 2  

A survey of shoe-based systems and applications for physical 
behavior and gait monitoring�� 

Abstract 

Physical behavior and locomotion play a crucial role in identifying mobility and functional levels 

in several at-risk populations including frail elderly, stroke patients, Parkinsonians, patients with orthopedic 

disease, and children with cerebral palsy. Wearable sensing is becoming a standard in today’s health 

assessment because of its ability to objectively characterize behavior outside the lab environment. Both 

research-based systems and commercial trackers are witnessing a major expansion. Several algorithms have 

been validated for activity classification and gait analysis from systems with single or multiple sensors 

placed on different body locations. It appears that standalone shoe-based systems can perform coarse 

behavioral profiling in terms of activity classification, and a fine characterization of locomotion through 

gait analysis. Therefore, the aim of this review is to shed light on recent advances in foot-worn sensor 

systems for physical behavior and gait monitoring. The technical performances of foot-worn systems for 

behavior and gait analysis is presented, as well as clinical applications of these systems in at-risk 

populations. The literature reveals that there is major potential of including foot-worn sensors in routine 

clinical mobility assessment as well as monitoring behavior in daily life.  

  

                                                      
�Parts of this chapter were used for the following published article: Aminian K. and Moufawad el Achkar C., “La 
chaussure instrumentée pour l’analyse de la marche et de l’activité quotidienne”, Fachzeitschrift Rheuma Schweiz Nr. 
3 | 2016 
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1 Introduction 

Monitoring physical behavior and movement performance has become a standard in modern day 

healthcare. Evidence suggests that increased activity levels can lower mortality and morbidity rates and is 

generally linked with improved health [79]–[81]. Similarly, gait characteristics, especially gait speed, have 

been linked to health status and mortality [82], [83], or even fear of falling [84]. It is therefore crucial to 

reliably obtain quantitative information about activity and gait in patients as well as in healthy individuals. 

Laboratory-based techniques offer the possibility of characterizing human activity, e.g. recognizing 

movements from video recording [85], motion capture [86], or measuring ground reaction forces during 

different activities using force plates [87]. In particular, gait parameters have been obtained from 

instrumented floor mats, a well-known example being the GaitRite system [88]–[90]. Where these systems 

provide highly accurate representation of the studied movements, they lack in terms of usability outside of 

the laboratory environment. Therefore, their application is limited to the assessment of short activity 

durations in a confined space, usually within a structured protocol that does not reflect the real life behavior 

of the participants. In recent years, wearable systems and trackers have become the predominant choice in 

daily human movement monitoring. With the advent of microelectromechanical systems (MEMS) that are 

easily integrated in ergonomic designs, movement of different body segments can be determined. 

Accelerometers and gyroscopes, mostly combined as a single inertial measurement unit (6D IMU), have 

been chiefly used in human movement analysis [27], [91]–[93]. The location of these sensors on the body 

is crucial. In fact, the sensor location largely depends on the application. In terms of activity monitoring, the 

location can have an effect on activity classification accuracy [38]. Similarly, the estimation of gait 

parameter such as step or stride can vary based on the location of an IMU on the body [94]–[96].  

Foot-worn sensors have gained increasing popularity in the last two decades for wearable movement 

monitoring. In fact, footwear is prevalent in most daily activities. From a biomechanical point of view, there 

are two main reasons that support using foot-worn sensors:  

- The foot orientation and trajectory can be obtained using IMUs and can be used for gait analysis 

and locomotion mode recognition 

- The interface between the foot/shoe and the ground is the best location to measure the plantar force 

distribution allowing force and center or pressure (CoP) estimation that could be used in disease 

assessment, rehabilitation or activity classification 
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Thin force sensing resistors (FSR) have been developed to measure plantar force. They can be 

integrated in shoe inserts because of their extremely low thickness (<0.5mm)1,2,3 offering the possibility of 

concealing the sensors. This is advantageous for monitored patients or populations at risk because it 

eliminates potential stigmatization. This also protects the sensors and prevents them from falling or 

inadvertently getting detached by the wearer. These advantages of foot-worn sensor systems have 

encouraged researchers to build and validate prototypes to measure activity, gait, and plantar force as well 

as to use such systems in clinical assessment and rehabilitation.  

This survey starts with an overview of foot-worn systems for physical behavior monitoring. Then 

it delves into the characterization of gait and load/CoP related measurements from foot sensors. Finally, 

applications of foot-worn systems in gait and activity monitoring, rehabilitation, and clinical studies are 

reviewed with a focus on elderly population. Most of the references were selected from the year 2000 

onwards and based on their relevance in using footwear systems for the aforementioned applications.  

2 Survey of foot-worn systems for physical behavior, gait and 

load/Center of pressure measurement 

2.1 Footwear and physical activity monitoring 

The use of foot-worn sensors for activity classification and monitoring has been mainly oriented 

towards the classification of different locomotion types. Plantar pressure during stairs locomotion has been 

characterized [97] but no effort to directly use events from pressure patterns for classification has been done. 

Alternatively, machine learning techniques have been employed to perform stairs classification using insole 

force data alone [98] or combined with 6D IMU [99]–[101]. Majumder et al. [102] used data from 4 FSR 

sensors under the foot to classify standing, level walking and stair locomotion using thresholding of total 

force values and reached accuracies of 76-88%. Similarly, Peng et al. [103] classified standing, walking and 

stair locomotion from pressure data of 7 FSR sensors using a support vector machine algorithm with 

accuracies ranging between 86-100%. They also showed that a reduction in the number of sensors led to a 

worse classification performance. Some work has also been conducted on the estimation of transportation 

modes (car, bus, bike, driving or by foot) using instrumented insoles. The classification was not very 

effective, but could be improved with the addition of GPS data [104]. 

                                                      
1 https://www.iee.lu/en/products/sports-healthcare/smart-foot-sensor (accessed 26.05.2016) 
2 http://www.interlinkelectronics.com/standard-products.php (accessed 26.05.2016) 
3 https://www.tekscan.com/fsr-standard-and-custom-force-sensitive-resistors (accessed 26.05.2016) 
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Shoe mounted IMU was also used for locomotion classification. Santhiranayagam et al. [105] used 

features extracted from such a system to classify walking in three conditions: level, blindfolded, and while 

holding a glass. Accuracies of 83-84% were achieved using machine learning techniques. A particular 

angular velocity pattern is revealed during stair locomotion and has been used to differentiate stairs from 

level walking with high accuracies of 90-99% [106]–[108]. The classification of gait when carrying loads 

in different conditions such as front pack, backpack, carrying with the hands or on the sides was tested using 

an IMU and 8 FSR sensors in an insole, with accuracies varying between 43-100% based on a support vector 

machine algorithm [109]. 

In addition to locomotion type, sitting and standing can be recognized by footwear systems 

incorporating pressure sensors. Sazonov et al. [110] used a shoe-mounted accelerometer combined with 5 

FSR sensors under the foot to classify sitting, standing, level walking/jogging, stairs locomotion and cycling. 

Their support vector machine algorithm achieved 98% overall global accuracy, with lower sensitivity for 

stair descent (80%) and precision for stair ascent (78%). Using the same system, Tang and Sazonov [33] 

increased the potential accuracy of all activity classed by performing support vector machine classification 

with rejection. However, this meant that more than 30% of the data had to be rejected to achieve an accuracy 

of 99.9%. Their instrumented shoe is shown in Figure 2-1. Adelsberger and Tröster [111] presented a 

wireless sensing insole based on FSRs and IMU and tested a support vector machine algorithm on data from 

their system. They achieved an accuracy exceeding 99% from measurements but in only one healthy subject 

performing sitting, standing and walking activities. Chen et al. [112] classified sitting, standing, level 

walking and stairs locomotion using insole pressure data only, and achieved accuracies exceeding 95% for 

all classes with 5 healthy volunteers and one below-knee amputee. They used linear discriminant analysis 

on features extracted from 4 FSR sensors under each foot to develop their algorithm. Lin et al. [113] 

performed a classification of sitting, standing and walking based on spatial warping of insole force patterns, 

reaching accuracies exceeding 90% for different activity conditions (e.g. carrying loads while walking). 

Kawsar et al. [114] reported promising classification accuracies for sitting, standing and walking using 

pressure sensors from an insole and a decision tree algorithm. An accuracy of 89% was achieved with data 

from one subject performing the different activities. 
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Figure 2-1 - Foot-worn system from Tang and Sazonov [33] used for activity classification, including 5 FSR sensors placed under 
the heel, first/third/fifth metatarsals, and the hallux, as well as a 3D accelerometer at the heel (© Tang and Sazonov [33]) 

 

Continuous monitoring of daily activity offers the possibility to detect rare but crucial events such 

as a fall. Fall detection using foot-worn sensors has been investigated by Tao et al. [115] where signals from 

8 FSRs under the feet were used to classify falls based on artificial neural networks. Tests with one subject 

simulating falls yielded a classification accuracy of 75%. Acceleration thresholds on the foot were used to 

identify falls compared to activities of daily life in 3 subjects wearing accelerometers on the shoes, achieving 

a fall (simulated) detection sensitivity of 81.5% [116]. Several machine learning algorithms were evaluated 

for fall detection using a pressure sensing insole with decision trees reaching 87% sensitivity and 88% 

precision [117]. Lincoln and Bamberg [118] provided insights on the detection of slippage using pressure 

sensing insoles and foot-worn 3D accelerometers. The detection method was based on thresholding both 

sensors and revealed promising preliminary results. While there is evidence that simulated falls cannot be 

used for validation of real fall detection [119], these studies emphasize new possibilities offered by 

instrumented shoes. 

 

To summarize, activity classification using instrumented shoes appears to be highly accurate 

especially for basic activity (sitting, standing, and walking) as well as locomotion types (level, stairs, ramps). 

Studies predominantly resorted to machine learning techniques to perform classification, which could be 

highly sensitive to training data and therefore only represent the activities of the specific monitored 

population. Furthermore, none of the previous studies performed activity monitoring in real life conditions; 

they did not assess the usability and validity of instrumented shoes in real daily life outside the lab. In this 

thesis, we propose two innovative aspects in shoe-based activity monitoring. Firstly, as an alternative to 

existing machine learning algorithms (that might not be generalizable due to specific training data), an 
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algorithm based on movement biomechanics using instrumented shoes is developed and validated for in-lab 

conditions using instrumented shoes in Chapter 4. Secondly, the algorithm is validated in daily life 

conditions in Chapter 5 to show the usability of this system outside the lab or clinical environment.  

2.2 Footwear and gait analysis 

Gait analysis provides spatio-temporal parameters, kinematics and kinetics features as well as muscular 

activity during locomotion. Temporal parameters characterize the different phases of a gait cycle including 

gait cycle time (GCT), swing, stance, push, foot-flat, loading, and double support phases. The durations of 

these phases are usually calculated by identifying specific gait events such as initial contact (IC), toe off 

(TO), terminal contact (TC), foot strike (FS). Heel off and toe strike have also been defined as events in the 

gait cycle. For example, the gait cycle time is defined as the time between two consecutive gait events 

(mainly the TO), the stance phase occurs between HS and TO whereas the swing phase is from TO until the 

next HS. Spatial and kinematics information portray distance related parameters such as stride length and 

velocity, foot clearance, turning angle, and the foot segment angle during the different phases of a gait cycle. 

Walking is a periodic movement with period of GCT and in humans requires left and right lower limbs to 

alternate. Therefore two features can further characterize a normal walking and can be added to the 

aforementioned parameters for a more comprehensive analysis: first, the gait variability which expresses 

the inter-cycle variation of gait parameters and, second, gait symmetry that considers the difference in a gait 

cycle between left and right limb.  

Foot-worn sensors have been extensively employed to estimate all the aforementioned parameters. 

Starting with temporal parameters, foot switches based on FSR technology have been the forerunners of 

gait event detection by thresholding their output to detect TO and HS events [120]. Srivises et al. [121] 

described a fuzzy logic algorithm using gyroscope and 4 FSR signals from an insole to detect gait events. 

Compared to video camera recording, 85% of the events were accurately detected. Kong et al. [122] also 

used fuzzy logic for continuous detection of gait phases based on 4 air pressure sensors placed in an insole 

and compared the results to discrete threshold-based detection. However, no error values were reported. 

Particle swarm optimization technique was used to classify gait phases using an IMU and 4 FSR sensors 

with an accuracy of 96% [123]. Gait event detection was also evaluated in participants with gait 

impairments. Lopez-Meyer et al. [124] performed thresholding on signals from 5 FSR sensors to identify 

temporal parameters in post-stroke patients. Temporal event estimation was performed in children with 

cerebral palsy using FSR sensors and errors ranged between 30-149ms [125]. 

The use of IMUs for gait event detection has been likewise investigated in foot-worn systems. Using 

acceleration and angular velocity of the foot and their respective derivatives Mariani et al. [126] evaluated 
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the different gait phases with errors between 1 and 5ms for gait events, and 1-30ms for gait phases compared 

to reference measurements in healthy participants and ankle arthrosis patients (Figure 2-2). Mannini and 

Sabatini [127] used Hidden Markov Models to identify strike and off events from pitch (medio-lateral) 

gyroscope signals owing to the cyclic nature of these gait events, and also obtained errors of about 3ms. 

Pappas et al. [128] used a combination of FSR sensors and a pitch gyroscope in a state machine to identify 

the four main gait events, achieving errors in the range of 35-70ms. 

 

 

Figure 2-2 – IMU signals for gait events, adapted from Mariani et al. [126]. (a) Heel (Fh) and forefoot force (Ff) and (b) the 
corresponding pitch angular velocity (�p) and (d) norm of foot acceleration ||A|| and (c) and (e) their derivatives. The actual 

value of heel strike (f1), heel-off (f2), Toe-strike (f3) and Toe-off (f4) obtained from force plate are compared to corresponding 
features detected by IMU signal (ki). The best features are highlighted in bold text (© Mariani et al. [126]) 
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The detection of temporal events in activities other than level gait has also been studied. Examples 

include Runalyser, a pressure sensing insole, that demonstrated good agreement with an instrumented 

treadmill for temporal parameters during running [129], whereas gyroscopes have been used to identify 

temporal events during stair locomotion [130]. 

Besides the intrinsic importance of measuring temporal parameters, the accurate detection of heel 

strike and toe off events is crucial for calculating spatial parameters. The measurement of velocity and 

position through IMU requires integration and double integration, respectively, of acceleration signals. This 

integration is prone to drift, i.e. the integrated value can increase drastically due to sensor bias and noise 

levels [131]. This practically means that integration should only be performed in a short time window with 

known constraints, and an ideal window would be when the foot is moving between consecutive toe off and 

heel strike instants. The velocity and position can then be reset during stance [132]. 

In terms of spatial gait parameters, Sagawa et al. [133] used a uniaxial gyroscope, a 3D 

accelerometer and a barometric pressure sensor to estimate horizontal and vertical distance travelled during 

gait. The IMU was highly accurate in measuring horizontal distance whereas the barometer had larger errors 

in estimating vertical distance. Sabatini et al. [134] used the strap-down integration technique to estimate 

the foot orientation during the swing phase and subsequently calculated stride length and velocity, reporting 

an average error of 0.05m/s for stride velocity compared to the treadmill’s reference speed. They 

additionally estimated the foot pitch angle with an average error of 1.52%. Bamberg et al. [135] developed 

an instrumented shoe with FSR sensors and IMU to measure stride length and velocity as well as foot pitch 

angle. They detected TO and HS events using FSR to set integration bounds for the gyroscope and removed 

the integration drift using iterative error correction. Both spatial and temporal events were estimated with 

low errors compared to motion capture reference. Mariani et al. [136] used drift correction methods and 

gravity cancellation to integrate (also using strap-down technique) acceleration and angular velocity signals 

from a foot-worn IMU for the calculation of stride velocity, stride length, foot clearance, and turning angle. 

The method proved to be reliable and repeatable in young and elderly subjects performing walking test, a 

timed up and go (TUG) test and a figure-of-eight walk. The efficacy of this method was also demonstrated 

in calculating spatial parameters of Parkinson’s disease patients [137]. Drift correction was also applied in 

another study to measure the lateral foot displacement and the stride length from a 6D IMU on the foot, 

resulting in low estimation errors [138]. Hung and Suh [139] used a 3D accelerometer and a camera mounted 

on the front of one foot and an infrared marker on the back of the contralateral foot to estimate step length, 

with an error of 5.4cm.  

Foot clearance is a valuable parameter for gait analysis since it plays a crucial role in stairs and 

obstacle negotiation. A quadratic regression model using vertical acceleration and pitch angular velocity 
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was built to estimate the minimum foot clearance with a mean error of 17.34 ± 48.50mm compared to a 

motion capture system [140]. The direct measurement of foot clearance using an IMU was achieved by 

modeling the shoe sensor location with respect to the heel and the toe and performing strap-down integration 

with drift removal to estimate the 3D position of the shoes in space [141]. A validation of this model in 

healthy elderly subjects yielded errors below 10% for maximum heel and toe clearance but up to 40% for 

minimum toe clearance. Benoussaad et al. [142] used a similar technique (strap-down and de-drifting) to 

obtain a global foot clearance measure with RMS errors below 15% in 10 healthy volunteers, compared to 

motion capture. Santhiranayagam et al. [143] used a generalized regression neural network machine learning 

technique to estimate the minimum toe clearance during a gait cycle, achieving root mean square errors 

around 7mm. The model required different features for young and elderly subjects. Besides inertial sensors, 

optical proximity sensors provided minimum foot clearance values that were highly comparable to motion 

capture [144]. One notable study investigated ultrasound sensors to measure the 3D foot displacement and 

clearance during gait, achieving low errors, but this method is only usable in a confined space because it 

requires stationary ultrasound anchors [145].  

Infrared and ultrasound sensors were proposed to detect the distance between the foot and potential 

obstacles, reaching high accuracies exceeding 95% for detecting objects up to 1.5m [146]. Recently Weenk 

et al. [147] proposed an ultrasound sensor and actuator in combination with IMU fixed on an instrumented 

shoe to measure foot position and estimate the step width with an error of 12mm. The algorithm was based 

on an extended Kalman filter updated with the estimation distance between the feet obtained from the time 

of flight of ultrasound waves. While the system provided an accurate estimation of foot position, the 

proposed instrumented shoes are cumbersome for everyday life. Infrared range sensors placed medially on 

the shoes were alternatively used to measure the inter-foot distance during the swing phases of each gait 

cycle [148]. A combination of infrared and ultrasound sensors was also proposed to measure this distance 

[149]. 

 

In conclusion, instrumented shoes have been extensively used in spatio-temporal gait analysis to 

provide accurate measurement of gait parameters. The main drawback of the aforementioned studies was 

the lack of daily life gait assessment. In fact, tests were conducted either on a treadmill or during a short 

gait test, limiting the analysis to only a few gait cycles. None of the systems were used for physical activity 

monitoring and gait analysis simultaneously. This is critical for daily life gait assessment, since it would 

require the correct identification of locomotion periods and their type to perform gait analysis on only those 

periods that are correctly classified. In Chapter 4, we report gait analysis in daily life for level locomotion 

periods classified by the instrumented shoes. Gait analysis is also used as an outcome measure for 
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rehabilitation in Chapters 6 and 7. Both these aspects are novel with respect to the use of instrumented shoes 

in daily life. 

2.3 Footwear and load/Center of Pressure measurements 

Plantar pressure or force sensors located in shoe inserts or in the shoes themselves provide an ideal 

framework for total or partial load estimation and reconstruction of the CoP during different activities. The 

direct measurement of the 3D ground reaction force (GRF) in footwear has been studied using miniature 

triaxial force transducers. Liedtke et al. [150] described an instrumented shoe consisting of two such force 

transducers placed under the shoes, one under the heel and the other under the forefoot, to measure the 3D 

GRF and CoP during gait, Figure 2-3. The system demonstrated high accuracy with low root mean square 

(RMS) errors except for the anterio-posterior (sagittal plane) force with 37.2% mean error. The system was 

also able to measure loads accurately in several lifting tasks and locomotion modes [151]. Tao et al. [152] 

obtained similar errors using two force transducers placed in an insole inside the shoes. A system using 5 

triaxial force transducers placed under the heel, lateral arch and forefoot was validated for 3D GRF 

measurement with RMS errors below 10% and CoP calculation with 1.4 ± 0.2% RMS error [153]. The main 

drawback of such GRF calculation systems is the sensor thickness (~2cm) and weight (~15g per sensor) 

[154]. This could possibly alter gait performance especially in diseased persons and would be uncomfortable 

for long-term GRF and CoP monitoring. 

 

 

Figure 2-3 – Force sensing shoes from Schepers et al. [138] , same system used by Liedtke et al. [150] (©Schepers et al. [138]) 

 

The vertical load and CoP measurement accuracy of commercial systems with high density sensor 

meshes has been demonstrated, well known examples being the Pedar system (Novel, DE) [155], [156], the 

F-scan system (Tekscan Inc., U.S.A) [157], [158], and the Parotec system (Paromed GmbH & Co., DE) 

[159]. Figure 2-4 shows the Pedar and F-scan systems.  
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Figure 2-4 – Commercial insole systems for load measurement: a) Pedar system with insole and data acquisition system (usually 
worn in a belt), b) snapshot of Pedar data acquisition from 99 sensor cells4, c) F-scan system used worn by a user on a treadmill 
with insoles in the shoes and the data logger in a belt, d) snapshot of F-scan data acquisition5 (© Pedar, Novel, DE and F-scan, 

Tekscan Inc., U.S.A) 

 

These systems are unable to directly measure the 3D GRF, although some studies have targeted the 

estimation of the 3D GRF from insole vertical force data using machine learning or inverse dynamics. 

Savelberg and de Lange [160] estimated the anterio-posterior shear force by using neural networks and 8 

subdivisions of the Micro-Emed® insole (predecessor of Pedar) and found that the method was 

                                                      
4 http://novelusa.com/index.php?fuseaction=systems.pedar (accessed 26.05.2016) 
5 https://www.tekscan.com/applications/footwear-research-and-development-f-scan (accessed 26.05.2016) 
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generalizable over different gait speeds in healthy subjects. Forner Cordero et al. [161] used the CoP and 

force measurement from Pedar insoles to estimate the 3D GRF obtaining relatively low estimation errors. 

The method required a motion capture system to compute inverse dynamics and to align the insole with the 

force plate reference. Based on the hypothesis that shear force changes the distribution of the pressure in the 

vicinity of the CoP along the stance phase, Rouhani et al. [162] proposed a neural network and locally linear 

neuro-fuzzy mapping to estimate 3D GRF from Pedar insoles, Figure 2-5. Principal component analysis led 

to a minimum of 10 features for the estimation of 3D GRF during walking with errors ranging between 4% 

(vertical force) and 11.3% (medio-lateral force) of maximum force. The system was further developed to 

estimate ankle force and moment using inverse dynamics with an IMU placed at the foot [163]. Similarly, 

Fong et al. [164] used linear regression from individual Pedar load cells to estimate the 3D GRF, with root 

mean square errors (RMSE) compared to force plate reference of 5, 12 and 28% for peak vertical, 

anterio-posterior and medio-lateral force, respectively. Besides the aforementioned commercial systems, 

Jacobs and Ferris [165] designed an insole with 8 gauge pressure sensors located under the heel and forefoot. 

They estimated the 3D GRF and CoP during gait and calf raises using neural networks with peak RMSE 

below 10%. A foot-worn system with load cells was evaluated to measure vertical force and CoP during 

standing and walking, with RMSE below 10% for peak vertical force calculation but up to 19.2% for CoP 

during walking [166]. 
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Figure 2-5 (a) Foot pressure insole (Pedar, Novel, DE) and IMU placed on the foot were used to measure GRF and ankle forces 
and moment using pressure insole and inertial sensors (red) compared to stationary system (black). Mean (solid curve) and 

mean±SD (shaded area) are presented for the healthy group. Adapted from [163], [167]) 

 

Despite the high accuracy of these systems, their use is limited to short periods of measurement 

because of high power consumption and the need for a computing unit usually worn by the subject in a belt 

to acquire data from a large number of sensors (Pedar encapsulates 99 capacitive sensors, the F-scan has a 

sensor density of ~4 resistive sensor cells per cm2; the total number varies depending on shoe size). 

Researchers have therefore devised prototypes with less sensors while attempting to maintain similar 

accuracy in load and CoP measurements. FSR sensors have been most common in the design of 

a 

b 
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pressure-sensing insoles, where arrays with a selected number of sensors were used to evaluate the vertical 

load. Hellstrom et al. [168] showed that weight is overestimated by 3 FSR sensors when a person carries 

different loads. Sazonova et al. [169] obtained varying results for weight estimation with 5 FSR sensors 

with an average RMS error of 10kg. Chen et al. [170] estimated plantar pressure using support vector 

regression from 8 FSR sensors with mean square errors of less than 1kPa compared to force plate reference. 

Howell et al. [171] observed similar shapes in vertical plantar force obtained from 32 FSR sensors compared 

to force plate measurements but did not report estimation errors. The vitaliSHOE [172], consisting of 4 FSR 

sensors, 3D accelerometer, and 3D gyroscope, proved to correlate well with pressure and foot angle 

measured by instrumented treadmill and motion capture, as shown in Figure 2-6. 

 

 

Figure 2-6 - Instrumented insole proposed by Jagos et al. [173] showing a) the different FSR sensor locations (w and a represent 
gyroscope and accelerometer, respectively) and b) percentage of total force measured by the heel (left) and the big toe (right) 

sensors during gait. Solid lines represent mean force plate reference, dashed lines mean insole measurements, with the standard 
deviation represented in the shading (dark for force plate, light for insole) 

 

a 

b 
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Other technologies used to build insoles for load and/or CoP measurement include pressure sensing 

resistive fabric [174], piezoresistors [175], piezoelectric transducers [176] or films [177], capacitive sensors 

[178]–[180], air pressure sensors [181], and electro mechanical films (EMFI) [182]. Abdul Razak et al. 

[183] reviewed systems to measure foot plantar pressure with publications until 2012. Several notable new 

systems have since been proposed in the literature [184]–[193]. In these new systems there is a shift towards 

providing real time force data with wireless insoles for different clinical applications, as well as 

miniaturization in terms of the number of sensors used while providing utmost comfort to the user. These 

systems have not yet been tested in clinical application but show promise in monitoring plantar force during 

daily life. 

 

Summing up, force and pressure measurement under the foot was shown to be feasible for load 

monitoring under the feet compared to stationary force plates. Measuring 3D forces requires thick plates 

and such systems are thus unsuitable for applications in daily life. Systems with dense sensor meshes are 

also unusable for long term force monitoring because of power and comfort constraints. Therefore, 

instrumented insoles with a lower number of sensors appear to be the best choice for daily life applications. 

In the framework of this thesis, an insole with 8 resistive force sensors dedicated for highly dynamic 

measurements is incorporated into the instrumented shoes system. Even though an accurate 3D force 

measurement was not required, the vertical force estimation related to weight was achieved and its accuracy 

is demonstrated in Chapter 5. Furthermore, an innovative use of force measuring insoles is presented in 

Chapter 5: the detection and characterization of postural transitions. 

3 Applications of foot-worn sensor systems in clinical assessment 

and rehabilitation 

Foot-worn systems have been extensively used in the assessment of persons with mobility disorders 

such as amputees, post-stroke patients, Parkinsonian patients, children with cerebral palsy, frail older adults, 

arthrosis patients and other at-risk populations. Additionally, several systems were proposed for 

rehabilitation and feedback purposes, mainly providing external stimuli to correct impaired gait.  

3.1 Older adults 

Normative spatio-temporal gait parameters have been established in a cohort of older adults (aged 

65 or older) of more than 1400 subjects using foot-worn IMUs [194]. While many spatio-temporal gait 
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parameters are correlated with gait speed, it was shown that foot clearance parameters have no significant 

correlation with gait speed, and that foot clearance parameters account for more than 68% of variability in 

gait data [195]. More recently foot clearance parameters obtained with foot-worn IMU were shown to be an 

indicator of fall risk in elderly subjects [196]. These results underlined the importance of foot clearance, 

which is rarely studied in real-life condition. We estimated foot clearance in daily life in healthy older adults 

in Chapter 4 as well as in at-risk populations in Chapters 6 and 7. Dual task paradigm, e.g. walking while 

counting backwards was successfully tested on elderly subjects using foot-worn inertial sensors [197]. Gait 

under dual-task condition was evaluated with the F-scan system revealing significant differences compared 

to normal walking in terms of temporal gait parameters such as stride, stance and swing time [198]. The 

study was extended to identify gait differences between fallers and non-fallers under dual tasking conditions, 

but concluded that these parameters were insufficient to dissociate the two groups under the testing 

condition, i.e. walking for only 7.5m [199].  

Using foot pressure switches and de-trended fluctuation analysis, Hausdorff et al. [200] computed 

a fractal scaling exponent for the gait cycle time. Interestingly this fractal scaling was lower in older adults 

than in young subjects, suggesting that neural control of gait changes with ageing as shown in Figure 2-7. 

In another study by Paterson et al. [201], a foot-mounted accelerometer was used to compute the fractal 

scaling exponent for the stride time in older women performing 7 minute over-ground walking in a gait lab. 

The fractal scaling exponent of stride time revealed significant differences between limbs in multiple fallers 

that were not observed in non-fallers. 

Foot load differences during gait were compared between healthy older adult and young participants 

using the Pedar system showing that older adults have less relative pressure under the medial side of the 

foot [202]. Load symmetry indices were analyzed for elderly hip osteoarthritis patients with an instrumented 

force shoe, with results indicating that symmetry is complementary to gait speed in the assessment of 

populations with unilateral lower limb problems [203]. Instrumented insoles were also employed to evaluate 

the effectiveness of a post-hip fracture intervention, showing that improvements can be perceived with CoP 

and load measurements [204].  
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Figure 2-7 – Left: Stride interval (gait cycle time) observed for young and elderly subjects. Right: power law fluctuation analysis 
of the stride interval time series, showing a lower fractal coefficient (�) for elderly subjects (© Hausdorff et al. [200]) 

 

3.2 Stroke 

Gait parameters obtained from the F-Scan system showed that load and temporal parameters as well 

as the variability of the CoP trajectory improved during robotic-assisted walking in post-stroke patients 

[205]. Other studies used the Pedar system to obtain load and temporal parameters from stroke patients 

[206], [207]. A comparison to healthy controls revealed significant differences in gait parameters. 

Hegde et al. [208] designed a real-time feedback on stance percent duration of the affected limb in 

post-stroke patients. The feedback could be delivered via auditory cues or vibrations of a motor inside an 

insole that also contains two FSR sensors to detect gait phases, Figure 2-8. They noticed improvement in 

stance percent duration in one participant over 3 sessions of feedback during level gait (trial lengths of ~200 

steps).  

However, the main application of foot-worn sensors has been related to functional electrical 

stimulation (FES) to activate nerves during gait swing and correct problems such as foot drop. Ring et al. 

[209] used footswitches to control the movement a neuroprosthesis at different parts of the gait cycle through 

temporal gait event detection. Compared to classical ankle-foot orthoses, the system showed a decrease in 

average stride time and in swing time variability, revealing rehabilitation potential in post-stroke or 

traumatic brain injury patients. Footswitches were further used to detect stance and swing times to perform 

FES in stroke patients and measure the tibialis anterior muscle activity during swing, demonstrating 

improved activity of this muscle after FES [210]. Other foot-worn systems have been designed with FES 
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application as a target, even though no direct validation studies with stroke patients were reported, using 

FSR [211] or IMU [212]. 

 

 

Figure 2-8 - Feedback system for stroke patients showing FSR sensors, vibration motor and earphone (© Hegde et al. [208]) 

 

3.3 Other populations 

3.3.1 Children with cerebral palsy 

Foot-worn systems have shown great potential in the assessment of cerebral palsy in children. 

Femery et al. [213] concluded that plantar pressure data collected during gait from the Parotec system 

revealed significant differences between children with mild spasticity, severe spasticity, and healthy 

controls. The CoP trajectories measured from pressure sensing insoles were used to accurately classify gait 

disorder severity based on the Edinburgh Visual Scale, Figure 2-9 [214]–[216]. Several spatio-temporal gait 

parameters evaluated in children with cerebral palsy using foot-worn Physilog® IMUs (Gait Up, CH) 

proved to be significantly different compared to age-matched controls, especially stride length and velocity, 

gait phases, and foot angle during strike and lift-off [217]. In children with idiopathic toe-walking, a similar 

gait pattern to that of cerebral palsy patients can be observed where the toe hits the floor before the heel. A 

method was proposed to detect such gait patterns by using accelerometers mounted on a shoe, reaching a 

detection accuracy of 98.5% [218]. 
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Figure 2-9 - Instrumented insole system for gait analysis in children with cerebral palsy, a) ActiveGait (Simbex LLC, Lebanon, 
NH) insole with 15 sensors, b) typical CoP for healthy, midfoot and toe walker (© Strohrmann et . al. [214]) 

 

3.3.2 Amputees 

Yang et al. [219] defined a stance symmetry ratio computed from a pressure sensing insole to 

provide auditory feedback to transtibial amputees when the symmetry ratio is lower than a predefined 

threshold. The method’s potential was revealed in tests with three amputees, two of which improved after 6 

sessions of training with this feedback system. Crea et al. [220] tested a vibrotactile feedback system that 

collects load, CoP, and gait phase data from a pressure sensing insole and sends vibrational feedback at the 

thigh level, Figure 2-10. The system is intended for lower limb amputees and its feasibility was positively 

evaluated with 10 young, healthy subjects. Gait tests with trans-femoral and trans-tibial amputees revealed 

that CoP path and variability can distinguish between hard and soft ground walking and also correlate well 

with clinical mobility test results [221]. Instability of over-ground walking due to change in surface type 

was shown to be identifiable by CoP measures from the F-scan system in unilateral amputees, showing that 

more than 80% of variability in clinical balance tests could be explained by parameters extracted from the 

CoP measurement [221]. 
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Figure 2-10 - Feedback system for amputees, a) system components at the thigh, prosthesis and shoe level, b) instrumented insole, 
c) insole cover placed laterally on the shoe (adapted from [220], [222]) 

 

3.3.3 Parkinson’s disease 

Foot loading during gait of Parkinsonian patients, evaluated with the Pedar® system, revealed 

significant differences compared to healthy gait [223]. The classification of Parkinsonian gait versus healthy 

controls was achieved with high accuracy using an IMU on the foot during laboratory gait tasks, with 

additional classification of different phases of the disease [224]. Substantial work has been conducted on 

analyzing the structure of temporal gait events in Parkinson’s disease patients using footswitches [225]–

[227].  

Feedback to Parkinson’s disease patients through visual, auditory and vibrational cues has been 

extensively tested. At the shoe level, several systems have been proposed, mainly based on vibrating motors 

or actuators that use inertial and force sensing data from the shoes to deliver vibrational cues at strategic 
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instants during gait cycles [228], [229]. The reader is also referred to a recent review on the applications of 

foot-worn systems in Parkinson’s disease rehabilitation by Maculewicz et al. [230]. This review highlighted 

the capabilities of instrumented shoes in providing sensory feedback to Parkinson’s disease patients and 

emphasized the need for sensor miniaturization and tailoring to the individual, as well as potential outdoor 

testing of feedback systems, outside the lab or clinic.  

3.3.4 Orthopedics 

Shoe-based sensors have been applied to the analysis of orthopedic conditions. Load measurement 

in persons with knee osteoarthritis using the force shoes previously described in [138] was used to measure 

the knee adduction moment, achieving errors of 5-22% [231]. The suitability of using these shoes was 

previously studied and showed that the system had negligible difference with a control shoe (i.e. without 

the sensors) [232]. The Pedar® system was employed in gait analysis of post ankle arthrodesis or total ankle 

replacement patients, revealing that pressure parameters for the latter are closer to controls than the former 

[233]. After further symmetry analysis, Chopra et al. concluded that total ankle replacement resulted in 

better improvements than ankle arthrodesis as a treatment of ankle osteoarthritis [234].  

 

Finally, some other notable examples not pertaining to any of the aforementioned categories are 

described. The assessment of static balance using foot-worn sensors was proposed by Bamberg et al. [235] 

from an insole with 16 FSR sensors under each foot. The standard deviation of the load during standing and 

postural transitions led to observing preliminary differences between healthy participants and subjects with 

balance problems. Systems for gait and balance rehabilitation using motors or actuators in insoles or shoes 

have also been proposed in recent years [236], [237]. 

Several works based on the ACHILE instrumented shoe consisting of 3D accelerometer, 3D 

gyroscope, 5 FSRs, bending resistor, temperature and humidity sensor, as well as a vibrating motor [238] 

have been conducted to design an exergame for quantitative balance measurement [239]–[243].  

4 Discussion 

This review aimed at shedding light on foot-worn sensor systems for activity classification, gait 

analysis and load measurement. The high number of validation studies, proposed systems, and versatile 

applications asserts the increasing interest in this sub-family of wearable sensors.  
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The time spent in different postures can be an important indicator of mobility status. Activity types 

were classified with accuracies exceeding 90% by using inertial, force and barometric pressure sensors 

integrated in foot-worn systems. Several techniques were employed to create the classification algorithms 

such as event detection, machine learning, and pattern matching. The basic activities of daily life i.e. sitting, 

standing, and walking were classified with high accuracies, again exceeding 90%. From a metabolic 

perspective, locomotion modes have different energy expenditure requirements and therefore can also 

inform about a subject’s capacities. Different locomotion modes such as level, stair and ramp ambulation 

were recognized with equally high accuracies to provide a better activity profiling. Accuracies exceeding 

90% were reported from most studies on foot-worn activity classification. These values are at least similar 

to or higher than what can be achieved with single sensor systems placed on other body locations, e.g. trunk 

[48], [244] and particularly in the detection of sitting or standing postures. These accuracies are quite similar 

to what is reported by multi-sensor systems placed on more than one body location as well [40], [41]. 

However, validation protocols were mainly structured and conducted in confined environments, not 

reflecting real-life activity and behavior. Nevertheless, the potential in quantifying physical activity in 

healthy and diseased populations is evident, and future studies could reveal the clinical benefits of using 

foot-worn systems in long-term activity monitoring. Furthermore, the possibility of real-time activity 

monitoring and data transmission to smartphones can enhance tailored interventions through feedback on 

activity levels.  

In terms of gait analysis, foot-worn sensors have revealed the possibility of accurately and reliably 

estimating spatio-temporal gait parameters mainly using IMUs. The main advantage of foot-worn systems 

over other sensor locations is the direct measurement of foot orientation, allowing stride by stride estimation 

of velocity, stride length, and foot clearance for each foot. The clinical relevance of these parameters has 

already been established using other stationary or wearable systems, but their measurement in routine 

clinical analysis or in daily life was shown to be simpler using foot-worn systems. Gait assessment of at-risk 

populations highlighted several differences between normal and pathological gait. These differences can be 

used by clinicians to improve interventions and rehabilitation. As was the case with activity monitoring, gait 

measured with foot-worn sensors was mainly performed in laboratory conditions. Again, the potential of 

foot-worn systems can be translated to the home environment for gait analysis in daily life, especially since 

performances during in-lab tests do not necessarily reflect daily life gait profile. 

Load and CoP measurement with foot-worn systems was shown to be accurate with several types 

of force measuring sensors. Some of the most accurate systems incorporate relatively thick sensors (e.g. 

load cells) or a highly dense sensor mesh (e.g. Pedar or F-Scan). These systems are more suitable for in-lab 

assessment of load bearing activities. The predominant sensor used in thin insole inserts has been the force 
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sensing resistor. Other types of force sensors have been proposed, and research is ongoing to improve the 

integration of newly designed thin force sensors in foot-worn systems. Today, several foot-worn sensor 

systems intended for general public are commercially available. The Mettis Trainer®6 incorporates 3 

bending sensors in each insole to measure the performance of golfers. SmartBalance® (Smart2Move, CH)7 

is a wireless insole that also mainly targets golfers. Runscribe8 [245] consists of a foot-worn IMU designated 

for runners, evaluating several parameters including step counts, impact load, pronation and foot strike type. 

Digitsole9 [246] proposes a smart shoe to track daily activity and calories as well as in-shoe heating, and a 

separate smart insole that tracks movement and posture. All the aforementioned commercial systems send 

insole or IMU data wirelessly to a smartphone to give feedback to the user. 

Finally, to exemplify the impact of foot-worn system development, a recent European project, 

WIISEL10, was dedicated to the design of an insole with multiple sensors to monitor gait and activity for 

the purpose of fall risk prediction [190], [247], [248]. The instrumented shoes developed in this thesis were 

also part of a European project, FARSEEING11, aimed at reducing falls in older adults. 

5 Conclusion 

Foot-worn sensors are suitable for a detailed profiling of human movement. It was evident from this 

review that pressure sensing insoles were highly effective in activity classification and load/CoP 

measurement, whereas IMUs performed exceptionally well in gait analysis. The conclusion is that a system 

combining both pressure and inertial sensing can provide extremely rich information about foot movement 

and therefore foot-worn sensors are likely to play an important role in human movement analysis in the 

coming years. Furthermore, the translational aspect of most systems described in this review has not yet 

reached its full development, aside from the well-known commercially available systems such as the Pedar® 

and F-Scan®. Relatively few systems were extended for clinical applications, especially in terms of 

daily-life physical activity monitoring. However, technical validation results were overall satisfactory and 

pave the way for broader applications in clinical analysis and rehabilitation. In this thesis, we aim to address 

both a technical validation of the proposed instrumented shoes system as well as clinical application with 

at-risk populations: post-hip fracture in older adults and stroke patients, as specified in Chapter 1. 

                                                      
6 http://www.mettistrainer.com/ (accessed 26.05.2016) 
7 https://smart2move.com/ (accessed 26.05.2016) 
8 http://www.runscribe.com/ (accessed 26.05.2016) 
9 http://www.digitsole.com/index.php (accessed 26.05.2016) 
10 http://www.wiisel.eu/ (accessed 26.05.2016) 
11 http://farseeingresearch.eu/ (accessed 26.05.2016) 
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Chapter 3  

Instrumented shoes for activity classification in the elderly�� 

Abstract 

Quantifying daily physical activity in older adults can provide relevant monitoring and diagnostic 

information about risk of fall and frailty. In this study, we introduce instrumented shoes capable of recording 

movement and foot loading data unobtrusively throughout the day. Recorded data were used to devise an 

activity classification algorithm. Ten elderly persons wore the instrumented shoe system consisting of 

insoles inside the shoes and inertial measurement units on the shoes, and performed a series of activities of 

daily life as part of a semi-structured protocol. We hypothesized that foot loading, orientation, and elevation 

can be used to classify postural transitions, locomotion, and walking type. Additional sensors worn at the 

right thigh and the trunk were used as reference, along with an event marker. An activity classification 

algorithm was built based on a decision tree that incorporates rules inspired from movement biomechanics. 

The algorithm revealed excellent performance with respect to the reference system with an overall accuracy 

of 97% across all activities. The algorithm was also capable of recognizing all postural transitions and 

locomotion periods with elevation changes. Furthermore, the algorithm proved to be robust against small 

changes of tuning parameters. This instrumented shoe system is suitable for daily activity monitoring in 

elderly persons and can additionally provide gait parameters, which, combined with activity parameters, can 

supply useful clinical information regarding the mobility of elderly persons. 

  

                                                      
�Published in Gait & Posture under: C. Moufawad el Achkar, C. Lenoble-Hoskovec, A. Paraschiv-Ionescu, K. Major, 
C. Büla, and K. Aminian, “Instrumented shoes for activity classification in the elderly,” Gait Posture, vol. 44, pp. 12–
17, 2015. 
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1 Introduction 

Ageing is frequently accompanied by loss of mobility, frailty, fear of falling and a greater risk of 

injury or disease caused by declining physiologic system dynamics [68]. It is crucial to remain active or 

become active again while aging, since suitable levels of physical activity (PA) can improve one’s health 

and quality of life [13]. An increase in PA is linked to lower morbidity and mortality [79] by reducing the 

risk of cardiovascular diseases, stroke, dementia, diabetes and osteoporosis [249]–[251]. Consequently, a 

major focus in current geriatrics research is PA quantification in older adults and timely intervention 

delivery to preserve or improve mobility.  

PA monitoring in older adults should provide information on activity behavior to be clinically 

useful. Therefore, the separation of sedentary periods, such as sitting or lying, from activity periods 

(standing and walking) is important. The evaluation can be improved if one can assess avoidance behavior 

e.g. using the elevator instead of climbing stairs. Finally, a detailed analysis of walking in terms of number 

of steps and gait velocity is essential in providing unique diagnostic and prognostic information [83].  

Monitoring PA in daily life has seen major advances in recent years due to progresses in wearable 

technology, sensors miniaturization, and a boom of motion tracker devices and smartphone applications 

available on the market [28]. The focus of commercial devices is mainly on step counting or energy 

expenditure overview, rather than specific classification and quantification of activity type [252]. However, 

research studies have increasingly reported activity classification results and their importance in elderly 

participants [47], [48], [253], [254].  

Multi-sensor configurations appear to provide better results for activity classification but are more 

hindering during long term monitoring. This raises an important issue regarding sensor location: inertial 

sensors at the foot or tibia level could miss detecting sit-to-stand transitions, whereas sensors at the trunk 

level could misclassify stair locomotion [38]. Low accuracies were consistently reported for postural 

transition classification using single sensor locations in the aforementioned studies. While upper limbs 

provide useful information about body posture, a more accurate estimation of gait parameters can be 

obtained with lower limb sensors. The shank and the foot were shown to be excellent sensor positions for 

gait analysis in elderly subjects [95], [136], [255]. Considering this advantage, shoe-based sensors have 

been previously used to classify PA [33], [256]–[258]. Several shoe-based systems for gait analysis and 

rehabilitation have been proposed in the literature [135], [259], [260], revealing major interest in this sub 

family of wearable sensors. This evidence strongly suggests employing shoe-based sensors to classify 

activities and simultaneously provide specific gait analysis from a single body sensor location. However, 
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none of the aforementioned concepts is currently outperforming the others in activity classification and daily 

life monitoring. 

The present study aims to reduce the number of sensor locations while accurately recognizing 

activities in elderly users. Although several sensors were used, all were located only at the shoes. The system 

includes inertial and barometric pressure sensors, and an insole for foot pressure measurement. It was 

hypothesized that barometric pressure could inform about body elevation variations during locomotion and 

rest (e.g. level/incline, stairs locomotion or elevators). Moreover we assumed that foot loading is related to 

posture (e.g. sitting, standing), and foot orientation may indicate the type of walking (e.g. level, ramp or 

stairs). 

2 Methods 

2.1 Instrumented shoe system and reference system 

The instrumented shoe system comprises the Physilog® (GaitUp, CH) including an inertial sensor 

(3 D accelerometer, 3 D gyroscope, 3 D magnetometer), barometric sensor and the force sensing insole 

(IEE, LU), Figure 3-1 (a). Physilog® is thin (9.2mm thickness) and light (<20grams) and includes a data 

logger. The insole has 8 sensors under the heel, arch, metatarsals, hallux and toes, sandwiched between two 

layers of neoprene, Figure 3-1 (b). The insole is powered by the Physilog® battery. The force data is 

amplified and digitized by custom-made converting electronics placed in a separate box, Figure 3-1 (a). An 

insole was placed inside each shoe, and a Physilog® module was strapped to the upper part of the shoe. The 

electronics box was strapped to the ankle. 

For validation purposes, two additional Physilog modules were fixed to the right thigh and the trunk 

[41]. The reference classification algorithm proved concurrent validity with observation with both 

sensitivity and specificity for detection and classification of transitions and basic activity (siting, standing, 

walking) greater than 98%.  
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Figure 3-1 - (a) Instrumented shoes system. The Inertial Measurement Unit (IMU), force sensing insole and converting 
electronics (Gray box with blue handles). (b) Force sensing insole with 8 sensors. 

 

2.2 Data collection protocol 

Ten elderly subjects (8 men, 2 women, age 65-75 years, weight 62-114 Kg, height 162-184 cm) 

were recruited (convenient sample of community-dwelling older persons). Participants gave written consent 

to participate. The study was approved by the university’s ethical committee: “Quantification of postural 

transitions using multimodal sensory input” under reference “EK 2012-N-32”.  

Each participant wore the instrumented shoes and the reference system. Data collection was carried 

out on campus at the university. A predefined track was followed by each participant, to mimic physical 

activities of daily life (~1 hour of measurement per participant) and included level walking, sit-to-stand and 

stand-to-sit transfers, sitting and standing bouts, uphill/downhill and upstairs/downstairs walking, and 

elevator use.  

Activities were carried out in a semi-structured protocol. Participants were free to perform all 

movements at their comfortable speed. An observer followed the participants and marked each period of 

stair climbing, elevator use, and uphill/downhill walking since these are not extracted from the reference 

algorithm, unlike sitting, standing, and level walking.  
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2.3 Activity classifier 

Calibration: Data from all sensors were sampled at 200 Hz. Inertial sensors were calibrated in static 

position to remove offset and adjust gain [261], and to the foot-frame during a walking period of 10 steps 

by finding the gravitational axis when the foot was static and the medio-lateral axis during swing events (by 

assuming that the movement is mainly in the sagittal plane) [136]. 

The insole was calibrated to each participant’s body weight (BW) during a 5 second period of static 

standing, by summing all sensors from both insoles and scaling the sum to the participant’s weight. This is 

referred to as the total force (TF). 

Pressure was converted to elevation by the barometric formula: 

 (1) 

Where P is the pressure measured by the barometer and P0 is the static pressure at sea level. The 

elevation was low-pass filtered (Butterworth order 10 filter, 0.1 Hz cutoff) to remove high-frequency noise 

caused by gait and weather fluctuations that could mask an elevation change.  

 

Biomechanics-inspired expert-based decision tree: The activity classification algorithm relies on 

expert-based rules inspired from movement biomechanics, Figure 3-2. At each node, the data from one 

sensor are used to detect the activity at the node’s output. First, the pitch angular velocity is used to 

distinguish locomotion from non-locomotion by performing step detection. Second, the estimated TF from 

the insoles is subjected to a threshold that separates sitting from standing. Third, the elevation obtained from 

the barometric pressure sensor allows the identification of activities with elevation change. Finally, the 

accelerometers are used to calculate the foot angle and distinguish between stairs and ramps climbing.  
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Figure 3-2 - Algorithm flowchart for activity classification using instrumented shoe signals 

 

Locomotion/non-locomotion: The detection of locomotion relied on step detection based on toe off 

(TO) instant, the common event to all locomotion types. The TO was detected as a negative peak in the 

clockwise pitch angular velocity obtained from the gyroscope signal using wavelet approximation [95]. A 

gait cycle was defined as the time between two consecutive TO instants of the same foot. Gait cycles shorter 

than 0.75 seconds were removed and consecutive gait cycles less than 3 seconds apart were aggregated to 

form locomotion periods. Hence, the detected cadence was 40-160 steps/min which sufficiently covers the 

cadence range observed in elderly subjects [255]. The remaining data were labeled as non-locomotion. 

 

Sitting/standing: Since the sit-to-stand corresponds to a transfer of BW to the legs until reaching an 

upright position, a threshold (thBW) corresponding to 50% BW was set on TF to distinguish between sitting 

and standing. The activity was classified as sitting when TF was lower than thBW, otherwise as standing. 
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This threshold was inspired from a transition model where the 50% BW shift occurs around the middle of 

the initial incline phase before being fully upright [262]. To confirm the suitability of this threshold, a 

sensitivity analysis was performed by varying thBW between 10-90% BW. Transitions occurred when the 

activity changed from sitting to standing (Sit-to-Stand) and standing to sitting (Stand-to-Sit).  

 

Elevator up/down: When the elevation range during a standing period exceeded a threshold (thEL) 

of 2m, an elevator up (>2m) or down (<-2m) period was identified. 

 

Non-level locomotion: During locomotion periods, the elevation signal was used to separate stairs 

and incline walking from level walking. Up/down periods were detected when the positive/negative 

elevation range exceeded thFL. Steps during up/down periods were segmented and the ground slope � was 

calculated from the frontal and vertical accelerations  and  during foot-flat, by assuming that 

the foot inclination during foot-flat corresponds to the ground slope and that the accelerometer measures 

gravitational acceleration only in this condition: 

 (2) 

If the absolute median value of � for all steps during an up/down period was higher than 2.9 degrees 

(5%), an uphill/downhill walking period was identified respectively. Otherwise, up/down periods were 

labeled upstairs/downstairs, respectively. The 5% slope was selected because accelerometer noise is a 

limiting factor in accurately calculating lower angles. From an energy expenditure point of view, walking 

at lower slopes has similar costs compared to level walking [263]. The selection of thEL was assessed by 

varying this threshold between 1-3m and evaluating classifier performance. 

A sigmoidal nonlinear fitting was applied to the elevation data of each up/down period to detect its 

beginning/ending: 

 (3) 

The minimum ) and maximum levels ( ) were obtained by computing a 

histogram with 100 equal-sized bins applied to the elevation data and finding the two bins with the most 

data points. The point where the height reaches 50% of the levels difference ( ), and the 

rising/falling slope between the two levels ( ) were obtained using [264]. The beginning/ending of 

the up/down periods were calculated as the 5% and 95% lower and upper level crossings of the total sigmoid 
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range. These percentages were selected for a consistent detection of the beginning/ending across all up/down 

periods. 

Figure 3-3 shows typical signals summarizing the decision tree classifier: 1) step detection based 

on TO from the pitch gyroscope signal; 2) thresholding on TF as a percentage of BW to distinguish sitting 

from standing; 3) sigmoid approximation of elevation to identify the initiation and end of up/down periods; 

4) foot angle calculation from accelerometers to recognize stairs from inclines climbing. 

 

 

Figure 3-3 - Top left: detection of locomotion using the pitch angular velocity. The circles represent the detected TO instants. Top 
right: distinction between sitting and standing using the total force signal. The horizontal line represents the 50% body weight 
(BW) threshold. Bottom left: the sigmoid used to estimate the start and end of an up/down period after filtering the barometer 
signal. The start and end points correspond to the 5% and 95% levels of the sigmoid, respectively. Bottom right: the foot angle 

corresponding to the ground slope calculated by the accelerometers. The dashed arrows represent the global frame and the 
straight arrows the foot frame, both in the sagittal plane. 
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2.4 Validation 

The classification algorithm was applied and tested on the entire dataset for the initial rules and for 

the sensitivity analysis, i.e. when the initial threshold values were varied to identify their effect on the 

classification performance. Therefore, the entire dataset was considered for testing and no training was 

applied since the classification rules were predefined. The activity output from the algorithm and from the 

reference were segmented into 5 second windows with 2.5 second overlaps. Each activity type was assigned 

a numerical value. For both outputs, the median value was calculated and used for validation. The 

performance of the classifier was evaluated against the reference by calculating sensitivity, specificity, 

precision and accuracy. For postural transitions, the reference algorithms outputs the occurrence time of 

each transition; this was used separately to validate transitions obtained from the instrumented shoes. The 

performance measures are computed by calculating the four main components, the True Positives (TP), True 

Negatives (TN), False Positives (FP) and False Negatives (FN); by counting the events from the confusion 

matrix (Table 3-1). 

 

 

 

 

 

3 Results 

For each 5 second epoch, the classifier output was compared to the reference labels in a confusion 

matrix, Table 3-1. Table 3-2 summarizes the performance of the classifier. Sensitivities and precisions for 

sitting, standing and walking exceeded 95%. The lowest precision was 89% for stair climbing and the lowest 

sensitivity for elevator up (79%) and down (78%). However, misclassifications of these activities occurred 

in the parent class, i.e. stair and ramp were misclassified as walking, and elevator as standing. Furthermore, 

a total of N=20 stair and N=20 ramp periods were correctly classified, and only one out of 22 elevator 

up/down periods was misclassified into standing. The overall accuracy of the algorithm was 97.41%. 
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Table 3-1-Confusion matrix of activities. Each unit in this table corresponds to a 5-second activity window. Sit: sitting; Stand: 
standing; LW: level walking; USt: upstairs; DSt; downstairs; UH: uphill; DH: downhill; ElU: elevator up; ElD: elevator down 

Reference �� Sit Stand LW USt DSt UH DH ElU ElD 

Predicted �� 

Sit 6452 53 1 0 0 0 0 0 0 

Stand 0 2999 123 0 0 1 0 8 7 

LW 23 81 2586 1 2 5 2 0 1 

USt 0 1 7 67 0 0 0 0 0 

DSt 0 1 3 0 78 0 1 0 0 

UH 0 0 9 0 0 152 0 0 0 

DH 0 0 0 0 0 0 159 0 0 

ElU 0 1 0 0 0 0 0 30 0 

ElD 0 3 0 0 0 0 0 0 28 

 

A total of 67 Sit-to-Stand and 69 Stand-to-Sit transitions were detected by both the reference system 

and the classifier. No false positives occurred in classification of postural transitions, hence sensitivity and 

precision of classifying postural transitions were both 1. 

 

Table 3-2-Sensitivity, specificity, precision and accuracy of the classifier 

Activity Sensitivity Specificity Accuracy Precision 

Sitting 0.9964 0.9916 0.9940 0.9917 

Standing 0.9554 0.9857 0.9783 0.9558 

Level Walking 0.9476 0.9887 0.9800 0.9575 

Upstairs 0.9853 0.9994 0.9993 0.8934 

Downstairs 0.9750 0.9996 0.9995 0.9398 

Uphill 0.9620 0.9993 0.9988 0.9441 

Downhill 0.9814 1 0.9998 1 

Elevator Up 0.7895 0.9999 0.9993 0.9677 

Elevator Down 0.7778 0.9998 0.9991 0.9032 
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3.1 Sensitivity to threshold analysis 

The best sensitivity and specificity for sitting and standing after varying thBW were obtained for 

50%BW. The performance of the classifier changed by less than 2% for these activities when thBW 

40-70%BW. The best performances in terms of activities with elevation change were obtained for thEL of 2 

or 2.5m, with the exception of the elevator down sensitivity (16% improvement at 2.5m). The performance 

change was negligible for thEL 1.5m except for the sensitivity of upstairs (25% reduction) and elevator down 

(29% reduction) activities. 

4 Discussion 

4.1 Classifier performance 

In this study, we confirmed our hypotheses regarding PA classification, i.e. possibility to recognize: 

body elevation, postural transitions, and locomotion type, respectively from barometric pressure, foot 

pressure and inertial sensors embedded in the shoe-based system. Results show an outstanding level of 

accuracy, 97% overall, and are extremely convincing from several perspectives. 

Firstly, the detection of locomotion was achieved with a high sensitivity (>94%). The detection of 

TO events in a cadence range of 40-160 steps/min proved adequate for walking classification. Notably, very 

few (23/6452=0.4%) misclassifications between sitting and walking were observed.  

Secondly, the distinction of sitting and standing postures using estimated TF was highly accurate 

(sensitivities of 99% for sitting and 96% for standing). All postural transitions were correctly classified 

without false positives. However, it should be noted that no confounding activities were performed; this 

could have boosted the postural transition classification performances. 

Thirdly, activities with elevation changes were classified with high sensitivities (>96%) except for 

elevator use. However, incorrectly classified periods of elevator use were classified into the parent class, 

standing. Moreover, results showed a perfect identification of stairs and incline walking periods. The low 

pass filtering of elevation data eliminated several potential false positives that could have been caused by 

high frequency noise and drift. 

Finally, results were extremely impressive in terms of precision. Specificities and accuracies for all 

activities exceeded 97%, reflecting the excellent classification performance. Nevertheless, care must be 

taken in interpreting these results for up/down periods due to class imbalance. 
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The sensitivity analysis varying thBW between 10%-90% BW to distinguish sitting from standing 

confirmed the pertinence of this threshold. By changing thBW between 40-70%, the performance changed 

by less than 2%, meaning the threshold is robust to changes up to 20% of its value. A similar analysis for 

the thEL revealed best performances at 2-2.5m, with only two activities having lower sensitivities at 1.5m. 

This confirmed the selection of thEL and its robustness to changes up to 25%. 

This study is among the first to achieve such performance levels in classification. The algorithm 

outperformed other classifiers based on a single body location in terms of activity type [47], transitions [48] 

and overall accuracy [253]. An overall accuracy of 99% was reported in [33] using instrumented shoes after 

rejecting more than 30% of the available data. However, the performance before rejection is comparable to 

the results of this study, with better sensitivity and precision on stair classification of our current algorithm. 

As for systems with several body locations, the performances reported in [40] revealed an overall 

accuracy of 99% using 5 sensors. However, this system has been mainly used for activity reference because 

of its setup complexity. The four-sensor system presented in [254] reported an overall accuracy of 96.4% 

comparable to our results. This asserts the validity of using a single sensor location for accurate activity 

classification 

4.2 System advantages 

There are several novelties in the proposed algorithm. The use of an adequate sensor at each node 

of the activity classifier shows the direct relationship between the nature of data (pressure, angular velocity, 

inclination, elevation) and the activity output (load change during stand/sit, leg swing during locomotion, 

incline walking, stairs climbing). 

The algorithm rules are inspired from movement biomechanics and not resulting from a 

training/testing procedure. This could be advantageous when applying the algorithm to other populations 

since retraining would not be an issue. The classification rules were inspired from the literature, but these 

rules were not applied for classification beforehand. For example, the sit-to-stand model in [262] was used 

to characterize transitions in lab conditions and not to classify transitions with respect to other activities. 

Similarly, the TO detection from [17] was used to identify events for gait analysis during walking only 

rather than classifying gait in daily life.  
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4.3 Clinical perspectives 

Combining activity monitoring and gait analysis appears very attractive for future clinical 

applications. Gait analysis of walking periods can be performed with the instrumented shoes to obtain 

spatio-temporal gait parameters such as gait speed, cadence, foot clearance, stride length and variability 

[136]. These parameters provide important diagnostic and prognostic information related to fall risk and 

frailty in elderly persons. An additional original contribution of the current study is the possibility to 

investigate avoidance behavior. For instance, taking elevators instead of stairs could reflect different 

processes, ranging from avoidance due to fear of falling (e.g. descending stairs), to the high energetic cost 

of stair climbing, or loss of strength. Thus, the number of stairs taken during a day can be a valuable mobility 

indicator for a clinician, potentially signaling early modifications in endurance and health status. This 

represents a major advantage compared to other systems that can only characterize stair climbing in terms 

of number of floors. Furthermore, postural transitions could be characterized in daily life with this system 

using the foot loading data from the insole. Similarly, monitoring changes in transitions performance could 

enhance early detection of significant health changes. 
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Chapter 4  

Physical behavior in older persons during daily life: Insights 
from instrumented shoes�� 

Abstract 

Activity level and gait parameters during daily life are important indicators for clinicians because 

they could provide critical insights into modifications of mobility and function over time. Wearable activity 

monitoring has been gaining momentum in daily life health assessment. Consequently, this study seeks to 

validate an algorithm for the classification of daily life activities and to provide a detailed gait analysis in 

older adults. A system consisting of an inertial sensor combined with a pressure sensing insole has been 

developed. Using an algorithm that we previously validated during a semi structured protocol, activities in 

10 healthy elderly participants were recorded and compared to a wearable reference system over a 4-hour 

recording period at home. Detailed gait parameters were calculated from inertial sensors. Dynamics of 

physical behavior were characterized using barcodes that express the measure of behavioral complexity. 

Activity classification based on the algorithm led to a 93% accuracy in classifying basic activities of daily 

life. Gait analysis emphasized the importance of metrics such as foot clearance in daily life assessment. 

Results also underlined that measures of physical behavior and gait performance are complementary. 

Participants gave positive feedback regarding the use of the instrumented shoes. The results confirm the 

validity of the instrumented shoes for physical behavior monitoring in older adults. 

  

                                                      
�Published in Sensors MDPI journal under Moufawad el Achkar, C.; Lenoble-Hoskovec, C.; Paraschiv-Ionescu, A.; 
Major, K.; Büla, C.; Aminian, K., “Physical Behavior in Older Persons during Daily Life: Insights from Instrumented 
Shoes”, Sensors 2016, 16, 1225. 
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1 Introduction 

Physical activity and behavior are critical to maintain a healthy long-term lifestyle. Several chronic 

health conditions and diseases are caused or aggravated by physical inactivity [265], and sedentary behavior 

(time spent in sitting or lying posture) is linked to higher mortality rates even in relatively active persons 

[266]. In older adults increased activity levels can sustain independence and delay the onset of decline [252], 

and lower fall risk [267].  

Today’s standard in activity assessment is shifting from questionnaires to sensor-based 

technologies, triggered by the poor recall and subjectivity of the former compared to objective measures 

obtained from the latter [17]. Body worn motion sensors, mainly based on inertial measurement units (IMU) 

[27], [91] offer a pervasive (indoor/outdoor) monitoring. The main challenge remains in the validation of 

activity classification algorithms relying on wearable sensor data, which are mostly based on machine 

learning rules, i.e. learning from a training set and extending classification to a testing dataset. Validation 

procedure is generally performed in laboratory conditions, where performed activities are scripted and 

annotated by an observer following the participant. Alternatively, validation can be performed freely in daily 

life without restrictions (other than those pertaining to wearing the sensor systems e.g. showering during 

monitoring) and without the presence of an observer [268]. Semi-structured data collection protocols were 

recently recommended whereby the participant performs a series of activities in a lifelike scenario (e.g. 

walking along a track with stop points for sitting) for at least 30 min at their comfortable speed and in the 

manner they prefer [52]. This latter type of data collection could be extremely useful for algorithm 

development before validation in real-life conditions. 

The difficulty in validating algorithms to classify activity when using wearable sensors lies in 

acquiring the ground-truth, i.e., the real activity used as reference. To date, three main ground-truth reference 

systems have been used: video observation [42], [43], [47], [269], direct observation with annotation [44], 

[48], and self-annotation by the participant [45], [46], [49]. Video and direct observations both enable 

accurate reporting of activity reference but have several drawbacks. In direct observation, the study 

investigator has to write down the activities in real time as they occur, and subsequently add a manual 

labeling step by evaluating the sensor signals. This task is highly time-, effort-, and resource-consuming 

[35]. Moreover, it interferes obtrusively with the regular activities of monitored subjects in their home 

environment. Video observation also requires tedious post-analysis to label the activities from the recordings 

and poses inevitable privacy concerns [92]. Additionally, it is recommended that at least two investigators 

label activity reference from video or direct observation to minimize observer errors [52]. Self-reporting is 

certainly less intrusive than the two other approaches. However, it can lack accurate activity labeling due to 
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subject forgetfulness and has been shown to misestimate activities as well as, in some cases, to result in 

over-reporting higher intensity instances [270]. Since most activity monitoring targets populations that are 

somewhat diseased or at-risk, self-reporting can be unreliable, especially when considering cognitively 

impaired older persons. 

The use of an already validated wearable monitoring system is an alternative to the aforementioned 

validation techniques that has been applied in other works [50], [271]. Validations relying on such systems 

eliminate the need for an external observer or intrusive video recording, and profoundly reduce 

post-processing complexity. The ground-truth activity labels can be simply obtained by applying the 

validated algorithms on collected data. However, participants might be required to wear or carry additional 

sensors during the validation phase. It is recommended that a wearable reference system has at least 90% 

sensitivity and specificity for activity classification [52], which has already been demonstrated by some 

multi-sensor systems [40], [41].  

Walking is an important activity in daily life. Nevertheless, its assessment is usually performed in 

the laboratory, using stationary gait analysis systems. Lab-based gait analysis has shown efficacy in fall risk 

evaluation [272], and fear-of-falling related gait modifications [84]. Gait parameters such as stride velocity 

and cadence have been associated with mortality [83], [273], whereas foot clearance might reveal different 

obstacle avoidance strategies in young and elderly subjects [274]. Building on lab-based assessment, gait 

monitoring during daily life has provided promising preliminary results in recent years, including fall 

prediction and risk estimation [267] as well as insights on the association between fall incidence and gait 

performance [275]. Nevertheless, due to the predominant sensor configuration (i.e., trunk attached sensor) 

in studies of gait under real-life conditions, only a limited number of gait parameters have been studied so 

far. 

The complexity of physical behavior in daily life has been recently revealed by multi-sensor systems 

combining the different activity determinants, (i.e., FITT principle for frequency, intensity, time, and type), 

in a barcode and calculating the entropy of the activity barcode [74]. This combination provides a global 

index of physical behavior and its dynamics. Applying complexity measures in physical behavior analyses 

has proved very useful in providing improved assessment in patients suffering from chronic pain. The 

information from activity barcodes is extremely rich and its application to other population, such as elderly 

persons, could provide complementary information beyond those obtained from classical analyses of 

physical behavior and gait performance.  

Consequently, there is an evident need for an instrument that can combine capturing reliably, easily, 

and for a long period both the coarse-grained daily activity of older adults in terms of activity type, and the 
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fine-grained gait analysis of locomotion periods. We previously developed instrumented shoes and validated 

an activity classification algorithm using a wearable reference system and applying a semi-structured 

activity protocol in healthy elderly subjects [276]. The instrumented shoes system has multiple sensor 

modalities capable of measuring the load under each foot and its movement, all contained in a single 

location. A global accuracy of 97% was achieved by using an event-driven algorithm inspired from 

movement biomechanics, revealing the advantage of using the foot (or shoe) as a single sensor location. In 

fact, compared to systems with sensors placed on multiple body locations, the algorithm revealed similar 

activity classification performances. However, the system has so far not been validated in real-life 

conditions. Furthermore, by recognizing daily walking activity, gait parameters could be estimated using an 

IMU-based algorithm [136]. Activity barcodes could be built using the activity output of the classification 

algorithm combined with pertinent gait parameters. Therefore the objectives of this study were, first, to 

demonstrate the concurrent validity of the instrumented shoes system in classifying basic activity types in 

real-life conditions. Secondly, we aimed to provide a refined analysis of locomotion periods by presenting 

clinically relevant gait parameters that until now cannot be obtained routinely outside of a laboratory setting. 

Finally, the potential of calculating a physical behavior complexity metric using the instrumented shoes was 

evaluated. 

2 Materials and Methods  

2.1 Instrumented shoe and reference systems 

The instrumented shoe system consists of two main components: an inertial measurement unit 

(IMU) Physilog® (GaitUp, CH) with 3D accelerometer, 3D gyroscope, 3D magnetometer, temperature and 

barometric sensor and a force sensing insole (IEE, LU) that measures the pressure under 8 regions of the 

foot: hallux, the remaining toes, the first, third and fifth metatarsals’ heads, the lateral longitudinal arch, the 

lateral and medial heel. The pressure sensing insole is sandwiched between two layers of neoprene for 

protection, humidity resistance and increased comfort. The complete insole has a thickness of 3 mm. The 

Physilog® has a thickness inferior to 1 cm and weighs less than 20 g. The system components are shown in 

Figure 4-1. All sensors are powered by a battery and data are acquired on a memory card, both integrated 

in the Physilog® module. The insole data is digitized and amplified by custom-made electronics placed in 

a separate box. One Physilog® was placed on the dorsal aspect of each shoe and one insole was inserted 

into each shoe. The box containing the electronics was strapped to the ankle. 

Participants were additionally equipped with a reference system consisting of one Physilog® sensor 

on the right thigh and another on the trunk, both fixed with hypoallergenic tape to minimize discomfort and 
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protect the sensors from humidity. These two sensors were used to provide the reference activity for 

validation purposes [41]. This reference system has proven high sensitivity and specificity (>90%) in 

classifying sitting, standing and walking, and has already been used for similar validation purposes in other 

studies [271], [277]. 

Instrumented shoes and reference systems were synchronized electronically by radio frequency and 

all data were sampled at 200 Hz, offering an autonomy of more than 16 hours.  

 

 

Figure 4-1 - Instrumented shoe system (right shoe). The Physilog® (GaitUp, CH) is placed on a strap looping around the shoe 
with Velcro® tape. The insole (in blue) is placed inside the shoe and linked to the Physilog® by a cable. Converting electronics 

are in the box with handles (lateral side of the shoe), connected to the strip stemming from the insole. 

 

2.2 Participants and data collection 

Ten healthy community-dwelling elderly participants were recruited for this study, 8 men and 2 

women. Overall physical characteristics of this convenience sample were (mean ± standard deviation): age 

69.9 ± 3.1 years old, weight 80.1 ± 14.7 Kg, height 171.7 ± 8.9 cm, shoe size range 39-45 EU. 

Participants came to the laboratory and were equipped with the instrumented shoes and reference 

system. Two tests were performed for the purpose of calibration: a) standing still for 5 seconds; b) level 

walking for 10 straight steps. A semi-structured activity protocol was then followed by each participant, the 

results of which have already been reported [276]. Participants then returned to their daily activities outside 

the laboratory after the sensor setup. They were simply requested to keep their shoes on over a 4-hour 

monitoring period, used for the analyses in this study. Once the measurement time had elapsed, a study 
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investigator retrieved the sensors from the participant. No observer followed the participants around, so they 

were free to perform their activities independently. All data were stored anonymously on a PC for 

post-processing and analysis. All participants gave written consent to participate and the study was approved 

by the university’s ethical committee: “Quantification of postural transitions using multimodal sensory 

input” under reference “EK 2012-N-32”. 

2.3 Sensors calibration 

Inertial sensors were calibrated in static position to correct for any gain and offset errors by using 

Ferraris’ method [261]. The sensors were then aligned to the foot frame during a level walking period of 10 

steps at the laboratory. The gravity alignment was done during foot static periods (stance phase) and the 

medio-lateral axis was found as the principal component during swing phase of the foot by assuming that 

the movement was mainly in the sagittal plane. 

Raw pressure data from the insole were calibrated to the body weight (BW). The sum of all 16 

sensors from both feet was divided by BW which was obtained during 5 seconds of static standing initially 

performed in the laboratory. This provided an estimation of the total force (TF) under the feet, eq.1. 

 

  (eq.1) 

where i ranges from 1-8. 

2.4 Event-driven activity classification algorithm  

The algorithm is based on a previous study that evaluated the activity classification in a 

semi-structured protocol [276]. The algorithm is capable of classifying the basic activities such as sitting, 

standing, walking; and activity subclasses including stair climbing, incline walking, and elevator use. An 

event-driven classification tree was applied to classify the activities at each node by using data input from 

the different sensors in the instrumented shoes. Locomotion periods were identified by step detection using 

Toe Off (TO) instants. The pitch angular velocity (foot rotation around the medio-lateral axis) was subjected 

to a wavelet transform enhancing the TO, as well as other gait events, i.e. mid swing and Heel Strike (HS) 

instants. A Coiflet order 5 wavelet was used to decompose the signal into 10 scales, and two combinations 

were used. Subtracting the 9th approximation from the first emphasized HS, while subtracting it from the 

third emphasized TO [95]. Stair climbing and elevator use were detected by using barometric pressure, 

whereas foot inclination from IMU during stance was used for incline and level walking identification. A 
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threshold on the TF estimate is applied on the non-locomotion data to classify sitting and standing. Lying 

and sitting were considered as a single activity type in this study. 

2.5 Evaluation of the activity classification algorithm 

The reference activity classification algorithm combines information from trunk and thigh IMU in 

order to classify basic activity [23]. In the current study, the validation is mainly intended for these basic 

activities (walking, sitting/lying, and standing) since there was no reference data for the remaining 

subclasses. The activity outputs from the instrumented shoes classifier and reference algorithm were 

segmented into 6s windows to remove spurious activities. The median activity from the instrumented shoes’ 

and the reference system’s classification algorithms were compared for each 6s window and the true 

positives (TP), true negatives (TN), false positives (FP), false negatives (FN) are obtained. Sensitivity, 

specificity, precision, F1-score (F-measure) and global accuracy were calculated for each activity class 

according to the following equations: 

 

 

 

 

 

 

2.6 Gait analysis  

Locomotion periods obtained through the activity classifier were retained for this specific analysis. 

The cumulative distribution of locomotion bouts was extracted by taking into consideration any period with 

3 or more detected steps, corresponding to a minimum of 1 gait cycle (e.g. left-right-left or right-left-right 

step sequences). The minimum of 3 steps has been applied for gait detection in several other studies [54], 

[275] since this ultimately prevents the algorithm from classifying spurious foot movement. A gait cycle 

based on the locomotion detection algorithm is defined between two successive TO instants of each foot 
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(Figure 4-2). Cadence distribution is estimated with a histogram of 1 step/min bins. The number of bouts, 

total duration and total number of steps are tabulated for upstairs, downstairs, uphill and downhill periods, 

respectively. 

Gait analysis was performed in terms of spatio-temporal parameters i.e. stride velocity, stride length, 

cadence, inter-stride gait cycle time variability, and foot clearance parameters, i.e. maximal heel clearance 

(HC), and minimum toe clearance (TC) [141]. HC corresponds to the maximum heel height above the 

ground at the beginning of the swing phase whereas TC corresponds to the minimum toe height above the 

ground in the middle of the swing phase [141]. These gait parameters were extracted from locomotion 

periods with at least 20 steps (combined right and left feet) to achieve steady-state gait [278]. Initiation and 

turning steps, i.e. steps with a turning angle higher than 20 degrees, were detected [136] but omitted for the 

parameter extraction since they do not pertain to steady-state gait analysis. Stair and slope locomotion 

(ground inclination of more than 5% or 3 degrees) was also excluded from the analysis.  

 

 

Figure 4-2 - Foot clearance during a step from a single foot. The maximum heel (HC) and minimum toe (TC) clearance are 
shown with arrows. Two consecutive toe off instants are shown, forming a complete gait cycle 

 

2.7 Complexity and activity barcodes 

Activity levels were obtained from the states defined by Paraschiv-Ionescu et al. [74]. In summary, 

these states start by low levels pertaining to low intensity during sitting and standing, going to higher levels 

of activity obtained by combining gait cadence and duration of locomotion periods. Overall, this 

classification yields 18 ranked states, where each state is represented by a color code, with warmer colors 

indicating higher activity intensity. The barcodes are based on 1s-windows represented by a color 

corresponding to the median of the activity state over the samples forming the window. Previous work has 
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shown that such a barcode has higher color (state) entropy in healthy subjects compared to subjects with 

pain or disease [74]. Using the outcome of instrumented shoes, activity barcodes were similarly evaluated 

by using 14 states (represented by numeric codes) instead of 18 (Table 4-1). This reduction resulted from 

assigning only a single numeric code to both sitting (1) and standing (2) whereas, in the original activity 

barcode, sitting and standing were assigned 2 and 4 numeric codes respectively, based on trunk movement 

intensity. These states were reduced to 2 in the present study to avoid using trunk sensor data and keep the 

activity barcode specific to the instrumented shoes. Walking was segmented into locomotion periods of 

duration d<30s, 30<d<120s and 120<d. For each locomotion period, the mean cadence was calculated in 

steps/min. The cadence was then segmented into cad<50, 50<cad<80, 80<cad<140 and 140<cad. The 

combinations of duration and cadence represent 12 numeric codes as shown in Table 4-1.  

 

Table 4-1 – Coding activities based on duration and intensity thresholds; d: duration, cad: cadence 

Activity type Activity duration Activity intensity Numeric code 

Sitting/Lying - - 1 

Standing - - 2 

Walking 

d<30s 

cad<50 3 

50<cad<80 4 

80<cad<140 5 

140<cad 6 

30<d<120s 

cad<50 7 

50<cad<80 8 

80<cad<140 9 

140<cad 10 

120<d 

cad<50 11 

50<cad<80 12 

80<cad<140 13 

140<cad 14 

 

The entropy (complexity) of obtained barcodes was estimated using the Lempel-Ziv complexity 

metric [279], [280]. The correlation between the instrumented shoes and reference system complexities was 

calculated. The correlation between the Lempel-Ziv complexity evaluated from the instrumented shoes and 

gait parameters such as the stride velocity, stride length, max HC and min TC, as well as the duration of 

steady-state gait cycles was also calculated.  
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2.8 System comfort evaluation 

Gathering feedback from the system users is important. Therefore, at the end of each data collection, 

the participants were asked the following question: “On a scale ranging between 0 “not comfortable at all” 

to 10 “very comfortable”, what score would you give to the system in terms of comfort during daily use?” 

Scores were recorded by the investigator retrieving the sensors at the end of the monitoring period. 

3 Results 

3.1 Activity Classification 

A sample output of the event-based activity classification algorithm is shown in Figure 4-3. The 

data are selected from one subject and show a sequence of walking, standing and sitting. The 50%BW line 

is marked on the figure to show the distinction between sitting and standing. The TO instants used to classify 

walking are displayed in Figure 4-4, which is a zoom-in of the same walking period from Figure 4-3. 
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Figure 4-3 - Snapshot of classifier output from one participant (taken ~1h after the beginning of the recording). Top: plot of TF 
showing the 50% BW line (dashed red line). Bottom: pitch angular velocity: right foot (blue) and left foot (green). The vertical 

dashed bars represent different activity periods (walking, standing and sitting). 
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Figure 4-4 – Zoom-in on the walking period from Figure 4-3. The pitch angular velocity of the right foot is shown as a continuous 
line, and the left foot as a dashed line. TO instants are represented by circles. 

 

Table 4-2 shows the confusion matrix and the classifier performances compared to reference 

activity. Sensitivity, specificity, precision and F-score were all 90% or higher for all activities except the 

sensitivity of standing (88%). Only 11 sitting/lying instances were predicted as walking, and one instance 

of walking were predicted as sitting/lying. Highest sensitivity was obtained for sitting (99%) and highest 

specificity for walking and sitting/lying (98 and 99%). A precision of 95% was achieved for sitting/lying 

as well as an F-score of 97%. The algorithm achieved a global accuracy of 93%. 
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Table 4-2 – Confusion matrix and classifier performance compared to reference activity. Each unit represents a 6 second activity 
epoch 

                  Predicted 

Reference 

Sitting/Lying Standing Walking 

   

Sitting/Lying  9789 87 11 

Standing  566 6788 402 

Walking  1 420 3986 

Sensitivity  0.99 0.88 0.90 

Specificity  0.99 0.93 0.98 

Precision  0.95 0.93 0.91 

F-score  0.97 0.90 0.91 

 

3.2 Gait analysis of locomotion periods 

Mean cadence for every locomotion period with 3 or more steps is plotted as a histogram with a bin 

size of 1 step/min. A kernel smoothing fit is applied on this histogram as shown in Figure 4-5 (a). The two 

peaks of this fit correspond to a bimodal distribution with mode values of 83 and 93.5 steps/min. The 

separation of cadence distributions between locomotion periods of 20 or more steps and locomotion periods 

of less than 20 steps is also showed in Figure 4-5 (b) to better illustrate the hypothesis that cadence mode 

during short locomotion bouts is lower. This is done by obtaining the probability density function of each 

instantaneous cadence distribution per subject and calculating a mean ± SD distribution. The distribution 

modes in this case are 90 steps/min (less than 20 steps) and 104 steps/min (20 steps or more). These values 

are somewhat different from the modes obtained for the entire distribution above because of the discrete 

separation of locomotion periods. The cumulative distribution of locomotion period durations (level and 

non-level) is shown on a semi-log plot, Figure 4-5 (c). The mean (thick line) and SD (shading) describe the 

locomotion period durations across all subjects. The longest continuous locomotion period was 432 seconds 

or 7.2 minutes. About 50% of locomotion periods lasted less than 7.4 seconds, and 94% were less than one 

minute. 
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Figure 4-5 – a) Mean cadence distribution for all locomotion periods with 3 or more steps, b) Instantaneous cadence distribution 
for locomotion periods with 20 or more steps vs less than 20 steps, c) Cumulative distribution of locomotion period duration 

across all subjects (log scale for locomotion period duration axis). For b) and c): mean is represented by a thick line and SD by a 
shaded area. 

 

Table 4-3 displays, for each participant, results of gait analysis during level locomotion over periods 

of 20 steps or more. Minimum, maximum, mean, and standard deviation of the duration of locomotion 

period are reported, as well as the number of bouts and analyzed gait cycles. The following gait parameters 

are shown as mean ± standard deviation (SD): stride velocity, stride length, maximum heel clearance, 

minimum toe clearance, and gait cycle time variability. The total number of turning steps is also featured in 

this table. 
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Table 4-3 – Gait characterization from level walking periods of at least 20 steps. Reported values are mean ± SD unless 
otherwise stated.  

ID 
Duration (s) 

(min/max) 
Duration (s) 

# 

Bouts 

# Gait 

cycles 

Stride 

Velocity 

(m/s) 

Stride 

length (m) 

Heel 

Clearance 

(m) 

Toe 

Clearance 

(m) 

Variability 

(%) 

# 

Turning 

Steps 

1 13.86/190.48 56.73±49.34 34 1419 1.07±0.19 1.33±0.15 0.28±0.04 0.02±0.01 8.19±7.66 232 

2 12.82/431.82 48.65±73.74 34 1346 1.29±0.20 1.43±0.14 0.30±0.04 0.03±0.01 8.83±11.05 240 

3 14.59/284.61 94.80±75.01 18 1284 0.97±0.16 1.22±0.12 0.27±0.03 0.04±0.02 6.56±3.54 102 

4 15.04/295.95 58.99±63.54 50 2213 1.12±0.20 1.32±0.12 0.27±0.02 0.03±0.01 7.21±6.11 390 

5 12.97/60.54 24.36±10.69 31 538 1.07±0.34 1.22±0.32 0.26±0.05 0.04±0.01 11.21±10.12 176 

6 10.68/130.64 35.07±27.53 39 1082 1.28±0.25 1.37±0.22 0.25±0.03 0.03±0.01 9.69±11.73 283 

7 12.63/162.40 29.04±38.67 14 307 1.47±0.38 1.55±0.26 0.27±0.03 0.03±0.01 9.51±7.97 96 

8 13.16/275.15 53.49±64.30 60 2708 0.99±0.16 1.07±0.12 0.22±0.02 0.03±0.01 7.03±6.30 345 

9 12.97/368.34 49.77±55.64 50 1939 1.37±0.18 1.60±0.16 0.31±0.03 0.03±0.01 7.85±8.11 392 

10 15.22/277.31 84.35±96.03 11 735 1.06±0.12 1.26±0.10 0.22±0.01 0.04±0.01 8.79±9.04 65 

 

Table 4-4 shows the number of stairs and incline walking bouts (non-level locomotion), along with 

the total duration and number of steps taken during these walking activities. 
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Table 4-4 - Non-level locomotion periods. TD: total duration in seconds. 

Participant  Upstairs Downstairs Uphill Downhill 

 Bouts  TD (s) Steps Bouts  TD (s) Steps Bouts  TD 

(s) 

Steps Bouts  TD 

(s) 

Steps 

1 3 47.27 43 7 149.54 117 2 99.49 71 1 45.21 36 

2 2 52.60 48 5 393.09 374 1 35.49 33 1 32.85 31 

3 0 0 0 3 65.95 55 1 36.83 27 0 0 0 

4 3 95.45 84 5 243.36 205 1 67.18 55 0 0 0 

5 2 55.73 48 3 60.60 53 0 0 0 0 0 0 

6 7 272.51 253 5 181.08 177 0 0 0 0 0 0 

7 6 40.49 33 2 29.91 26 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 

9 11 193.77 162 14 168.33 150 2 16.39 16 0 0 0 

10 3 96.05 76 1 21.08 17 0 0 0 0 0 0 

 

To illustrate the range of walking performance, gait speed (stride velocity) and stride length profiles 

are shown in Figure 4-6. The cumulative distributions were obtained from the cumulated sum of the 

probability distributions of each subject. Subsequently, the average cumulative distribution (thick line) was 

calculated as the average of the cumulative distributions from each subject, and the shading represents the 

area between the 5th and 95th percentiles of the cumulative distributions. 

 

 

Figure 4-6 – Left: stride velocity distribution, right: stride length distribution as mean (thick line) and 5th/95th percentile shading 
across all subjects 
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Foot clearance is a novel parameter measured in daily life in this study. To highlight the importance 

of measuring this parameter, Figure 4-7 shows the relationship between stride velocity and maximum 

HC/minimum TC, respectively. Pearson’s correlation coefficients reveal moderate positive correlation 

between HC and stride velocity (r = 0.50; p<0.001) and weak negative correlation between TC and stride 

velocity (r = -0.18; p<0.001). 

 

Figure 4-7 - Maximum HC (left) and minimum TC (right) as a function of stride velocity for all analyzed steps 

 

3.3 Activity barcodes, complexity metric and activity distribution 

Table 4-5 presents individual barcodes constructed for each participant and the corresponding 

Lempel-Ziv complexity obtained from the instrumented shoes and the reference system, respectively. The 

correlation between the reference and the instrumented shoes barcodes is considered as strong (r = 0.76, 

p<0.05). 

The correlation between complexity evaluated by instrumented shoes and relevant gait parameters 

was calculated to shed light on the complementarity of behavioral complexity and gait analysis. The 

Lempel-Ziv complexity showed little to no correlation with mean stride velocity (r = 0.02, p = 0.96), stride 

length (r = -0.12, p = 0.75), max HC (r = -0.05, p = 0.88) and min TC (r = -0.28, p = 0.43). However, this 

metric was strongly correlated to the number of gait bouts with more than 20 cycles (r = 0.91, p<0.001) but 

not with the mean duration of these gait bouts (r = -0.24, p = 0.50) nor their maximum duration (r = 0.14, p 

= 0.71). 
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Table 4-5 - Subject specific activity barcodes. The scale on the right indicates the activity intensity, starting from 1: sitting, 2: 
standing, 3-14: walking with different cadences and locomotion period durations. Lempel-Ziv complexity values for each subject 

and for each activity monitoring system are shown 

 Lempel-Ziv complexity Activity barcodes from instrumented shoes 

 Instrumented 

Shoes 

Reference Scale: 

P1 0.286 0.480 

P2 0.3 0.521 

P3 0.294 0.449 

P4 0.383 0.628 

P5 0.305 0.588 

P6 0.367 0.575 

P7 0.289 0.526 

P8 0.409 0.566 

P9 0.371 0.579 

P10 0.258 0.339 

 

 

3.4 Evaluation of system comfort 

A total of 9 scores from the 10 participants were collected. Missing data is due to the fact that 

assessment of comfort was introduced to the study protocol only after the first data collection. The scores 

are distributed as follows: 10, 9, 10, 10, 10, 8, 10, 10, 9, indicating good overall satisfaction (mean 9.6 ± 

0.7). 

4 Discussion 

This study presents evidence supporting the feasibility and validity of using an instrumented shoes 

system to monitor and classify activity during daily life in community-dwelling elderly subjects. Two 

algorithms were combined in order to provide both a coarse grained activity classification and fine-grained 

gait analysis towards a comprehensive evaluation of real-life physical behavior. Besides results of the 

system’s validation, several metrics were proposed to characterize various aspects of daily life physical 

behavior. Those included postural allocations, locomotion bouts distribution, gait features such as foot 

clearance and velocity, as well as complexity of physical behavior.  
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4.1 Activity classification 

The main validation outcome of this study pertains to the activity classification algorithm that 

performed with accuracy as high as 93% in real-life condition, a performance similar to the reference system 

used for its validation. This result compares favorably to those reported in previous studies on validation of 

activity classification in a real-life setting. Indeed, studies that used sensors on multiple body locations 

reported global accuracies ranging between 84-89% [44]–[46], whereas studies using single sensor systems 

reported accuracy from 76 to 80% [47], [49], [50]. These comparisons further emphasize the advantage of 

using combined inertial and pressure sensing at the foot level as a single location solution. In this study 

under real-world conditions, global accuracy of 93% was slightly lower than the 97% obtained with the 

semi-structured protocol validation [30]. This difference is negligible and appears congruent with similar 

worsened performance observed in previous studies when classification algorithms validated in lab or semi-

structured conditions were applied to data collected under real-life conditions [46], [50], [51]. This disparity 

can be explained by the more limited range in both the type and intensity of structured activity assessed 

during these protocols, as shown in a previous study [281].  

Lowest performances were observed for standing (88% sensitivity) periods. This slightly low 

sensitivity ensued mainly from misclassifications of standing as sitting/lying. Indeed, a couple of transitions 

from sitting to standing were not correctly detected and resulted in two relatively long periods of sitting 

classified as standing. A dedicated postural transition analysis can provide reliable information on the origin 

of such misclassifications. Furthermore, misclassifying standing into walking and vice-versa occurred for 

shortest locomotion periods (~3-5 steps), as well as from a small systematic difference between the two 

systems in defining start/end of locomotion periods. However, longer (i.e., 20 steps or more) locomotion 

periods were almost equally identified by both systems. The sensitivity and precision of walking were higher 

than 90%, reaching similar performance compared to that of the reference system [41]. 

Sitting and lying activities were combined into a single activity type. This limitation of the system 

is arguably relative since lying is an activity class that will rarely be observed by the system since people in 

their home environment would frequently remove their shoes before going to bed. A further relative 

limitation relates to the assumption we made that energy expenditure of lying and sitting are similar [282]. 

It could be hypothesized that during lying, the insole should measure negligible force under the feet, and 

this in turn could be used to classify lying. However this remains to be investigated. 
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4.2 Gait analysis 

Instrumented shoes have been used in the past for gait analysis during locomotion tests in clinical 

or laboratory environment [84], [136], [167], [195]. This is, to the best of our knowledge, the first study 

combining activity monitoring and gait analysis using a single instrumented shoes system in daily life.  

In terms of gait analysis, we showed the potential to provide reliable gait parameters for steady-state 

gait (periods with >20 steps). In this study, the mean stride velocity, stride length, maximum HC and 

minimum TC were similar to normative values obtained for an age matched cohort of healthy elderly 

subjects performing a 20m gait test in laboratory conditions [194]. Stride velocity, stride length and cadence 

measured during daily activity are significantly and prospectively associated with falls in elderly subjects 

as shown in a recent study [3]; instrumented shoes providing accurate estimation of these parameters could 

therefore be further used for fall prediction. Another original contribution of this study is to show the 

feasibility to record foot clearance parameters in daily life. To the best of our knowledge, these parameters 

have not yet been retrieved in other than clinical or gait lab settings, and never over extended periods such 

as performed in the current study. There is a major interest in obtaining clearance data from daily life 

especially since this parameter expresses the highest variance in gait data obtained from elderly subjects 

[195]. In the present study, clearance parameters were moderately (HC) and weakly (TC) correlated to stride 

velocity, a result similar to observations made in laboratory-based gait analysis over 20m in age- and health-

matched older population [194]. Therefore, these parameters could provide new insights on a subject’s 

performance in addition to stride velocity; while simultaneously playing a crucial role in obstacle 

negotiation and fall avoidance.  

The cumulative distribution of locomotion periods provides a good illustration of a subject’s overall 

mobility performance. In our study, this distribution varied substantially from one participant to another 

(Figure 4-5). A shift to the left of this sigmoid curve would indicate reduced occurrence of long periods of 

walking. Around 94% of locomotion periods were under one minute. The results vary somewhat compared 

to the literature; for example, Brodie et al. reported that almost 90% were less than a minute [275], whereas 

Orendurff et al. reported 81% of locomotion periods under one minute [54]. This is arguably due to the 

longer monitoring time in these two studies. However, the cadence distribution in the current study revealed 

a bimodal pattern that is similar to the result by Brodie et al. [275], even though the cadence peaks differ 

slightly (again, possibly due to monitoring time). Incidentally, when locomotion periods were separated by 

number of steps (<20 vs 20 or more steps), the cadence modes were similar to those reported in [275]. This 

result in itself is important because it underpins the hypothesis that locomotion strategies are different 

between short and long bouts of walking. Gini index [56] or Kolmogorov-Smirnov distance [283] between 
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distribution curves could be further used for the comparison of activity behaviors between subjects with 

different health conditions, as well as comparisons within the same individual over time to identify change 

in her/his activity level that could flag an underlying health problem 

4.3 Physical behavior complexity 

The high correlation of Lempel-Ziv complexity values obtained from instrumented shoe barcodes 

with the reference system justifies the use of the instrumented shoes to assess physical behavior complexity. 

It should be noted that there is a slight discrepancy due to the few errors of activity classification between 

the two systems, mainly pertaining to misclassifications of walking into standing and vice-versa. A 

systematic underestimation of the Lempel-Ziv complexity metric by the instrumented shoes was observed. 

This could be explained by the lower number of states in the instrumented shoes barcodes (maximum of 14) 

compared to the reference system (maximum of 18). Still, results strongly suggest the potential application 

of instrumented shoes to assess physical behavior complexity in different populations of older persons. For 

instance, this system could be used to monitor progresses in patients undergoing rehabilitation. Another 

potential application could be to evaluate the potential positive or negative effects of a new medication 

regimen on mobility and activity over daytime periods. 

Interestingly, there was no strong association between gait parameters (stride velocity, stride length, 

heel clearance and toe clearance) and the Lempel-Ziv complexity values. In contrast, this measure of 

complexity was highly correlated (r=0.91, p<0.001) with the number of steady-state locomotion bouts (i.e., 

20 steps or more). This result strongly suggests the complementarity of activity pattern analysis and classical 

gait analysis. For example, participant 7 who achieved the highest average stride velocity had 14 steady-state 

locomotion bouts only whereas participant 8 who had the highest complexity value completed 60 bouts of 

steady-state locomotion but had a mean stride velocity lower than 1m/s. Thus, the complexity metric adds 

extra information to mobility assessment by quantifying physical behavior that cannot be achieved by 

looking at activity distribution, step counts, or spatio-temporal gait parameters. 

4.4 System evaluation and drawbacks 

Participants gave highly positive feedback on the usability of the instrumented shoes in terms of 

comfort. Although the methodology used is subject to limitation (participants providing socially desirable 

answers, assessment not based on an exhaustive, previously validated questionnaire), these results can be 

considered as preliminary positive and encouraging from end-users of the instrumented-shoes system. 
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Additional investigation of other dimensions such as its easiness of use or end-users’ concern about 

robustness or reliability will need to be considered in the future. 

Some additional limitations of our study should be noted. The number of participants is limited and 

the recording time only covers 4 hours. All participants were fit and living independently, therefore results 

of this study do not reflect physical behavior and gait performance in frailer older persons who are the 

ultimate target population of this system. However, results of this feasibility study are sufficiently 

encouraging to further consider additional investigations such as including more participants from other 

populations (e.g., frail elderly or stroke patients), as well as performing longitudinal studies within the same 

individuals (e.g., monitoring of activity at baseline and at the end of rehabilitation). In our previous study it 

was also shown that stairs, ramps, and elevators can be recognized [276]. The validation of these events was 

not possible in the present study because the reference system used was minimized to lessen intrusiveness 

and therefore did not include an event marker to provide information on these activities as was the case in 

our previous validation study [276]. However, since the detection of elevation change depends mainly on 

barometric pressure variations, it would be possible to add the detection of such events in real life without 

compromising the accuracy of the classifier. These activities can be added to the activity barcode to enrich 

the complexity metric. In fact, non-level locomotion has different energy expenditure requirements 

compared to level walking and it would be extremely interesting to further compare barcodes in persons 

who frequently engage in such activities to those who rarely do. 

5 Conclusions  

We presented and validated an instrumented shoes system for activity and gait monitoring of older 

adults in daily life. The activity classification algorithm proved to be highly accurate in identifying basic 

activities (siting/lying, standing, and walking) and in distinguishing different types of locomotion (incline 

waling and stairs climbing). The feasibility of classifying daily life activity in elderly subjects was 

demonstrated and the system was capable of evaluating locomotion by performing highly detailed gait 

analysis on locomotion periods of sufficient durations. An additional important contribution of this study is 

to show that clinically relevant gait parameters such as stride velocity, stride length, cadence and their 

distribution during the period of recording can be extracted from instrumented shoes data. Moreover, some 

original gait parameters, such as foot clearance, were detected for the first time in daily life situation. The 

outcome measures from the instrumented shoes can also be accurately combined in an activity barcode 

embedding the complexity of daily life activity. This information on complexity appears to extend and 

enrich the type of information on physical behavior beyond what is usually assessed. The instrumented 

shoes were judged comfortable to use and did not hinder the movement of participants during daily life. 
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Overall, these results are promising to contemplate further applications of this system in more frail and 

diverse populations. 
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Chapter 5  

Classification and characterization of postural transitions 
using instrumented shoes�� 

Abstract 

Rising from a chair and sitting down are two frequent transitions occurring in daily life. The ability 

to perform postural transitions is a vital indicator of daily mobility since postural transitions require a high 

level of coordination and muscle strength. Furthermore, the duration of a transition can be relevant for fall 

risk assessment. The frequency and quality of postural transitions decrease with age; accurate classification 

and characterization of postural transitions in daily life of older adults is therefore needed. Wearable sensors 

provide the possibility of measuring different body segment movements and could inform about postural 

transitions. The trunk and the thigh have been the most predominant locations used to identify transitions. 

However, these locations require the attachment of sensors on the skin and provide little comfort in daily 

life. In this chapter, we propose to use instrumented shoes for postural detection and classification as well 

as the estimation of transition duration from the force signals of the insole. At a first stage, the transition 

duration is validated in laboratory conditions with healthy young and older adults. The potential to 

accurately estimate the total force under the feet is also revealed. Secondly, an algorithm for transition 

detection in daily life is validated against a wearable reference (inertial measurement unit on the thigh). 

Finally, the transition duration is compared to a trunk-based calculation. The instrumented shoes proved to 

measure the transition time with good accuracy compared to force plate. The detection and classification of 

postural transitions was achieved with excellent sensitivity and precision exceeding 90%. The comparison 

of duration estimation with the trunk revealed some variations that could be due to differences between 

lower body forces and upper body kinematics during the transition. In conclusion, the instrumented shoes 

were suitable for classifying and characterizing postural transitions in daily life conditions of healthy older 

adults. 

  

                                                      
� To be submitted in IEEE transactions on Biomedical Engineering, June 2016 
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1 Introduction 

Sit-to-stand (SiSt) and stand-to-sit (StSi) are the most frequent postural transitions (PT) in daily life. 

The inability to perform such transitions results in substantial loss of independence and mobility [284]. 

Rising from a chair is an important but precarious action that challenges balance and stability and has 

therefore been associated with the risk of falling [285].  

From a clinical perspective, efforts to better qualify and quantify PTs have led to the development 

of several clinical functional tests, such as the Five Times Sit-to-Stand Test (FTSST) [286], the thirty second 

(30s) chair stand [287], or the Timed Up and Go (TUG) [288]. For instance, the FTSST measures the time 

required for a person to perform 5 consecutive transition cycles (i.e. SiSt followed by StSi). Results of this 

test have been shown to predict the risk of falling in older adults [289]. Some of these tests have been 

instrumented in an attempt to provide more standardized measuring process enabling the quantification of 

parameters such as trunk tilt angles and movement smoothness [137], [290]–[292]. 

From a research perspective, traditional laboratory-based tools used for PTs’ assessment consist of 

force plates and/or optoelectronic motion systems [293]–[295]. These systems provide accurate 

representations of full body kinematics and load measurements, thus allowing to split the transition 

movements into different phases and to fully characterize them. However, laboratory-based systems suffer 

from setup complexity, stationary setting, and high costs. In addition, PTs assessment in older persons within 

a lab-based, research setting, is a somewhat artificial reflection of their daily reality. Thus, ambulatory 

assessment of PTs (and indeed of daily physical activity) using body worn sensors has been investigated in 

recent years as an alternative, especially because such sensors can be used outside the laboratory setting and 

thus inform about real-life PTs.  

Inertial measurement units (IMU) consisting of accelerometers and/or gyroscopes have been chiefly 

used for PT classification in laboratory settings because they can inform on the posture and orientation of a 

body segment during the task. The two most common sensor locations were the trunk or the thigh, since the 

SiSt consists of a trunk flexion followed by an extension that is associated with a simultaneous leg extension 

[296]. A PT model based on wavelets was developed to estimate the trunk orientation while removing 

integration drift from IMU data, achieving 93/82% sensitivity and 82/94% specificity for SiSt/StSi 

classification [285]. Fuzzy logic [297] and dynamic time warping [271] were used to improve the 

trunk-based wavelet algorithm. Vertical velocity estimates from de-drifted trunk acceleration integration 

were also used to classify PTs with 89/93% sensitivity and 94/82% specificity for SiSt and StSi, respectively 

[244]. A wavelet-based algorithm was also developed for an IMU placed at the waist [298]. Results showed 

that the order of positive and negative peaks in the acceleration signal reconstructed from wavelets could 
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identify transition type, but detailed results (i.e., sensitivity, specificity, accuracy) of this classification were 

not reported [298]. Recently, the addition of a barometric pressure sensor has been evaluated to increase the 

sensitivity and specificity of PT classification [299]. The change in trunk height measured by the barometer 

provides an additional confirmatory check on the occurrence of a PT and further defines in more detail its 

type. A uniaxial accelerometer placed at the thigh also showed the feasibility to detect PTs and appraise 

their type in lab under standardized conditions with healthy participants [300] and this has also been 

validated with high accuracy in children [301]. 

These evidence from in-lab PT classification using wearable sensors have channeled increasing 

interest in analyzing transitions in daily life, i.e., under real-world conditions. As in other clinical tests, 

performance over a temporary timescale in a controlled environment differs from behavior outside the lab. 

The underlying assumption is that, in most cases, in-lab performance does not reflect real-life behavior of a 

patient or even a healthy person. Interestingly, a recent review by Bohannon reports that to date, only a 

handful of studies investigated daily SiSt detection by ambulatory monitoring [302].  

Among parameters characterizing the PT, the total duration (TD) of PTs is a crucial parameter in 

evaluating daily life mobility in older adults. Moreover, this parameter correlates well with the risk of falling 

[285]. Indeed, frail older adults who are at increased fall risk take longer to rise from a chair [303]. Several 

studies have been conducted to estimate PT durations in laboratory conditions using wearable sensors [298], 

[304]–[306] whereas only a few reported PT durations outside the lab [271], an observation that is congruent 

with the low number of studies that reported the amount of daily transitions [302]. 

The main body of research in PT classification so far mainly focused on sensors placed at the upper 

limb. To the best of our knowledge, there are no studies that investigated PT classification and 

characterization using wearable sensors placed at the foot, i.e. using pressure sensing insoles. Since such 

insoles are sensitive to load changes caused by body weight, they can distinguish sitting from standing. 

Furthermore, footwear offers enough space to integrate and protect electronics and batteries in order to keep 

instrumented shoes as conventional as possible and wearable during most daily activities. We previously 

reported results on siting and standing detection in a larger activity classification framework but no 

dedicated algorithm for classification and evaluation of PT was proposed [276]. Also in [33], a highly 

accurate classification of sitting and standing was achieved using in-shoe pressure sensors but no details on 

transitions were provided. Zheng et al. used pressure sensing insoles and a thigh-worn IMU to detect SiSt 

transitions in laboratory conditions with a detection accuracy of 99.7%, but no standalone insole-based 

algorithm was presented [307]. 
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From this overview, there is a clear need to have a wearable instrument able to classifying and 

characterizing PTs in real-life conditions. In a previous study, we developed instrumented shoes that 

combine pressure sensing insoles and IMUs to classify activities of daily life [276]. We found that it was 

possible to classify sitting and standing with excellent accuracy using the pressure sensing insole. In the 

present study, we extend the classification to PT and its characterization by performing the following 

studies: 

a) In-lab validation of TD and plantar force estimated from instrumented shoes using force plate as 

reference system  

b) Real-life validation of PT classification against a previously validated body worn IMU system [41] 

c) Comparison of TD estimated from instrumented shoes with existing body worn IMU system 

2 Methods 

2.1 Measurement systems 

The instrumented shoes consist of a pressure sensing insole (IEE, LU) with 8 sensors under each 

foot connected to the Physilog® system (GaitUp, CH) through an electronic interface. The insole is placed 

inside the shoe and the Physilog® on top of the shoe, with electronics interface at the ankle, Figure 5-1. The 

Physilog® system contains the battery to power the insole and record its data, and an IMU not used in PT 

analysis, but crucial for activity classification and gait analysis [276]. Each participant was equipped with 

one pair of instrumented shoes with an adequate size insole (available size range: 38-45 EU). Two studies 

were performed to evaluate the performance of the instrumented shoes to detect the PT and estimate its 

duration. The first study aimed at validating the estimation of TD with the instrumented shoes in laboratory 

condition using force plate and comparing it to a validated system using body worn IMU. The second study 

was performed out of the lab in order to evaluate the performance of the instrumented shoes in real-life 

conditions.  

In the first study, a force plate (Kistler, CH) was used to measure the reference ground reaction 

force and estimate the actual TD based on a model using the vertical force (Fz). In the second study, a body 

worn IMU fixed on the right thigh was used to detect PT using an IMU and the TD was estimated using a 

second IMU fixed at sternum [41]. Data from all systems was sampled at 200 Hz. The force plate was 

electronically synchronized with the instrumented shoes and body worn IMU sensors via a separate device 

that could send synchronous pulses via an external trigger to all systems. 
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Figure 5-1 - Experimental setup showing the locations of the force plate, the instrumented shoes and body worn IMUs at sternum 
and thigh (represented by thick boxes). Force plate was used as reference for TD estimation, thigh IMU was used as reference to 

detect PT in real-life using thigh frontal acceleration (af,thigh), sternum IMU was used to estimate TD for comparison with 
instrumented shoes. 

 

2.2 Study 1: In-lab validation of TD and force estimation 

2.2.1 Participants and protocol 

Ten healthy, community-dwelling older adults and ten healthy young subjects participated in this 

study. Participants were asked to perform SiSt and StSi transitions from a chair while keeping their feet 

inside the force plate area and taking a minimum 3s break between consecutive transitions. Older adults 

performed a total of 10 transition cycles (SiSt followed by StSi) and young participants totaled 15 cycles. 

In addition to the instrumented shoes, elderly subjects all wore an IMU on trunk for comparison of TD with 

instrumented shoes.  
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All participants agreed to participate in the study by signing a consent form and the measurements 

were approved by the university’s ethical committee: “Quantification of postural transitions using 

multimodal sensory input” under reference “EK 2012-N-32”. 

2.2.2 PT segmentation and TD estimation from force plate 

Fz for each subject over the entire trial was smoothed by applying a moving-average filter with a 50 

points window shifted by one sample at a time to reduce high frequency noise. Fz is then normalized between 

0-100% body weight (BW). The estimated total force from the insoles (FI) is obtained as the sum of the 16 

individual sensors from both insoles normalized between 0-100% BW for each subject independently.  

Individual transitions were segmented using an algorithm inspired from the IEEE Standard for 

Transitions, Pulses, and Related Waveforms [264]. The method is summarized as in the following steps: 

1. Identify the minimum and maximum of the signal 

2. Split the signal into equal sized bins (1000 bins were used for this study, equivalent to the final 

resolution obtained after data preprocessing) 

3. Count the number of data points falling inside each bin (histogram count) 

4. Split the histogram in two based on a threshold (50% in this case) 

5. The lower signal level  is then obtained as the mode of the first histogram, and the higher signal 

level as the mode of the second histogram 

6. A tolerance of 20% was applied to obtain the percent reference levels, i.e.  and 

 

7. A transition is defined when the signal crosses  followed by crossing  for 

a SiSt, and vice-versa for StSi transition.  

8. The mid-cross point is defined as the 50% reference level 

For each transition, 500 samples before and after the mid-crossing sample were retained and thus 

the total retained time for each transition was 5 seconds (1001 samples). The same time instants were used 

to segment the insole and trunk IMU data. 

The reference transition duration TDF for a SiSt transition obtained from the force plate was based 

on the model from Lindemann et al. [262] with adaptations by Ziljstra et al. [305] (see Figure 5-2, a). For 
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each transition, steps 1-5 were applied again for an accurate estimation of  and . The transition 

events were then obtained as follows: 

- The starting sample (SF) occurs when Fz crosses 10% of  corresponding the feet weight before 

the trunk inclination 

- The end sample (EF) occurs when Fz oscillates inside a band ranging ±2.5% of  corresponding 

to BW after the occurrence of peak force (stable standing) 

- TDF is the difference between these two time instants: 

 

2.2.3 TD calculation from trunk IMU 

The trunk angle (θT) was computed using the method described in [285]. This consisted of 

integrating the medio-lateral (pitch) gyroscope signal and applying a Coiflet order 5 wavelet to remove the 

drift by subtracting the 9th level approximation from the 5th, providing a frequency range of 0.04-0.68Hz. 

The following events (see Figure 5-2, b) were used to calculate transition duration from the trunk (TDT): 

- The most prominent negative peak in (θT) was used for transition time occurrence detection. This 

corresponds to the subject starting to tilt back (Figure 5-1) for the upright position during SiSt and 

seated position during StSi 

- The first positive peak before the transition time marked the start (ST), corresponding to the 

beginning of forward tilt (Figure 5-1) in both SiSt and StSi 

- The first positive peak after the transition time marked the end (ET), corresponding to the end of 

backward tilt (Figure 5-1) in both SiSt and StSi 

- TDT was calculated as: 

TDT= ET-ST 

2.2.4 TD calculation from instrumented shoes 

The same approach was applied to identify the start sample (SI) from FI. However, for the end 

sample, a stable standing phase was difficult to detect due to higher noise in the insole sensors. Instead, the 

first intersection between the lower range of the band of ±2.5% BW, i.e. 97.5% BW, and FI after the most 

negative peak before stabilization was taken as the end sample (EI) as shown in Figure 5-2, c.  
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A wavelet decomposition was applied to FI in an attempt to enhance the signal and improve TD 

estimation from the raw insole data. A decomposition based on a Daubechies order 8 wavelet (db8) was 

computed and the approximation at the 7th level was used. This corresponds to a frequency bandwidth of 

0-0.78Hz corresponding to a minimum transition time of 1.28s. This estimated force is subsequently referred 

to as FW. Moreover the derivative of FW was considering by assuming that sudden changes in force could 

be better detected by its derivative, FD. This way, the following events were added to the estimation of 

start/end times: 

- The first negative (SW1) followed by a positive peak (SW2) before the mid-crossing instant were added 

as start events (Figure 5-2, d) 

-  The first positive (EW1) followed by a negative peak (EW2) after the mid-crossing instant were added 

as end events (Figure 5-2, d) 

- The first negative (SD1) followed by a positive peak (SD2) before the highest positive peak in FD were 

added as start events (Figure 5-2, e) 

- The first negative (ED1) followed by a positive peak (ED2) after the highest positive peak in FD were 

added as end events (Figure 5-2, e) 

All TDI were estimated as the difference between all the combinations of start and end samples from 

FI, FW and FD. 

As for the StSi TD, there was no reference model proposed in the literature based on the force plate. 

However, by observing the force plate signals in this study, it could be assumed that the StSi transition is a 

mirror image of the SiSt and therefore the same analysis can be applied by flipping the StSi data from left 

to right. The event detection remains the same in this case for all signals of the force plate and insole. Ziljstra 

et al. [305] used a similar approach by adapting the SiSt model from [262]. 

For each valid transition, TD was calculated for each system and the difference between the force 

plate, the insole and the trunk IMU was reported. 
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Figure 5-2 - Sit to stand transition example in an elderly subject. a) Force plate signal showing SF and EF, b) trunk angle showing 
the peaks of ST and ET c) raw insole signal with SI and EI, d) wavelet transform of raw insole signal with the detected peaks SW1, 

SW2, EW1, and EW2, e) derivative of the wavelet transform and the detected peaks SD1, SD2, ED1, and ED2 
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2.2.5 Force estimation using instrumented insoles 

For each SiSt and StSi transition of length N, the absolute value of the difference between the 

0-100% BW normalized Fz and FI was estimated sample by sample: 

 

Mean (�F) and SD (�F) of  for each participant (older adult and young) as well as global mean 

and SD were calculated to evaluate the potential of measuring plantar force using the proposed insole 

system. 

2.3 Study 2: Postural transitions in real-life conditions 

2.3.1 PT detection and classification 

A novel method was applied to FI data in this study to improve the detection of postural transitions 

in real-life conditions. The same wavelet transform described in section 2.2.4 was used to obtain FW. This 

eliminates the high frequency locomotion content in FI but maintains transitions since the low-pass cutoff 

is at 1.28s. The lowest and highest levels that represent sitting and standing, respectively, are obtained from 

the data distribution histogram of FW over the entire measurement length as in section 2.2.4. The 

mid-crossing points between these two levels are then calculated similarly to section 2.2.4. A SiSt is labeled 

when this mid-crossing point instant is preceded by the lower level and followed by the high level; otherwise 

the transitions is labeled StSi. Since the sitting and standing levels may vary due to different loading 

conditions and sensor accuracy, a tolerance of 20% was applied on these levels for the detection of the 

mid-cross events.  

Participants in this study were the same 10 older adults from Study 1 (described in section 2.2.1). 

As mentioned in section 2.1, in addition to the instrumented shoes, they wore an IMU at the thigh to reliably 

detect and identify PTs. They also wore an IMU at the trunk that was used to calculate the transition duration. 

The IMU system at the thigh was used as reference system for PT detection, based on a validated algorithm 

using the thigh frontal accelerometer data, af,thigh. During sitting, the steady-state value of af,thigh is 1g, 

whereas during standing it is 0g (Figure 5-1). This algorithm achieved above 99% sensitivity and specificity 

in classifying both SiSt and StSi transitions [41] and is therefore suitable to validate the performance of 

instrumented shoes for PT detection. 

The results of PT classification are tabulated in a confusion matrix, Table 5-5. If both systems 

recorded a transition with a time range of 2.5 seconds of each other, the transition was validated. Otherwise, 
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the activity class classified by one system during a transition classified by the other system was reported in 

the confusion matrix. 

2.3.2 TD calculation in real life conditions 

Based on results from the first study, the best transition events described in section 2.2.4 and Figure 

5-2 were used to calculate TDI from the insole. In addition, TDT was estimated from the trunk IMU as 

described in section 2.2.3. For each correctly classified transition, the difference TDT-TDI (best transition 

events included in TDI) was calculated, and the mean and standard deviation of this difference were obtained 

to compare both systems. The difference between in lab and at home transitions were highlighted by 

performing a non-parametric Wilcoxon Rank-sum test on the TD obtained from the trunk and the insole. 

3 Results 

3.1 Study 1: In-lab validation of TD and force estimation 

Participant characteristics are shown in Table 5-1. 

Table 5-1 - Participant characteristics 

Older adults  Young 

ID Sex Age Weight (Kg) Height (cm) ID Sex Age Weight (Kg) Height (cm) 

1 M 75 72 175 1 M 25 73 170 

2 M 72 80 172 2 M 22 68 178 

3 M 68 88 168 3 M 28 70 180 

4 M 66 92 184 4 F 21 61 170 

5 M 68 114 183 5 M 27 67 174 

6 M 73 62 162 6 M 26 85 180 

7 M 65 73 178 7 M 31 73 179 

8 F 71 70 158 8 M 27 60 170 

9 M 71 75 174 9 F 24 54 170 

10 F 70 75 163 10 F 21 52 164 

 

One measurement in young subjects was not properly recorded on the SD card of the data logger so 

that subject (participant 7) was left out from further analyses. A total of 123 SiSt and 122 StSi out of 135 

were retained for subsequent analysis in the young group. As for the older adults group, 96 SiSt and 82 StSi 
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were retained out of 104. For three older participants, trunk data were not available. Therefore TDT and its 

difference with respect to force plate are based on 66 SiSt and 55 StSi transitions that were available for 

analysis. 

3.1.1 TD calculation in laboratory conditions 

The differences in TD between force plate reference and instrumented shoes with all combinations 

of events presented in Figure 5-2 are shown in Table 5-2 for SiSt and Table 5-3 for StSi. TD estimations 

that have absolute combined mean±SD inferior to 0.7s in elderly subjects are highlighted in both tables. 

Seven combinations fulfilled this criterion for the SiSt: ED1-SI, EW2-SW2, EI-SW1, EW1-SW1, ED2-SW1, EW2-SD1, 

and ED1-SD1. These TDI estimations were retained for further analyses in real-life conditions (study 2) 

because of their performance. As for TDT, the mean error was relatively high (-0.44) but the SD error 

obtained (0.32) was lower than all TDI combinations. This reveals a general overestimation of the transition 

duration from the trunk sensor.  

The selected combinations did not always meet the performance criterion in the young group; only 

EI-SW1 and ED2-SW1 revealed errors < 0.7s. Other combinations did however perform well but were not 

retained for further analysis since only the older adult group was studied in real-life conditions. 

As for the StSi, the following combinations performed best based on absolute combined mean±SD 

errors<0.7s: EW1-SI, ED1-SW2, ED2-SW1, EI-SD1, and ED2-SD1. Errors for TDT were -0.17±0.41, with the SD error 

also lower than TDI combinations. Similarly to SiSt results, there was a general tendency to overestimate 

TD by the trunk sensor but less marked for the StSi (mean error -0.17s) compared to SiSt (mean error -

0.44s). 
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Table 5-2 - Transition duration of SiSt in young and old subject groups obtained from instrumented shoes (TDI) using all 
combinations of start and end samples. TD obtained from the trunk IMU (TDT) is also reported. Mean±SD difference of error 

compared to actual transition duration obtained from force plate (TDF) are listed. Combinations with errors<0.7 are highlighted 

 TD Differences with respect to TDF (mean±SD) 

 Young Older Adults Young Older Adults ALL 

TDF 1.92±0.37 1.77±0.29 - - - 

TDT - 2.26±0.24 - -0.44±0.32 - 

EI-SI 2.09±0.50 2.09±0.51 -0.16±0.44 -0.32±0.55 -0.23±0.50 

EW2-SI 1.44±0.41 1.43±0.42 0.49±0.48 0.34±0.48 0.42±0.49 

EW1-SI 1.90±0.40 1.96±0.44 0.03±0.45 -0.19±0.51 -0.07±0.49 

ED1-SI 1.56±0.35 1.63±0.41 0.37±0.38 0.14±0.48 0.27±0.44 

ED2-SI 1.95±0.46 2.04±0.49 -0.03±0.49 -0.27±0.57 -0.13±0.54 

EI-SW2 2.67±0.44 2.60±0.46 -0.75±0.49 -0.83±0.51 -0.78±0.50 

EW2-SW2 2.02±0.45 1.94±0.42 -0.10±0.62 -0.17±0.49 -0.13±0.56 

EW1-SW2 2.48±0.45 2.46±0.43 -0.56±0.60 -0.69±0.51 -0.62±0.57 

ED1-SW2 2.15±0.40 2.13±0.40 -0.22±0.54 -0.36±0.48 -0.28±0.52 

ED2-SW2 2.54±0.52 2.54±0.51 -0.61±0.63 -0.77±0.59 -0.68±0.62 

EI-SW1 1.94±0.37 1.90±0.37 -0.02±0.46 -0.13±0.44 -0.07±0.45 

EW2-SW1 1.29±0.36 1.24±0.31 0.63±0.57 0.53±0.41 0.59±0.51 

EW1-SW1 1.75±0.35 1.77±0.33 0.17±0.55 0.00±0.44 0.10±0.51 

ED1-SW1 1.41±0.27 1.44±0.27 0.51±0.47 0.33±0.41 0.43±0.45 

ED2-SW1 1.80±0.42 1.84±0.42 0.12±0.57 -0.07±0.52 0.03±0.56 

EI-SD1 2.20±0.44 2.18±0.37 -0.28±0.52 -0.41±0.44 -0.34±0.49 

EW2-SD1 1.55±0.40 1.52±0.33 0.38±0.59 0.25±0.42 0.32±0.53 

EW1-SD1 2.01±0.39 2.05±0.34 -0.09±0.57 -0.28±0.45 -0.17±0.53 

ED1-SD1 1.67±0.30 1.72±0.29 0.25±0.49 0.05±0.41 0.16±0.47 

ED2-SD1 2.06±0.42 2.13±0.42 -0.14±0.58 -0.36±0.52 -0.24±0.56 

EI-SD2 2.83±0.55 2.80±0.43 -0.90±0.59 -1.03±0.46 -0.96±0.54 

EW2-SD2 2.18±0.49 2.14±0.41 -0.25±0.64 -0.37±0.47 -0.30±0.57 

EW1-SD2 2.64±0.49 2.67±0.42 -0.71±0.62 -0.90±0.49 -0.80±0.57 

ED1-SD2 2.30±0.40 2.34±0.37 -0.38±0.53 -0.57±0.45 -0.46±0.50 

ED2-SD2 2.69±0.49 2.75±0.46 -0.77±0.61 -0.98±0.54 -0.86±0.59 
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Table 5-3 - Transition duration of StSi in young and old populations obtained from instrumented shoes (TDI) using all 
combination of start and end samples. TD obtained from the trunk IMU (TDT) is also reported. Mean±SD difference of error 

compared to the actual value (TDF) from force plate, are listed. Combinations with errors<0.7 are highlighted 

 TD Differences with respect to TDF (mean±SD) 

 Young Older Adults Young Older Adults All 

TDF 2.13±0.37 2.32±0.38 - - - 

TDT - 2.27±0.39 - -0.17±0.41 - 

EI-SI 2.29±0.47 2.48±0.53 -0.15±0.40 -0.16±0.59 -0.16±0.48 

EW2-SI 1.71±0.45 1.68±0.35 0.42±0.50 0.64±0.49 0.51±0.50 

EW1-SI 2.31±0.50 2.39±0.40 -0.17±0.53 -0.07±0.50 -0.13±0.52 

ED1-SI 1.85±0.40 1.97±0.32 0.28±0.47 0.35±0.46 0.31±0.47 

ED2-SI 2.42±0.51 2.65±0.42 -0.29±0.55 -0.33±0.50 -0.30±0.53 

EI-SW2 2.53±0.42 2.71±0.47 -0.40±0.42 -0.39±0.53 -0.40±0.47 

EW2-SW2 1.96±0.41 1.91±0.35 0.17±0.52 0.41±0.47 0.27±0.51 

EW1-SW2 2.55±0.47 2.62±0.40 -0.42±0.56 -0.30±0.49 -0.37±0.53 

ED1-SW2 2.10±0.36 2.20±0.34 0.04±0.50 0.12±0.46 0.07±0.48 

ED2-SW2 2.67±0.47 2.88±0.40 -0.53±0.57 -0.56±0.47 -0.54±0.53 

EI-SW1 1.99±0.39 2.11±0.46 0.14±0.38 0.21±0.54 0.17±0.45 

EW2-SW1 1.42±0.36 1.31±0.27 0.72±0.48 1.01±0.45 0.83±0.49 

EW1-SW1 2.01±0.43 2.03±0.33 0.12±0.52 0.29±0.45 0.19±0.50 

ED1-SW1 1.55±0.31 1.60±0.25 0.58±0.46 0.72±0.43 0.64±0.45 

ED2-SW1 2.12±0.44 2.28±0.35 0.01±0.54 0.04±0.46 0.02±0.51 

EI-SD1 2.05±0.40 2.23±0.48 0.08±0.39 0.09±0.56 0.08±0.47 

EW2-SD1 1.48±0.45 1.42±0.34 0.65±0.55 0.90±0.50 0.75±0.54 

EW1-SD1 2.07±0.50 2.14±0.40 0.06±0.58 0.18±0.52 0.11±0.56 

ED1-SD1 1.62±0.40 1.72±0.32 0.51±0.53 0.61±0.48 0.55±0.51 

ED2-SD1 2.19±0.53 2.39±0.39 -0.05±0.62 -0.07±0.50 -0.06±0.58 

EI-SD2 2.35±0.53 2.53±0.60 -0.22±0.53 -0.21±0.68 -0.22±0.60 

EW2-SD2 1.78±0.62 1.73±0.52 0.35±0.70 0.59±0.65 0.45±0.69 

EW1-SD2 2.37±0.66 2.45±0.56 -0.24±0.72 -0.13±0.66 -0.20±0.70 

ED1-SD2 1.92±0.58 2.02±0.50 0.22±0.68 0.30±0.62 0.25±0.66 

ED2-SD2 2.49±0.68 2.70±0.55 -0.35±0.75 -0.38±0.64 -0.36±0.71 

 

The agreement with the force plate reference for the seven selected TDI estimates for the SiSt as 

well as the TDT is shown on separate Bland-Altman plots including SiSt transitions from elderly participants, 
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(Figure 5-3). These plots reveal the overall good agreement between selected TDI and TDF, as well as the 

overestimation bias of TDT. 

 

Figure 5-3 - Bland-Altman plots for the best performing SiSt estimated TDI and TDT. 

 

1 2 3
-2

0

2

TDT

D
iff

er
en

ce
s

1 2 3
-2

0

2

ED1-SI

1 2 3
-2

0

2

EW2-SW2

D
iff

er
en

ce
s

1 2 3
-2

0

2

EI-SW1

1 2 3
-2

0

2

EW1-SW1

D
iff

er
en

ce
s

1 2 3
-2

0

2

ED2-SW1

1 2 3
-2

0

2

EW2-SD1

Means

D
iff

er
en

ce
s

1 2 3
-2

0

2

ED1-SD1

Means



Chapter 5 Classification and characterization of postural transitions using instrumented shoes 

91 
 

3.1.2 Force estimation using instrumented insoles 

The force estimation errors (�F, �F) between instrumented insoles and force plate reference are 

shown in Table 5-4. All young subjects exhibited errors below 10%BW and the mean population error was 

6.3±7.9. The error was also inferior to 10% in 8 out of 10 older adults, with a mean population error of 

9.1±8.5. 

Table 5-4 - Mean (�F) and SD (σF) of force estimation error from instrumented shoes compared to force plate reference. Values 
are expressed as %BW and reported for each subject and averaged for all the population. 

Young  Older adults 

 ��F ��F   ��F ��F 

P1 5.7 6.6  P1 4.8 5.3 

P2 3.1 5.4  P2 5.5 3.8 

P3 8.4 9.9  P3 6.6 5.5 

P4 4.7 5.8  P4 16.2 8.1 

P5 4.8 5.8  P5 6.9 7.2 

P6 3.4 4.5  P6 14.9 11.5 

P7 N/A N/A  P7 6.1 4.2 

P8 9.3 9.7  P8 8.9 5.7 

P9 9.4 9.3  P9 8.9 8.4 

P10 7.5 8.3  P10 9.3 11.1 

All 6.3 7.9  All 9.1 8.5 

 

3.2 Study 2: Transitions in real-life conditions 

3.2.1 PT detection and classification 

Table 5-5 shows the confusion matrix of SiSt and StSi classification with respect to other performed 

activities across all 10 older adult participants. A sensitivity of 90% and precision of 93% were achieved 

for both SiSt and StSi detection.  
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Table 5-5 - Confusion matrix for SiSt and StSi transitions in real-life conditions. 

             Reference 

Predicted 

SiSt StSi Sitting Standing Walking Sensitivity 

      

SiSt  103 0 0 12 0 0.90 

StSi  0 104 1 10 1 0.90 

Sitting  4 3     

Standing  4 4     

Walking  0 1     

Precision  0.93 0.93     

 

Only 1 instance of StSi was detected as walking and vice-versa. All other misclassifications were 

related to sitting or standing. 

3.2.2 TD calculation in real-life conditions 

The best TDI estimations obtained in section 3.1.1 for elderly subjects were used for evaluation in 

real-life conditions. Table 5-6 summarizes the results and also the differences between TDT and the selected 

TDI. The StSi differences are shown in Table 5-7.  

Table 5-6 - SiSt in real-life conditions: TDI estimation from selected combinations compared to TDT 

 TDT ED1-SI EW2-SW2 EI-SW1 EW1-SW1 ED2-SW1 EW2-SD1 ED1-SD1 

TD  2.31±0.3786 1.95±0.90 3.58±0.81 3.36±1.05 2.02±0.54 1.93±0.47 3.07±0.70 1.81±0.35 

Difference - 0.37±0.94 -1.3±0.83 -1.05±1.15 0.31±0.61 0.39±0.55 -0.75±0.73 0.52±0.45 

 

Total duration varied substantially between the trunk and the insole estimations. Combinations 

including raw (ED1-SI and EI-SW1) insole features revealed the largest SD in duration estimation and in the 

differences compared to the trunk. Three combinations exhibited relatively lower differences with respect 

to others: EW1-SW1, ED2-SW1, and ED1-SD1.  

Table 5-7 - SiSt in real-life conditions: TDI estimation from selected combinations compared to TDT 

 TDT EW1-SI ED1-SW2 ED2-SW1 EI-SD1 ED2-SD1 

TD  2.40±0.48 2.41±1.25 2.15±0.76 2.15±0.74 3.77±1.22 2.46±0.37 

Difference  - -0.02±1.23 0.25±0.89 0.25±0.87 -1.37±1.35 -0.05±0.61 

 

Finally, transition durations in the lab and at home life were compared in a box plot, Figure 5-4. For 

comparison purposes, only the EW1-SW1 combination was selected. Significant differences between the lab 
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and home durations were observed for both TDT and EW1-SW1 (p-values of <0.001 and 0.003, respectively, 

from Wilcoxon Rank-sum test).  

 

 

Figure 5-4 - Box plot of TD in lab and at home for the trunk and the EW1-SW1 estimation. 
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4.1 TD calculation in laboratory conditions 

Results from the laboratory-based TD estimation with the insole are very good, especially with the 

use of events from the wavelet approximation of the insole forces. The trunk IMU systematically 

overestimated the SiSt duration but achieved a slightly lower SD than the insole that could indicate better 

repeatability. As for the StSi, there were fewer combinations that matched the error criterion. This could 

well be expected since the StSi transition involves a somewhat different mechanism. For example, subjects 

tend to turn slightly to check the position of their seat before sitting down, and this could have an effect on 

both the trunk tilt and the loading of the insole. In this study, participants were free to perform the movement 

as they liked. It would be interesting to perform similar experiments while imposing some constraints such 

as that the hands remain crossed over the sternum to identify any potential effect from upper body 

movement. Despite these observations, current results indicate the overall suitability of calculating postural 

transition durations using the instrumented insole with acceptable errors. Furthermore, the TDs reported in 

this study in laboratory conditions are similar to values from the literature in healthy subjects and, similarly, 

did not show any significant difference between healthy young and healthy older adults [294]. 

4.2 Force estimation using instrumented insoles 

The possibility to measure plantar force from the proposed instrumented insoles was demonstrated 

with overall errors of less than 10% BW in both studied groups. However, a prior dynamic calibration of 

each individual sensor in the insole would still be desirable to obtain accurate force measurements. In fact, 

some differences were observed in error values between sitting and standing phases. This could be remedied 

by individual calibration or linear regression to estimate real force values from a platform reference based 

on individual sensor inputs from the insole. A detailed study of the error during the transition phases, with 

an emphasis on the error of peak force estimation, could be interesting for a future evaluation of the 

instrumented insoles. It should also be noted that while the insoles and the force plate are both measuring 

plantar force, the force are more likely to be altered in the insole due to sensor quality, covering material 

(neoprene layer in this case), contact surface between insole and the foot as well as the shoe type (e.g. narrow 

or wide). For example, even in non-supporting phase of the foot the insole could measure some force just 

because the shoe is too tight. The evaluation of the force estimation error during gait would also be important 

to evaluate the insole performance during dynamic activity. 
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4.3 PT detection and classification 

The direct detection and characterization of PTs in real-life conditions using wearable insole data 

has not been examined previously in the literature. Insoles have been used in previous studies to classify 

postures without looking at transition events [307], [308]. The present study is therefore the first to report 

robust detection and classification of PTs in real-life conditions as shown by sensitivity and precision of 

90% and 93%, respectively, for both SiSt and StSi transitions. Moreover, there were no errors in 

misclassifying a SiSt as a StSi, and only one instance in which a StSi was classified as walking and vice 

versa. An in-depth look at the misclassifications of PTs into sitting/standing revealed the presence of some 

confounding events when the thigh remains straight but the load under the feet decreases considerably (this 

could be an event where the participant leaned against a wall/table) or when the thigh reveals a change in 

posture but the insoles still measure a high load (this could be a period of crouching/squatting or tying shoes, 

for example). Indeed, a participant told the study investigators that he performed in-home exercises and data 

from this patient revealed misclassifications similar to crouching. These types of misclassifications were 

rare and would arguably be inexistent in population at-risk for falls. A future investigation on confounding 

movements could slightly improve the performances of our PT detection algorithm.  

Considering the total number of SiSt transitions (103) over the 4 hour monitoring period of 10 

participants, an average of 62 transitions per day can be extrapolated. This is similar to other studies reported 

in the review by Bohannon [302] in older adults living independently, suggesting excellent congruency with 

the instrumented insoles and other systems such as IMU placed on the thigh or trunk in detecting postural 

transitions for long term monitoring. 

An interesting observation from this study on real-life transitions is unsuccessful transition attempts, 

as shown in Figure 5-5. This attempt was not detected as a true transition which is a correct classification 

as compared to the thigh where no movement is observed on the bottom plot. However, a trunk tilt can be 

seen on the top plot confirming the attempt. The identification of such events in a long-term force signal 

can be extremely informative in terms of mobility as well as frailty occurrence, and has been associated to 

increased fall risk in older adults [285].  
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Figure 5-5- Example of an unsuccessful transition attempt (shaded area). At time 8440, a correct transition is shown with 
detected events for FW and the trunk angle are shown. 

 

4.4 TD calculation in real-life conditions 

The TD estimated at home revealed some inconsistencies compared to laboratory measurements. 

Firstly, the features from the raw insole data exhibited large SD in transition duration calculation as well as 

in comparison with the trunk estimation. It is highly probable that quiet sitting in real-life occurs without 

placing weight on the feet: e.g. sitting with feet on a stool, or with ankles on the ground and feet pointing 

upwards. In this case SI detection becomes problematic, since the lower level of the transition does not 

correspond to the feet weight level. As for the end event, several transitions could also occur where the 

person starts walking immediately after standing, without achieving a quiet standing phase. This resulted in 

an overestimation of EI. The wavelet approximation was necessary to improve the detection in such cases 

and emphasize pertinent transition events. The cutoff frequency of the wavelet corresponding to a minimum 
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of 1.28s TD is suitable for this estimation since it is lower than observations in healthy young and older 

adult persons reported in the literature [294]. 

The combinations that were retained from the in-lab study based on the wavelet transform did not 

compare well to TDT in real-life. This could be due to the different strategies of PTs in real-life and to the 

existence of frequent Sit-to-walk or walk-to-Sit (with turning) transitions that do not mirror in-lab, 

controlled transitions. However, it should also be noted that TD from the trunk is affected by upper body 

sway. The overestimation of TD by the trunk IMU could be due to the tilt starting before the load is 

transferred to the feet. It could be of interest to use another sensor that is less sensitive to sway (e.g. IMU 

on the thigh) to estimate TD and compare the performances to insole-based estimations since both sensors 

would be on the lower limb and the TD differences (especially the SD) could be smaller.  

The accurate classification and characterization of PTs can provide information about activity 

behavior. Older adults were significantly slower in performing transitions at home. This result illustrates 

very well the importance to monitor activity in real-life conditions as performance can be differ substantially 

from those measured during the more controlled and potentially stimulating in lab environment. Indeed, this 

result further support previous observation that participants tend to perform better in constrained 

environments when performing clinical tests in the presence of an observer. Furthermore, the posture of a 

subject can be accurately obtained using the instrumented shoes. This provides crucial information on 

sedentary behavior of subjects and in turn can help break down long periods without movement, which has 

shown several benefits [309]. 

4.5 Study limitations 

This study has some drawbacks. Firstly, sample size was limited and both participant groups 

consisted of only healthy, able-bodied persons. The application of the PT classification and characterization 

using instrumented insoles would provide valuable parameters for at-risk populations such as frail older 

adults or stroke patients. This would ultimately be the main purpose of the proposed algorithm. Secondly, 

the characterization of PTs from plantar force data can only inform about the duration and the different 

phases of a transition. Additional analyses would be required to evaluate the potential of estimating more 

parameters such as movement smoothness or the number of attempts at performing a transition. Combining 

instrumented insoles and a trunk IMU can be extremely powerful in clinical PT analysis by making power 

calculations possible. Thirdly, sit-to-walk and walk-to-sit transitions were not included in the protocol. 

These transitions are relevant for clinical mobility tests such as the TUG and could better reflect daily life 

transitions. 
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5 Conclusion 

The proposed instrumented insole system was validated for estimating transition durations and 

accurately classifying postural transitions in daily life. This system was also validated for activity 

monitoring and gait analysis in daily life. The combination of activity classification in terms of postures and 

detailed characterization of gait/transitions offers an “all-in-one” assessment tool that can provide crucial 

information about activity pattern and behavior in at-risk subjects. In turn, this information could help 

clinicians in better tailoring individual interventions as well as in providing useful feedback to patient to 

promote increased mobility and activity to improve their quality of life. The instrumented shoes are 

comfortable and unobtrusive and provide the possibility of concealing the sensors in footwear to avoid 

stigmatization. This is an advantage with respect to other systems for postural transition characterization 

such as IMU on the trunk or the thigh that are sometimes difficult to conciliate with real-life activities. 
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Chapter 6  

Outcome evaluation of elderly inpatients during 
rehabilitation after hip fracture using instrumented shoes 

Abstract 

Measurement of recovery in post-surgery hip fracture patients is crucial for clinicians to assign an 

appropriate discharge date. Hip fracture patients walk very soon after surgery to regain functional mobility 

and therefore a detailed analysis of their activity behavior as well as their gait is important. This is usually 

assessed by standardized clinical test scores that rely on clinical observation and functional tests. However, 

these tests give no information about daily behavior of patients. In this chapter, instrumented shoes are used 

to monitor one day of activity in post-surgery hip fracture patients as soon as they are able to walk and two 

weeks later. Patients follow a rehabilitation program between these monitoring days and its effects are 

evaluated using the Tinetti clinical score as well as objective metrics from instrumented shoes in four 

categories: activity, load, gait, and complexity. Results revealed improvements in the expected direction as 

revealed by the Tinetti test for almost all objective metrics, especially load, complexity, and maximum 

locomotion duration. Objective metrics proved to be complementary to the clinical score since they revealed 

changes in subjects whose scores did not improve much, whereas they followed the Tinetti score well in 

subjects whose improvement was substantial.  
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1 Introduction 

Hip fracture is associated with high mortality and morbidity rates [310], [311]. Mortality rates one 

year post hip fracture in geriatric population have exceeded 20%, and it appears that this number has not 

significantly decreased over the past 30-40 years [312]. Cooper et al. [313] projected that more than 6 

million annual hip fracture cases will occur in the world by the year 2050. The consequences of hip fracture 

on daily life mobility in older adults are drastic. Between 32-80% of hip fracture survivors develop a 

permanent disability even after hospitalization, and 6-60% need long-term professional care [314]. The two 

main treatments of hip fracture are hip fracture surgery (i.e. bone fixation) and total hip replacement, the 

former having higher mortality rates than the latter [315]. The goal of these treatments remains to restore 

mobility of patients to pre-fracture levels. At the clinic, patients who walk in the first two days after surgery 

benefit more than patients who walk later on in terms of overall mobility [316]. In a prospective follow-up 

study up to 2 years after hip fracture, Alarcón et al. [317] found that activities such as grooming and feeding 

have higher rates of improvement, whereas transferring from a chair and negotiating stairs had improvement 

probabilities of less than 70% after 2 years. This overview highlighted the importance of behavior 

monitoring in post-surgery hip fracture patients at the clinic and at home to better understand the 

rehabilitation process and possibly improve it. 

Wearable activity monitoring has found relevant applications in mobility assessment of older adults 

[93]. Sensors consisting of accelerometers and/or gyroscopes (known as Inertial Measurement Units or 

IMUs) have been predominantly employed and mostly placed on the sternum, waist, thigh, shank, and 

wrists. However, relatively few wearable sensor systems have been used for the evaluation of post-surgery 

hip fracture patients. Accelerometers were used in conjunction with force plate to evaluate balance post 

operatively [318]. Activity counts obtained from wrist- and ankle-attached accelerometers correlated well 

with a patient participation score evaluated by the therapist during physiotherapy sessions [319]. In terms 

of daily life assessment, Taraldsen et al. [320] used a uniaxial accelerometer placed on the thigh to monitor 

activity for 24 hours at 4 days after surgery. They showed that time spent in upright posture after a 

comprehensive geriatric care (including early mobilization) that was purposefully developed for hip fracture 

rehabilitation was higher than that after traditional orthopedic care and physiotherapy. The study was 

followed by at-home monitoring 4 and 12 months post-surgery and showed similar results for time spent 

upright based on treatment type [321]. Accelerometers were also used to monitor hip fracture inpatients for 

5 days and activity count outcomes were shown to correlate well with a rehabilitation participation measure 

evaluated by therapists, and higher activity levels during these 5 days were associated with better mobility 

recovery at 3 and 6 months postoperative follow-up [322]. Posture was evaluated using a thigh-based 

accelerometer and showed that post-surgery hip fracture patients spend ~99% of the time in sitting/lying 
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posture, ~1% standing and 0.05% walking, resulting in an average of 35 steps per day [323]. Benzinger et 

al. [324] performed a longitudinal study with post-surgery hip fracture inpatients and monitored one day of 

activity at baseline and 2-week follow-up using a trunk-worn IMU. They revealed improvements in time 

spent walking and upright, as well as significant correlations of these two parameters with clinical tests such 

as the Timed Up and Go and the 5-Chair-rise. 

It is evident, from this overview of wearable assessment of hip fracture, that time spent in different 

postures is important. However, there are other potential outcomes that could be highly associated with 

rehabilitation such as gait parameters and foot loading obtained during daily activity. We have already 

validated the use of instrumented shoes for activity classification, postural transition detection, gait analysis, 

load evaluation, and complexity assessment in older adults in Chapters 3-5. In this study, we use all the 

aforementioned outcomes to evaluate the rehabilitation outcome of geriatric post-surgery hip fracture 

inpatients in a prospective study. We hypothesize that the rehabilitation process will improve the mobility 

of the patient and this improvement can be perceived by objective metrics derived from instrumented shoes 

expressing various aspects of mobility, like activity profile, gait performance, load distribution, and 

behavioral complexity. With this objective information, we expect that clinicians could better evaluate 

various rehabilitation aspects and therefore propose tailored treatment to improve the rehabilitation in hip 

fracture.  

2 Methods 

2.1 Participants and measurements 

Post-surgery hip fracture patients admitted to the rehabilitation center of the university hospital 

(CHUV) were recruited for this study. Inclusion criteria were: 

- Unilateral hip fracture admitted to post-acute care rehabilitation  

- Ability to walk 20m (with or without cane/walker) 

- Shoe size 38-45 (imposed by the available insole sizes) 

Exclusion criteria were: 

- Important symptomatic mood disorder (clinical assessment) 
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- Cognitive impairment (MMS1 < 18) 

- Ongoing delirium (CAM2+) 

- Uncontrolled pain (VAS3 > 6) during mobilization 

- Assistance of a person for walking 

- Limited life expectancy (<6 months) 

In total, eight patients, four men and four women, were enrolled in the study. All patients signed 

informed consent and the protocol was accepted by the cantonal ethical committee. Patients were screened 

shortly after their admission to the rehabilitation center. The first measurement took place as soon as possible 

(1 day in most cases) after consent and inclusion and the second measurement 14 days later, before discharge 

from the rehabilitation center (Figure 6-1). During these 14 days, patients followed an interdisciplinary and 

individualized rehabilitation program with the goal to preserve autonomy, quality of life, and to prevent 

falls or adverse events stemming from falls. During physiotherapy, treatment is tailored to improve joint 

mobility, muscle force, equilibrium and cardiovascular endurance through individual as well as group 

sessions. Adaptation to walking aids is also performed. In the morning on each monitoring day, the 

participants’ shoes were equipped with the monitoring system described in section 2.2. Patients were free 

to keep their own shoes or to use hospital shoes if they were more comfortable. They then performed a 20m 

walking test in the presence of a physiotherapist to assess gait parameters in a supervised setting over a 

relatively long path. This test was completed in the corridor of the floor where the patients were residing. 

Afterwards, patients were asked to keep on their instrumented shoes during the day for at least 8 hours, after 

which a study investigator removed the monitoring system. A bed protection was placed in case participants 

wanted to lie down with their shoes on in the day. At the end of each monitoring day, the data collected 

from the monitoring system was downloaded on a computer and stored anonymously for post-processing. 

Additionally, the Tinetti test score was available for each patient at baseline and follow-up as a clinical 

mobility score. This test consists of balance and gait assessment with 17 items ranked over 28 points [325]. 

 

                                                      
1 Mini Mental State examination 
2 Confusion assessment method 
3 Visual analog scale pain assessment 



Chapter 6 Outcome evaluation of elderly inpatients during rehabilitation after hip fracture using instrumented shoes 

103 
 

 

Figure 6-1 - Flowchart of the study protocol with intermediate steps from admission to discharge for participants. *the decision 
to have 14 days between measurements is based on a median hospitalization time of 25 days (interquartile range 18-35) for 

geriatric hip fracture rehabilitation obtained from the geriatric service yearly statistics. 

 

2.2 Instrumented shoe system 

The monitoring system included an inertial measurement unit or IMU (Physilog®, GaitUp, CH) 

and a pressure sensing insole (Smart Insole, IEE, LU). The IMU measures 3D acceleration, 3D angular 

velocity and barometric pressure and functions as data logger and power unit. The insole measure plantar 

force at 8 locations under the foot, namely the heel (medial and lateral), the arch (lateral), the metatarsals 

(1st, 3rd and 5th) and the toes (hallux and the remaining toes). Converting electronics that perform digitization 

and amplification of the insole signals were strapped to each patient’s ankles. Insoles were inserted into 

each foot and the IMUs were placed on the dorsal aspect of each foot. The system components are shown 

in Figure 6-2. The sampling frequency was set at 200Hz for all sensors, allowing an autonomy of up to 16 

hours. 
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Figure 6-2 - Instrumented shoe system: Physilog® inertial sensor placed on the shoe, insole inserted inside the shoes and 
converting electronics placed above the ankle. 

 

2.3 Outcome analysis 

There were four main outcome measures in this study: activity profile, foot loading, gait 

performance, and behavioral complexity. Each outcome is described separately below. 

2.3.1 Activity profile 

The sensor data obtained from the instrumented shoes system were fed into the activity classifier 

previously described in Chapters 3, 4, and 5. In summary, the classifier detected the Toe Off instants from 

the pitch (mediolateral) gyroscope signal enhanced by wavelet decomposition. These instants were then 

used to detect locomotion. The total force (TF), under the feet was calculated as the sum of all 16 sensors 

from both insoles and normalized to body weight (0-100%). The low and high levels of TF were estimated 

using a histogram and transitions from low to high level were recognized as sit to stand (SiSt) and high to 

low level as stand to sit (StSi). Activity preceding a SiSt was labeled as sitting, and following a SiSt as 

standing. For each patient and each monitoring day, the percentage of time spent in each of these three basic 

activities (i.e. sitting, standing and walking) was calculated. The number of locomotion periods and their 

durations were also retrieved, as well as the total number of postural transitions and their duration.  
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2.3.2 Foot loading 

Load symmetry was evaluated based on the total plantar force measured from the insoles. In order 

to have an estimate of loading value under each foot, the sum of all sensors from each left (L) and right (R) 

foot was obtained (TFL,R) by considering the entire monitoring duration. Then a histogram was applied 

(hist(TFL,R,bin)) and the median value of TFL,R (TFLmed,Rmed) was estimated to separate loading range 

(TFL,R >TFLmed,Rmed). The loading of each foot (LoadL,R) corresponded to the value of TFL,R with the highest 

probability in the loading range: 

 (eq. 1) 

This level was then used to estimate the loading on the affected and unaffected side (Loadaffected, 

Loadunafected) and loading symmetry index (LSI), defined as: 

 (eq. 2) 

Hence, a decrease in LSI would indicate improvement in loading symmetry. 

2.3.3 Spatio-temporal gait analysis 

The analysis of locomotion periods is similar to that of Chapter 4. For locomotion bouts of more 

than 20 steps spatio-temporal parameters were obtained based on the following references [126], [136], 

[137], [141]. These parameters were separated into three types: performance, symmetry, and variability as 

detailed below: 

- Performance: stride velocity (SV), stride length (SL), cadence (cad), heel clearance (HC), toe 

clearance (TC), %stride, number of turning steps per bout (#Turning/bout) , i.e. steps with axial 

turning angle>20o 

- Symmetry: symmetry index (SI) of maximum heel clearance (HC), minimum toe clearance (TC), 

percent stance time: 

 (eq. 3) 

- Variability: mean and SD of GCT inter-stride variability calculated from the coefficient of variation 

(CV): 

 (eq. 4) 
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Where  is the standard deviation of gait cycle time (GCT) and  the mean of GCT over one 

walking bout. All parameters were also calculated for the 20m walking test to compare the capacity of 

patients during the clinical test and their performance in daily life. 

Finally, a fourth category was defined as the gait profile: for any locomotion period with 3 or more 

detected steps, the duration of each gait cycle (GCT) was estimated and converted to Instantaneous Cadence 

or Icad (eq. 5) and its histogram was estimated for the whole recording. 

 (eq.5) 

For each parameter, the analysis was conducted on the mean value for each subject as well as the 

90th percentile to evaluate the improvement of extreme parameter values. 

2.3.4 Behavioral complexity 

Complexity was evaluated similarly to Chapter 4. For each patient and monitoring day, activity 

barcodes were constructed from the activity type (sitting, standing and walking) as well as the intensity 

(duration of walking period and cadence). The complexity metric for each barcode was then calculated using 

the Lempel-Ziv (LZ) definition of the Kolmogorov complexity [280].  

2.3.5 Comparative analysis 

For each of the aforementioned parameters, statistical significance was evaluated between baseline 

and follow-up monitoring days using the Wilcoxon Rank-sum non-parametric test. For each tested variable, 

the significance is mentioned at the 5% level (*), 1% level (**) and 0.1% level (***).  

An effect size descriptor was used in this study to evaluate parameters with low sample size. This 

descriptor was Cliff’s delta, a measure of how many values at baseline are larger than values at follow-up 

for a given parameter. It is calculated using eq. 4: 

 (eq. 6) 

Where  and are the elements of the parameter at baseline and follow-up, respectively,  

and  the total number of elements of the parameter at baseline and follow-up, respectively. This 

measure is also non-parametric in the sense that it does not need the data to follow any pre-assumed 

distribution. Cliff’s delta represents the percentage of non-overlap between the baseline and follow-up 

vectors for each parameter and can range between -1 to +1. The sign is an indicator of the trend direction: 

negative sign for an increasing trend and positive sign for a decreasing trend. A higher absolute value of 
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this descriptor indicates a high effect size i.e. low overlap between baseline and follow-up. Three thresholds 

are available effect size, low: 0.147< <0.33, moderate: 0.33< <0.474 and high: 

0.474<  [326].  

In addition to effect size the relative improvement (%change) of each patient was calculated for 

each selected parameter and clinical score by eq. 5: 

 (eq. 7) 

For parameters with several values per subject (i.e. transition duration and gait parameters), results 

are shown for the mean and 90th percentile obtained for each subject. 

3 Results 

Patient characteristics are shown in Table 6-1. The Tinetti test results reveal an improvement in all 

patients except for ID 7 whose score remained the same. The change of Tinetti score at follow-up was 

significant (p<0.001) compared to baseline. 

Table 6-1 - Patient characteristics with MMS and Tinetti scores 

ID Age Gender Affected side MMS Tinetti (baseline) Tinetti (follow-up) 

1 92 Female Left 22 18 20 

2 83 Male Left 28 15 23 

3 90 Female Right 19 18 20 

4 69 Male Right 30 18 21 

5 90 Female Right 27 17 20 

6 80 Female Right 27 18 22 

7 92 Male Right 29 21 21 

8 93 Male Right 28 15 23 

Mean±SD 17±2 21±1 

3.1 Activity profile 

The percentage time of each activity during the 8 hours monitoring is shown in Figure 6-3. Based 

on the Wilcoxon Rank-sum test, no significant differences between baseline and Follow-up were determined 

for sitting (p = 0.08), standing (p = 0.10) nor walking (p = 0.07). However, the p-values are small and close 

to the 5% significance level. Furthermore, a trend could be seen in the data confirming that less time is spent 

sitting and more time is accumulated for standing and walking, indicating improvement in overall mobility. 
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Figure 6-3 - Percent of time spent in each basic posture: sitting (top left), standing (top right), and walking (bottom). No 
significant changes were determined but a trend of improvement can be observed. 

 

Patients performed 21±11 sit-to-stand and 21±11 stand-to-sit transitions at baseline compared to 

26±13 sit-to-stand and 26±13 stand-to-sit at follow-up. The number increased but not significantly (p = 0.45 

for both). The transition duration at baseline was 2.49± 0.79 compared to 2.53±0.66 at follow-up with no 

significant change (p = 0.30) 

The analysis of locomotion periods is presented in Table 6-2. Total, maximum, and mean duration 

as well as the total number of locomotion bouts all showed improving trends, but only the maximum walking 

duration was significantly higher at follow-up. 
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Table 6-2 - Locomotion period characterization shown as mean±SD for all subjects at baseline and follow-up 

Parameter Baseline (mean±SD) Follow-up (mean±SD) p-value 

Total duration (min) 9.20±7.22 15.42±6.41 0.083 

Maximum duration (sec) 51.75±18.26 77.67±35.39 0.028* 

Mean duration (sec) 13.33±3.16 14.23±3.59 0.57 

Total number (bouts) 41.50±26.75 70.50±35.68 0.10 

 

The empirical cumulative distribution of locomotion bout durations is shown in Figure 6-4. The 

curves are practically superimposed until ~1.5min. The follow-up distribution goes further until ~2.6min, 

confirming the significant change in maximum duration rather than mean or total locomotion bout duration. 

 

Figure 6-4 - Empirical cumulative distribution function for locomotion bout duration. Solid line: baseline, dashed line: follow-up 

 

3.2 Load evaluation 

Figure 6-5 shows the load symmetry evaluation using LSI defined in section 2.3.2 of this chapter. 

LSI revealed significant improvements in loading symmetry as demonstrated by the Wilcoxon Rank-Sum 

test (p = 0.01) with values of 0.22±0.12 at baseline and 0.10±0.06 at follow-up. 
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Figure 6-5 - Load symmetry obtained from the load symmetry index. Significant difference at the 5% significance level was 
observed between baseline and follow-up. 

 

An example of the LSI is shown in Figure 6-6. The level obtained from the histogram improved 

drastically for the affected side (right). It is also noticeable that the maximum peaks are closer between both 

sides at follow-up. Interestingly, a drastic improvement in cadence can be seen between baseline and 

follow-up as well. 

 

Figure 6-6 - Load symmetry example from subject 4 with a 10 second snapshot of walking at baseline (left panel) and follow-up 
(right panel). Blue: right foot, red: left foot. Dashed lines: blue, right load level and red, left load level. 
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3.3 Spatio-temporal gait parameters 

3.3.1 Daily life gait 

The gait performance metrics are shown in Table 6-3. These values represent the mean±SD for the 

mean and 90th percentile of each parameter obtained from each subject. All parameters improved in the 

expected direction but none significantly, except for the 90th percentile of cadence which did not improve. 

Table 6-3 - Gait performance metrics for baseline and follow-up. Values are mean±SD of the mean value and 90th percentile of 
each subject and p-values are shown for each metric 

Performance Baseline Follow-up p-value 

SV (m/s) mean 0.31±0.11 0.38±0.09 0.23 

SV (m/s) 90th percentile 0.40±0.14 0.50±0.11 0.16 

SL (m) mean 0.58±0.21 0.63±0.17 0.44 

SL (m) 90th percentile 0.73±0.25 0.77±0.16 0.57 

Cad (steps/min) mean 68.22±16.50 73.71±14.07 0.38 

Cad (steps/min) 90th 

percentile 

86.54±17.16 

 

86.22±16.74 0.96 

#Turning/bout (steps) 3.18±1.57 2.87±1.70 0.59 

 

The instantaneous cadence distribution obtained from all locomotion bouts is shown in Figure 6-7. 

The distribution at baseline is unimodal with peak cadence mode of 66.2steps/min, whereas the distribution 

at follow-up exhibits a shift to the right indicating increasing peak cadence mode at 82.5steps/min. A second, 

lower mode can be observed at 62.5steps/min. At baseline, Icad means were 73.62±16.79 and 90th percentile 

94.03±17.52, whereas means at follow-up were 77.79±13.79 and 90th percentile 99.66±14.24 with p-values 

of 0.65 and 0.27, respectively. 
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Figure 6-7 - Instantaneous cadence (Icad) distribution (probability density function: PDF) at baseline (left) and follow-up (right) 

 

Symmetry metrics are summarized in Table 6-4. Heel clearance and %stance SI improved in the 

expected direction, whereas mean TC SI did not improve and 90th percentile TC SI worsened. None of the 

changes were significant. 

 

Table 6-4 – Clearance (HC, TC) and stance parameters (%stance) for affected and unaffected hip with their symmetry index (SI) 
at baseline and follow p-values indicate significant changes between SI at baseline and follow-up. Baseline and follow-up 

columns show unaffected/affected mean±SD for each parameter 

Parameter Baseline Follow-up SI 

Baseline 

SI 

follow-up 

p-

value 

HC (m) mean 0.15±0.05/0.20±0.07 0.17±0.03/0.22±0.04 0.28±0.16 0.17±0.10 0.10 

HC (m) 90th percentile 0.22±0.06/0.26±0.06 0.23±0.03/0.27±0.04 0.51±0.25 0.32±0.12 0.10 

TC (m) mean 0.03±0.01/0.02±0.01 0.03±0.01/0.03±0.01 0.17±0.13 0.17±0.10 0.62 

TC (m) 90th percentile 0.03±0.01/0.03±0.01 0.04±0.01/0.03±0.01 0.28±0.17 0.37±0.21 0.38 

%Stance (mean) 68.42±9.53/74.64±6.12 66.46±6.53/71.55±5.45 0.08±0.04 0.07±0.04 0.28 

%Stance (90th 

percentile) 

76.46±9.80/82.66±5.50 74.00±7.20/78.45±5.21 0.16±0.08 0.13±0.08 0.19 

 

Gait cycle time variability was 14±19 at baseline and decreased to 12±9 at follow-up but the change 

was not significant (p = 0.1). 
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3.3.2 20m gait test 

The gait performances for the 20m test are shown in Table 6-5. Stride velocity, length, and cadence 

all increased but none significantly. 

 

Table 6-5 - Gait performances over 20m test 

Performance Baseline Follow-up p-value 

SV (m/s) mean 0.41±0.16 0.49±0.17 0.44 

SV (m/s) 90th percentile 0.46±0.17 0.55±0.18 0.51 

SL (m) mean 0.69±0.20 0.74±0.17 0.72 

SL (m) 90th percentile 0.76±0.19 0.83±0.19 0.65 

Cad (steps/min) mean 70.74±21.32 77.88±15.60 0.57 

Cad (steps/min) 90th 

percentile 

76.68±21.81 87.94±13.66 0.28 

 

The symmetry parameters for the 20m gait tests are shown in Table 6-6. HC and %stance symmetry 

improved, but TC symmetry increased. None of the parameters changed significantly. It is interesting to 

note, however, that HC and %stance of both affected and non-affected sides improved in the expected 

direction. 

 

Table 6-6 - Symmetry parameters for 20m test, Baseline and Follow-up show affected/non-affected values  

Parameter Baseline Follow-up SI 

Baseline 

SI 

Follow-up 

p-

value 

HC (m) mean 0.18±0.07/0.20±0.06 0.19±0.04/0.21±0.03 0.22±0.18 0.14±0.12 0.28 

HC (m) 90th percentile 0.22±0.07/0.23±0.05 0.22±0.0750.24±0.03 0.34±0.19 0.24±0.20 0.13 

TC (m) mean 0.03±0.01/0.03±0.00 0.03±0.01/0.03±0.00 0.16±0.06 0.18±0.07 0.71 

TC (m) 90th percentile 0.03±0.01/0.03±0.00 0.03±0.01/0.03±0.01 0.24±0.07 0.28±0.10 0.62 

%Stance (mean) 65.70±8.24/72.17±5.32 64.71±4.76/68.25±5.18 0.07±0.05 0.05±0.04 0.65 

%Stance (90th 

percentile) 

71.51±7.95/77.43±6.51 69.71±5.97/72.49±6.21 0.12±0.07 0.10±0.09 0.65 

 

Gait cycle time variability for the 20m test was 9±5 at baseline and 9±6 at follow up with p = 0.83 

indicating no statistical difference. 
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3.4 Complexity analysis 

The LZ complexity calculated at baseline and follow-up is shown on the box plot, Figure 6-8. The 

Wilcoxon Rank-Sum test revealed a significant difference between baseline and follow-up (p = 0.04).  

 

 

Figure 6-8 – Box plot of the LZ complexity metric for baseline and follow-up for all 8 patients 

 

Barcodes of all patients are shown in Figure 6-9. It is evident from the plots that baseline barcodes 

are less rich in both the number of changes from one activity to another and in the presence of higher 

intensity activities revealed by the warmer colors, compared to follow-up barcodes.  
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Figure 6-9 - Activity barcodes for all patients at baseline (left) and follow-up (right) showing the values of the LZ complexity. The 
color code represents the different activity intensities explained in Chapter 4. LZB and LZF refer to baseline and follow-up 

complexity values, respectively. 

 

3.5 Comparative analysis 

The sensitivity to change and effect size of each metric is shown in Table 6-7. Besides the Tinetti 

clinical test, the following objective metrics revealed high effect sizes: %sit, %stand, %walk, total 

locomotion duration, maximum locomotion duration, total number of locomotion bouts, LZ complexity, 

load SI and HC SI (both mean and 90th percentile). Table 6-8 shows the values at baseline and follow-up as 

well as the percent change (highlighted) for each subject of all parameters with high effect size highlighted 

in Table 6-7. 
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Table 6-7 - Percent change and Cliff's delta for all parameters. Parameters with Cliff’s delta higher than 0.474 are highlighted 

Clinical tests %change (mean±SD) Cliff_delta 

Tinetti*** 23.18±19.72 -0.88 

Activity & Complexity metrics 

% sit -5.84±6.53 0.53 

% stand 102.66±153.41 -0.50 

% walk 214.80±325.83 -0.56 

Total duration (min) 179.92±247.03 -0.53 

Maximum duration* (sec) 59.51±71.51 -0.66 

Mean duration (sec) 10.45±32.72 -0.19 

Total number (bouts) 194.47±309.36 -0.50 

#transitions 30.92±54.99 -0.23 

TD (mean) -0.36±23.52 0 

TD (90th percentile) -0.63±24.87 0.09 

LZ complexity* 34.87±42.87 -0.63 

Load and Gait metrics 

Load SI* 105.24±459.58 0.72 

SV (mean) 30.62±35.33 -0.38 

SV (90th percentile) 32.10±35.15 -0.44 

SL (mean) 11.48±13.36 -0.25 

SL (90th percentile) 9.76±17.08 -0.19 

Cad (mean) 14.31±23.00 -0.28 

Cad (90th percentile) 13.06±16.46 -0.22 

Icad (mean) 8.84±21.77 -0.16 

Icad (90th percentile) 7.24±12.60 -0.34 

HC, SI (mean) -29.18±39.80 0.50 

HC, SI (90th percentile) -25.11±44.20 0.50 

TC, SI (mean) -1.81±36.87 -0.14 

TC, SI (90th percentile) 23.13±50.81 -0.23 

%stance, SI (mean) -22.69±20.15 0.34 

%stance, SI (90th percentile) -23.66±16.62 0.41 

Variability (mean) -5.65±62.68 0.28 

Variability (90th percentile) -3.72±79.12 0.31 

#Turning/bout 15.23±77.81 0.17 
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Table 6-8 - Clinical score and relevant outcome metrics at baseline and follow-up with their percentage of change (%) for each 
subject highlighted 

ID  1 2 3 4 5 6 7 8 

Tinetti 

B 18.00 18.00 17.00 18.00 21.00 15.00 18.00 15.00 

F 20.00 21.00 20.00 22.00 21.00 23.00 20.00 23.00 

% 11.11 16.67 17.65 22.22 0.00 53.33 11.11 53.33 

%sit 

B 95.70 94.73 96.47 94.16 91.16 87.06 95.88 84.49 

F 93.09 95.76 79.04 92.54 87.86 85.14 83.11 79.28 

% -2.73 1.08 -18.07 -1.72 -3.62 -2.20 -13.32 -6.17 

%stand 

B 3.67 3.46 2.94 4.00 6.35 10.54 3.37 10.32 

F 4.64 2.81 15.18 5.54 8.71 11.63 12.27 15.30 

% 26.19 -18.79 415.95 38.27 37.07 10.33 264.07 48.20 

%walk 

B 0.63 1.81 0.59 1.84 2.49 2.40 0.75 5.19 

F 2.27 1.43 5.78 1.93 3.43 3.23 4.62 5.42 

% 263.02 -20.84 881.01 4.67 37.87 34.53 513.60 4.52 

Total duration 

B 2.79 8.53 2.72 8.57 11.65 11.18 3.54 24.65 

F 10.80 6.71 18.81 8.97 16.20 15.03 21.24 25.58 

% 286.41 -21.26 592.95 4.78 38.97 34.40 499.33 3.76 

Max duration 

B 32.48 52.03 46.48 35.96 62.30 58.36 38.04 88.38 

F 68.26 157.98 60.51 63.15 93.89 70.78 42.47 64.38 

% 110.16 203.62 30.19 75.60 50.71 21.27 11.66 -27.16 

Total number 

(bouts) 

B 15.00 39.00 9.00 54.00 48.00 65.00 17.00 85.00 

F 38.00 19.00 76.00 52.00 69.00 71.00 123.00 116.00 

% 153.33 -51.28 744.44 -3.70 43.75 9.23 623.53 36.47 

Complexity 

B 0.12 0.13 0.11 0.16 0.16 0.18 0.12 0.19 

F 0.15 0.12 0.22 0.18 0.18 0.20 0.23 0.22 

% 22.35 -7.42 109.01 16.27 16.09 8.14 96.05 18.48 

Load SI 

B 0.16 0.40 0.19 0.25 0.01 0.15 0.37 0.25 

F 0.13 0.00 0.03 0.14 0.15 0.08 0.12 0.15 

% -20.82 -99.94 -83.47 -43.35 1240.84 -43.21 -68.45 -39.66 

HC SI (mean) 

B 0.45 0.14 0.11 0.33 0.57 0.17 0.20 0.29 

F 0.11 0.10 0.15 0.20 0.25 0.08 0.11 0.36 

% -76.21 -27.38 37.66 -41.40 -56.00 -50.15 -44.31 24.37 

HC SI (90th 

percentile) 

B 0.96 0.30 0.21 0.62 0.72 0.41 0.39 0.47 

F 0.22 0.24 0.33 0.38 0.43 0.15 0.25 0.52 

% -77.22 -20.17 62.99 -39.15 -39.86 -62.35 -35.52 10.42 
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All subjects except for subject 2 decreased sitting and increased standing/walking time. Incidentally, 

subject 2 was the only one whose complexity decreased. All subjects increased their maximum walking 

bout duration except for subject 8. Subject 5 had an increasing LSI due to very low baseline value, but the 

follow-up value is close to the range of other subjects. Subjects 3 and 8 had an increase in HC SI. 

4 Discussion 

This study aimed at showing the sensitivity of the instrumented shoes to health improvements. The 

study was designed in order to produce a significant clinical change in the mobility of post-surgery elderly 

patients through a 2 weeks rehabilitation program and to show that this clinical change is objectively 

assessed by metrics provided by the instrumented shoes. The four analysis dimensions were globally 

sensitive to mobility improvements between baseline and follow-up monitoring days and corroborate the 

use of instrumented shoes as monitoring tool for clinical rehabilitation analysis. 

4.1 Activity profile 

The amount of time spent in each posture showed that patients were more active and less sedentary 

at follow-up. Sitting (including lying as detailed in Chapter 4) time decreased whereas both walking and 

standing time increased. These results are congruent with a similar longitudinal study where trunk IMU was 

used for activity monitoring at baseline and 2-week follow-up [324]. Patients completed more postural 

transitions at follow-up as well. Total, mean, and maximum walking duration increased and so did the total 

number of walking bouts. Interestingly, only the maximum walking duration exhibited a statistically 

significant change at the 5% level, indicating a notable improvement in the maximum rather than the mean 

of walking bout duration. It should be noted that since the study was conducted in a rehabilitation center, 

long walking periods are limited to the indoor space available, especially straight corridors. The fact that 

the maximum walking duration increased significantly could mean that patients needed less breaks when 

negotiating the longest paths during the day, and this is a good indicator of reduced walking fragmentation.  

The increase in number of transitions is crucial even though it was not statistically significant. 

Postural transitions put substantial stress on lower and upper body muscles and their increase shows both a 

gain in muscle function and postural stability. Furthermore, this could have future implications on the 

behavior at home after discharge of these patients, since the ability to perform transitions is linked with 

betted movement independence and lower fall risk.  
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The sample size of 8 patients remains low to draw conclusions upon statistical significance, but it 

is evident that all activity metrics obtained from the instrumented shoes exhibited changes in the direction 

of mobility improvement, and are thus highly encouraging for use in rehabilitation. 

4.2 Load evaluation 

The loading symmetry is a crucial indicator of improvement in post hip fracture assessment. In this 

study, the loading symmetry was evaluated by the symmetry index, showing a significant decrease. This 

means that patients put significantly more weight on their affected side and this could be a clear indicator 

of rehabilitation success for a clinician. To the best of our knowledge, this is the first time such a parameter 

is evaluated using instrumented shoes in daily life. Besides the LSI, an interesting observation from Figure 

6-6 is that peak forces during walking increased for affected and unaffected sides, therefore more total force 

was exerted during walking. This could be a result of the patient relying less on the walking aid (walker) to 

support themselves. Therefore, another potential parameter to be measured using the instrumented shoe 

system could be the improvement of weight bearing percentage using walking aids.  

4.3 Spatio-temporal gait parameters 

Gait parameters were separated into four categories: performance, symmetry, variability, and 

profile. The performance metrics exhibited improvement in terms of both mean and 90th percentile values. 

Even though results did not exhibit significant changes, it was previously reported that a minimum change 

of 0.04 to 0.06 m/s is required for stride velocity changes to be clinically significant [327], and therefore the 

mean stride velocity change in this study from 0.31±0.11m/s at baseline to 0.38±0.09m/s at follow-up is 

clinically relevant.  

During the 20m test, all metrics again changed in the expected direction of improvement (no 

significant changes were revealed though). However, compared to real-life patients were capable of higher 

velocities and stride lengths at both baseline and follow-up. This reasserts the importance of real life 

monitoring since clinical tests could reflect higher capacity due to the test conditions (i.e. confined 

environment, presence of an observer) that is ultimately not performed in daily life. It should also be noted 

that all patients had walking aids (either a walker or a cane) at both baseline and follow-up. This could have 

potentially limited the stride velocity and stride length [328]. Additionally, the clinical setting does not 

present many opportunities for higher gait speeds nor the need to walk faster. The number of turning steps 

per bout also decreased; this could be linked to an improved gait performance by extrapolating that less 

turning steps were required to change direction during gait. 
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HC symmetry improved at follow-up whereas TC symmetry did not. This might not be entirely 

unexpected, since TC is already a rather small value (2-5cm) and there would be no direct reason to increase 

it in daily life if it weren’t for obstacle negotiation. Both the improved HC symmetry and the increase in 

HC for affected and non-affected sides indicate a shift from shuffling-like walking towards more normal 

walking, since the foot is lifted higher from the ground. The %stance time SI decreased as well. This meant 

that patients not only put more load on their affected side, but they were able to better distribute the loading 

time at follow-up. The symmetry results tendency is concordant with the 20m gait test albeit with better 

performances during the 20m gait test. This could again reflect the different mechanisms involved in 

negotiating a straight walk during a test in the presence of an observer and more complex, free walks in 

daily life. The symmetry results demonstrate the importance of evaluating gait parameters in daily life 

during rehabilitation as they can provide important insights for clinicians on gait performance. 

Gait cycle time variability was high at baseline and follow-up for both daily life and 20m test. Even 

a slight decrease was noticed in daily life at follow-up, this was not statistically significant. This indicates 

that patients still have irregular walking. However the fact that patients have a cane could have an impact 

on this high variability, a similar result was shown in [328]. In fact, persons with walking aids had 

significantly lower stride velocity and length than age-matched persons without walking aids, and this could 

be an additional explanation to the low gait performance of the patients in our study.  

Finally, the change in Icad distribution revealed a substantial increase in peak cadence mode 

indicating improvement in that area. Whereas the cadence distribution at baseline exhibited a unimodal 

shape, the distribution at follow-up resembled the bimodal distribution that was obtained for healthy 

participants in Chapter 4 (albeit with lower cadence modes), and this could point out an initial restoration 

of usual walking mechanisms where longer walking periods have different cadence compared to shorter 

bouts. 

4.4 Complexity analysis 

The LZ complexity increased significantly between baseline and follow-up at the 5% level. This 

metric proved to be more sensitive to mobility change than classical posture metrics (i.e. percent time spent 

in each posture). This is an innovative and important result, demonstrating that the activity pattern is more 

relevant than the quantity of activity, and that the richness of activity barcodes can be used further as an 

objective clinical outcome for rehabilitation.  
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4.5 Comparative analysis 

This analysis was intended for comparing the percent change and effect size (percent non-overlap) 

of Tinetti test score and objective metrics. Even though most objective metrics did not reveal statistically 

significant changes, several had large effect sizes and were highly sensitive to change. In particular, the 

percent time spent in each posture revealed extremely high changes. Locomotion descriptors such as total 

duration and number of bouts also revealed high changes and effect sizes, confirming the good progress of 

locomotion in the studied population. Load and complexity had the highest effect sizes for objective metrics 

and were close to the effect size of the Tinetti score. In terms of gait parameters, only heel clearance 

symmetry had a high effect size. Stride velocity was close to the 0.474 threshold (Cliff’s delta of -0.44 for 

the 90th percentile of velocity). The 90th percentile exhibited larger changes in all gait parameters except 

stride length and mean cadence. While this is not a conclusive result because of the low sample size, it could 

still assert the fact that extreme values exhibit higher changes and therefore are more suitable to describe 

rehabilitation than mean values, in line with the findings of Rispens et al. [329]. 

All subjects improved their %time spent in each posture except for subject 2 (Table 6-8). This 

subject was the only one to exhibit a decrease in complexity. Interestingly, based on the Tinetti score, the 

only subject (patient 5) whose load SI did not improve had an equal score for baseline and follow-up, 

showing that this effect is potentially due to an already low LSI at baseline or measurement day variability. 

Individual changes of Tinetti score did not always match the changes in objective metrics. For example, 

subjects 6 and 8 with the highest change in Tinetti score did not exhibit the highest change in activity or 

complexity metrics. Furthermore, subject 8 improved more than subject 6 in terms of activity and 

complexity, but had a reduction in the longest walking period. Therefore the Tinetti test indicating an equal 

change in both patients was unable to characterize this change. Subject 5, whose Tinetti score did not 

increase, did improve in all metrics except for LSI. This emphasizes the fact that objective metrics are 

capable of showing complementary improvement dimensions compared to standardized tests  

 

In summary, the four analysis dimensions were complementary in revealing improvements after 

rehabilitation of hip fracture patients. Activity profile and locomotion bout analysis showed tendencies in 

the direction of recovery, even though not all parameters changed significantly. Gait analysis revealed the 

potential capacity of patients at follow-up that was not completely retained in daily life performance possibly 

because of the clinical environment. Nevertheless gait symmetry as well as load symmetry improved 

significantly at follow-up. Finally, complexity values that embed activity and locomotion patterns showed 
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significant progress. This could eventually suggest that recovery in terms of complexity occurs before full 

gait recovery.  

4.6 Study limitations 

The first and foremost limitation of this study is the low number of participants. However, the study 

is ongoing and up to 20 patients are expected to be enrolled for the final outcome analysis. The results are 

encouraging, notwithstanding. The monitoring duration was limited to one day; this was mainly due to the 

measurement logistics. In fact, a study investigator had to place the system in the morning and retrieve it in 

the evening of the monitoring day. Since autonomy was ~16 hours, the devices needed to be recharged 

nightly and therefore could not be given to patients for more than a day. It could be expected that in the 

future a miniaturized prototype of the instrumented shoes could be handed to the patients and worn for more 

than one day with minimal interference from a study investigator. The analysis was limited to the clinical 

milieu; it would be interesting in the future to evaluate the behavior of post hip fracture patients outside the 

clinic to see if they retain the mobility improvements they gain after rehabilitation. One clinical aspect that 

was not dealt with in this study was fear of falling. It would be highly relevant to obtain such data and 

correlate with mobility metrics to evaluate the impact of rehabilitation on patients. A factor analysis could 

reveal the effect of underlying parameters or associations between the parameters presented in this study. 

However, due to the relatively low sample number, this analysis was not available. Factor analysis could 

highlight whether a combination of parameters could better explain the rehabilitation outcomes compared 

to single parameter values and ultimately reduce the parameter set to a minimal number or even a clinical 

score that could be used by the clinician to evaluate global recovery. 

5 Conclusion 

This study demonstrated the clinical validity of instrumented shoes in rehabilitation assessment of 

post hip fracture patients. The four proposed analysis dimensions (activity, load, gait, and complexity) are 

complementary and reveal different mobility outcomes that can be related to recovery strategies of patients. 

Even though the sample size was small, at least one metric of each dimensions i.e. maximum duration of 

walking, loading symmetry, cadence and LZ complexity showed significant improvement at follow-up. All 

dimensions revealed to be congruent with standard clinical evaluation and displayed diverse and relevant 

parameters that are not routinely measured in daily life. These metrics should be taken into consideration 

by clinicians in order to improve the rehabilitation process and tailor it to each patient according to their 

individual mobility limitation. The results in clinical setting are highly encouraging towards further studies 

at home outside the hospital.  
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Chapter 7  

Outcome evaluation of post stroke inpatients during 
rehabilitation using instrumented shoes 

Abstract 

Recovery after stroke is highly dependent on the condition severity and the impairments caused by 

the event. Mobility could be drastically affected and rehabilitation programs usually focus on the recovery 

of each aspect of impairment. Several clinical scores exist for the assessment of stroke patients before and 

after a rehabilitation program. However, these scores do not necessarily reflect the daily life mobility of 

patients and could therefore be complemented by objective metrics. In this study, stroke patients were 

monitored for two days using the instrumented shoes: one day at baseline once they were able to walk and 

another day at follow-up before discharge. The activity, load, gait, and complexity metrics revealed several 

parameters that could describe the recovery, notably complexity, percent time spent sitting, and total number 

of walking bouts. These metrics evolved with similar effect size compared to clinical scores. Objective 

metrics were also capable of showing improvements in patients whose clinical scores improved marginally, 

further asserting their complementarity to observation-based scores. The instrumented shoes were thus 

shown to be greatly useful in rehabilitation monitoring of stroke inpatients. 
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1 Introduction 

The incidence of stroke in Switzerland is roughly 16,000 yearly [330], i.e. ~2 in 1000 subjects are 

affected. Stroke accounts for 0.4% of all chronic diseases in persons aged 15 or older in Switzerland, and 

remains the principal cause of non-congenital disability in adults [331], as well as the third most frequent 

death cause in developed countries [332]. Eighty percent of stroke survivors suffer from hemiparesis: one 

side of their body is usually affected and the control of this side (especially the arm, leg and face) is reduced, 

leading to motor impairment [332]. Since this impairment affects the daily function of stroke survivors, 

rehabilitation programs are oriented towards restoring mobility [333]. Recovery often occurs several months 

after incidence, and is maintained 6 months after effective rehabilitation especially in terms of activities of 

daily living [334]. A smaller recovery rate was also observed up to two years after a stroke. However, 

patients discharged too early or without an appropriate rehabilitation program exhibited worsening mobility. 

Hence, it is essential to monitor the motor function of post-stroke patients both at the clinic before discharge 

and at home in order to identify rehabilitation progress and act accordingly to improve individual mobility 

of patients. 

The assessment of impaired motor function in stroke patients is mainly based on clinical 

examination through validated tests as well as patients’ logs of daily activity [62]. These measures while 

sensitive to rehabilitation, are mainly based on observation and qualitative assessment and provide little to 

no objective information on daily life mobility. Furthermore, their application is limited to the clinic and to 

short activity bouts that do not reflect the performance of individuals in their own environment. Activity 

monitoring can be a powerful alternative to provide objective measures of motor function without the need 

of visual assessment. Recent progresses in wearable sensors have allowed the recording of patient 

movements in an effort to profile the activity over a day and characterize the different activity dimensions. 

In the particular case of stroke survivors, relatively few studies have been conducted to monitor the daily 

activity of this patient group, in clinical environment or at home. A uniaxial accelerometer placed on the 

shank was used for step and activity counts to monitor stroke patients before and after discharge showing 

improvements mainly in total daily activity and bout length [335]. Activity counts were also obtained using 

a hip-worn 3D accelerometer during three days of community dwelling stroke patients, revealing good 

consistency for the sensor placement at the paretic and non-paretic side [336]. Accelerometer and 

gyroscopes attached to the sternum were used to determine walking and upright time in stroke patients at 

admission and two weeks follow-up, demonstrating significant improvements [337]. In a recent study, an 

inertial measurement unit placed at the sternum including a barometer was used to monitor stroke patients 

at home and revealed significant differences between their daily activity parameters and those of an 
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age-matched older adult healthy group [338]. GPS has also been used in conjunction with accelerometers 

to monitor target locations for stroke patients [339]. 

In terms of shoe-based activity monitoring, some algorithms to recognize activity and analyze the 

gait of stroke patients were proposed using an instrumented shoe [124], [340]–[342]. These algorithms 

revealed high accuracies similar to what we presented in Chapter 3. However, none of these studies 

evaluated the daily activity of stroke patients and were limited to structured protocols with the intention of 

training and validating activity classifiers/gait analysis algorithms.  

In conclusion, there is an apparent lack of information on daily activity profiles of stroke patients. 

Therefore, the main objective of this study is to monitor daily activity of stroke patients during rehabilitation 

at the clinic and perform detailed gait and activity analysis using the instrumented shoes. We hypothesize 

that when the rehabilitation process improves the mobility of the patient, this improvement can be estimated 

through objective metrics derived from instrumented shoes and expressing complementary aspects of 

mobility, such as activity profile, gait performance, load distribution, and behavioral complexity. 

Improvements in activity performance are evidenced and comparisons between objective metrics and 

standard clinical tests are made to verify if there are similarities between both measures. 

2 Methods 

2.1 Participants and measurements 

Post stroke patients admitted to the rehabilitation center of Kliniken Valens-Switzerland, were 

recruited for this study. In total eight patients were enrolled. All patients signed informed consent and the 

protocol was accepted by the cantonal ethical committee. Patients were screened shortly after their 

admission to the rehabilitation center. The first measurement took place as soon as possible after the stroke 

occurrence and the second measurement before discharge. The time between these days varied depending 

on the patients and the stroke severity. In between these measurement days patients followed a rehabilitation 

program during which they received individualized rehabilitation therapy, depending on their disabilities 

and rehabilitation goal. The training may include physical therapy, occupational therapy, language therapy, 

balance training, different kinds of water therapy, hippo therapy (on horses) or medical training therapy 

(including weights in a fitness room under therapist supervision). An average training day consisted of 5-7 

therapy hours. The training duration and intensity were patient-tailored with weak or elderly patients 

receiving less therapy, and younger, highly motivated patients receiving more (and more intense) therapy.  
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In the morning of each monitoring day, the participant shoes were equipped with the monitoring 

system describes in section 2.2. Patients were asked to keep their shoes on during the day for at least 8 hours, 

after which a study investigator removed the monitoring system. At the end of each monitoring day, the data 

collected from the monitoring system was downloaded on a computer and stored anonymously for 

post-processing. Additionally, the clinical scores described in section 1 were available for each patient at 

baseline and follow-up. The study protocol also includes measurements at home after discharge and at 6 

months (roughly 5 months after discharge) follow-up, Figure 7-1. 

 

 

Figure 7-1 - Flowchart of the study protocol with intermediate steps from admission to discharge for participants. Vertical 
arrows represent monitoring days, with green arrows for the clinical monitoring days included in this thesis and red arrows for 

monitoring days at home (data collection in progress)  

 

The following clinical tests were performed for each patient at baseline and follow-up: 

- NIHSS (National Institute of Health Stroke Scale)1: it is a 15-item neurologic examination scale 

measuring psychological and physiological variables. It is performed by a trained observer and each 

item is scored 0 to 5 with 0 as normal.  

- MAL-30 (Motor Activity Log 30): it is a 30-item examination evaluating the use of the paretic 

upper limb and movement quality for typical activities occurring in daily life [343]. 

                                                      
1 http://www.nihstrokescale.org/ (accessed 26.05.2016) 
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- mRS (modified Rankine Scale): it is a measure of independence i.e. the ability to perform activities 

without assistance, scored from 0 (no symptoms) to 5 (complete inability to perform activities 

without assistance) [344] 

- EBI (Extended Barthel Index): it is a measure of independence with several items based on activities 

of daily living and is scored from 0-100 (100 meaning complete independence in performing 

activities) [345] 

- Fugl-Meyer test: it is an upper limb motor function test with several items including stability, 

coordination and range of motion, scored from 0-66 with 66 meaning full mobility of the upper limb 

[346] 

- ARAT (Action Research Arm Test): it is a test of upper limb mobility with 19 items including fine 

activities such as grasping and pinching. It is scored from 0-3 with 3 describing normal movement. 

It requires additional equipment to be performed [347] 

- BBS (Berg Balance Scale): it is a test of static and dynamic balance including 14 items scored 0-4 

each (4 being the highest score for independent movement). It is the most commonly used test in 

stroke rehabilitation assessment [348]. 

- TUG (Timed Up and Go over 3m): it is a functional mobility test where the time to rise from a 

chair, walk 3m, turn around a fixed point, walk back and sit down is measured [349]. 

2.2 Instrumented shoe system 

The monitoring system included an inertial measurement unit or IMU (Physilog®, GaitUp, CH) 

and a pressure sensing insole (Smart Insole, IEE, LU). The IMU measures 3D acceleration, 3D angular 

velocity and barometric pressure and functions as data logger and power unit. The insole measure plantar 

force at 8 locations under the foot, namely the heel (medial and lateral), the arch (lateral), the metatarsals 

(1st, 3rd and 5th) and the toes (hallux and the remaining toes). Converting electronics that perform digitization 

and amplification of the insole signals were strapped to each patient’s ankles. Insoles were inserted into 

each foot and the IMUs were placed on the dorsal aspect of each foot. The system components are shown 

in Figure 7-2. The sampling frequency was set at 200Hz for all sensors, allowing an autonomy of up to 16 

hours. 
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Figure 7-2 - Instrumented shoe system: Physilog® inertial sensor placed on the shoe, insole inserted inside the shoes and 
converting electronics placed above the ankle.  

 

2.3 Outcome analysis 

Similar to Chapter 6, the main outcome measures in this study were: activity profile and behavioral 

complexity, foot loading, gait performance, and effect size comparison. Each outcome is briefly described 

below. 

2.3.1 Activity profile and behavioral complexity 

Locomotion was labeled from the detection of Toe Off instants based on the pitch angular velocity, 

and sitting/standing were identified using the total force under the feet obtained from the insoles (Chapter 

6, section 2.3.1). The percentage of time spent in each of these three basic activities (i.e. sitting, standing 

and walking) was calculated. The number of locomotion periods and their durations were also retrieved, as 

well as the total number of postural transitions and their duration.  

For each patient and monitoring day, activity barcodes were constructed from the activity type 

(sitting, standing and walking) as well as the intensity (duration of walking period and cadence). The 

complexity metric for each barcode was then calculated using the Lempel-Ziv (LZ) definition of the 

Kolmogorov complexity [280]. 
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2.3.2 Foot loading and spatio-temporal gait analysis 

Load symmetry was evaluated based on the plantar force measured from the insoles. The sum of all 

sensors from each foot was obtained and then a histogram was applied to identify a global high level (Load) 

for the entire monitoring duration. The Load level was estimated for the affected and unaffected side then 

used to calculate load symmetry index (LSI), eq. 1 defined as: 

 (eq. 1) 

Hence, a decrease in LSI would indicate improvement in loading symmetry. 

Spatio-temporal parameters of gait were separated into four categories and obtained based on the 

references [126], [136], [137], [141]. For each locomotion bout of 20 steps and more:  

- Performance: mean and standard deviation (SD) of stride velocity (SV), stride length (SL), cadence 

(cad), number of turning steps (#Turning, steps with axial turning angle>20o) 

- Symmetry: mean and SD of symmetry index (SI) of maximum heel clearance (HC), minimum toe 

clearance (TC), percent stance time (%stance): 

 (eq. 3) 

- Variability: mean and SD of GCT inter-stride variability calculated from the coefficient of variation 

(CV): 

 (eq. 4) 

Where  is the standard deviation of GCT and  the mean of GCT over one walking bout. 

for any locomotion period with 3 or more detected steps: 

- Gait profile: the duration of each gait cycle (GCT) was estimated and converted to Instantaneous 

Cadence (Icad, eq. 5) and its histogram was estimated for the whole recording. 

Icad= 120/GCT  (eq.5) 
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2.3.3 Comparative analysis 

For each clinical score and parameters extracted from instrumented shoes, statistical significance 

was evaluated between baseline and follow-up monitoring days using the Wilcoxon Rank-sum 

non-parametric test. The significance is mentioned at the 5% level (*), 1% level (**) and 0.1% level (***).  

An effect size descriptor was used in this study to evaluate parameters with low sample size. This 

descriptor was Cliff’s delta, a measure of how many values at baseline are larger than values at follow-up 

for a given parameter. It is calculated using eq. 4: 

 (eq. 4) 

Where  and are the elements of the parameter at baseline and follow-up, respectively,  

and  the total number of elements of the parameter at baseline and follow-up, respectively. This 

measure is also non-parametric in the sense that it does not need the data to follow any pre-assumed 

distribution. Cliff’s delta represents the percentage of non-overlap between the baseline and follow-up 

vectors for each parameter and can range between -1 to +1. The sign is an indicator of the trend direction: 

negative sign for an increasing trend and positive sign for a decreasing trend. A higher absolute value of 

this descriptor indicates a high effect size i.e. low overlap between baseline and follow-up. Three thresholds 

are available effect size, low: 0.147< <0.33, moderate: 0.33< <0.474 and high: 

0.474<  [326].  

In addition to effect size the relative improvement (%change) of each patient was calculated for 

each selected parameter and clinical score by eq. 5: 

 (eq. 5) 

3 Results 

Patient characteristics are shown in Table 7-1. The score for each clinical test at baseline and 

follow-up is also shown, as well as the mean±SD and the p-value from Wilcoxon Rank-sum test. Four out 

of the eight tests improved significantly: NIHSS, mRS, EBI and BBS. 
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Table 7-1 - Patient characteristics and clinical test scores at baseline and-follow-up (B-F). Fugl-Meyer and ARAT are shown for 
the paretic limb only. TUG is over 3m and the values shown are in seconds. Mean, SD and p-values for comparison between 

baseline and follow-up are shown as well. Gender: M for Male and F for Female, paretic side: R for Right and L for Left 

ID   1 2 3 4 5 6 7 8 

 

Age   45 85 49 38 40 70 61 55 

Gender   M F M F M M F M 

Paretic Side   L L R L L R R L Mean±SD p-value 

NIHSS 
B 6 3 2 11 2 1 9 2 4.5±3.5 

0.05* 
F 0 3 1 11 0 0 0 1 2±3.54 

MAL-30 
B 0.15 3.63 4.76 0 2.62 4.8 1.71 2.6 2.53±1.74 

0.34 
F 2.42 4.34 4.9 0 2.83 5 4.7 2.69 3.36±1.61 

mRS 
B 3 3 2 4 3 1 4 3 2.88±0.93 

0.03* 
F 2 2 1 3 2 1 2 2 1.88±0.6 

EBI 
B 43 37 59 36 54 55 34 40 4.5±3.5 

0.003** 
F 63 55 64 51 64 64 64 59 2±3.54 

Fugl-Meyer 
B 4 57 63 4 57 61 42 61 43.63±23.66 

0.18 
F 41 59 66 5 64 60 65 62 52.75±19.52 

ARAT 
B 0 47 57 0 57 57 50 57 40.63±23.72 

0.69 
F 47 50 57 0 57 57 57 57 47.75±18.42 

BBS 
B 46 48 56 42 54 48 7 33 41.75±14.72 

0.04* 
F 50 51 56 49 56 52 54 50 52.25±2.59 

TUG (sec) 
B 20.47 10.21 4.41 16.25 8.47 10.15 0 19.44 11.18±6.71 

0.08 
F 6.85 9.19 4.08 10.8 5.6 9.82 7.75 12 8.26±2.51 

 

3.1 Activity profile  

Patients spent 85±10% of monitoring time sitting, 9±7% standing, and 6±5% walking for the 

baseline measurement. On the follow-up monitoring day, they spent 77±8% sitting, 14±6% standing, and 

10±5% walking, indicating an increase in upright and decrease in resting time, Figure 7-3. These differences 

were not statistically significant (p-value range: 0.13-0.19). At baseline, patients completed 26±13 

sit-to-stand and 26±13 stand-to-sit, compared to 30±15 sit-to-stand and 30±14 stand-to-sit at follow-up, an 

increase that was not statistically significant (p = 0.62). Transition duration was 2.18± 0.57s at baseline and 

decreased to 2.13± 0.63s at follow-up, with p = 0.13.  
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Figure 7-3 - Percent time spent in each activity type at baseline and follow-up.  

 

The analysis of locomotion periods is presented in Table 7-2. Total, maximum, and mean duration 

as well as the total number of locomotion bouts all showed improving trends but not significantly.  

 

Table 7-2 - Locomotion period characterization shown as mean±SD for all subjects at baseline and follow-up 

Parameter Baseline (mean±SD) Follow-up (mean±SD) p-value 

Total duration (min) 33.09±22.86 50.70±21.19 0.19 

Maximum duration (sec) 215.24±261.36 324.03±439.54 0.65 

Mean duration (sec) 17.57±11.74 18.43±9.39 0.80 

Total number (bouts) 108.63±74.88 179.13±58.40 0.09 
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3.2 Load evaluation 

Figure 7-4 shows the load symmetry index for all subjects across all load data. A slight trend of 

improvement could be observed, but no significant difference was found (p = 0.69). An attempt at separating 

the LSI for walking and standing was also made but still revealed no significant changes (p = 0.19 for 

walking and p = 0.72 for standing).  

 

Figure 7-4 - Load symmetry obtained from the load symmetry index (LSI).  

 

3.3 Spatio-temporal gait parameters 

The gait performance metrics are shown in Table 7-3Table 6-3. All parameters improved in the 

expected direction but none significantly. A notable increase in 90th percentile of stride velocity can be seen, 

from 0.95±0.36m/s to 1.16±0.35m/s (p = 0.19).  
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Table 7-3 - Gait performance metrics for baseline and follow-up. Values are mean±SD across all analyzed gait cycles from all 
subjects. p-values are shown for each metric 

Performance Baseline Follow-up p-value 

SV (m/s) mean 0.74±0.26 0.91±0.27 0.23 

SV (m/s) 90th percentile 0.95±0.36 1.16±0.35 0.19 

SL (m) mean 1.01±0.24 1.11±0.27 0.46 

SL (m) 90th percentile 1.20±0.27 1.32±0.28 0.40 

Cad (steps/min) mean 86.40±16.12 95.13±14.55 0.23 

Cad (steps/min) 90th 

percentile 

97.09±18.34 107.00±18.16 0.23 

#Turning/bout (steps) 6.85±2.65 8.30±2.82 0.61 

 

The instantaneous cadence distribution obtained from all locomotion bouts is shown in Figure 7-5. 

Both distributions exhibit bimodal behavior, with modes at 52 and 96 steps/min at baseline, 72 and 111 

steps/min at follow-up. The increase in both modes indicates a substantial improvement in cadence. Mean 

Icad was 80.59±12.05steps/min at baseline and 89.88±13.08steps/min at follow-up (p = 0.19), 90th 

percentile was 115.55±17.58steps/min at baseline and 111.21±15.99steps/min at follow-up (p = 0.72). 

 

 

Figure 7-5 - Instantaneous cadence distribution (probability density function, PDF) at baseline (left) and follow-up (right) 

 

Symmetry metrics are summarized in Table 7-4. Interestingly, SI for HC and TC worsened (except 

for mean HC), and only a slight improvement was shown for %stance. 
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Table 7-4 - Symmetry parameters compared at baseline and follow-up using the symmetry index. 

Parameter Baseline Follow-up SI 

Baseline 

SI 

follow-up 

p-

value 

HC (m) mean 0.23±0.06/0.23±0.03 0.25±0.04/0.24±0.04 0.10±0.08 0.09±0.06 0.96 

HC (m) 90th percentile 0.27±0.06/0.27±0.04 0.33±0.15/0.27±0.03 0.19±0.10 0.22±0.16 0.87 

TC (m) mean 0.03±0.01/0.03±0.01 0.03±0.02/0.03±0.01 0.17±0.04 0.25±0.09 0.07 

TC (m) 90th percentile 0.04±0.01/0.05±0.02 0.04±0.01/0.04±0.01 0.35±0.08 0.46±0.14 0.07 

%Stance (mean) 61.65±5.84/66.58±3.81 61.99±5.23/65.82±2.51 0.06±0.05 0.06±0.05 0.87 

%Stance (90th 

percentile) 

66.58±5.98/72.20±5.72 67.48±7.22/70.02±3.48 0.10±0.06 0.09±0.05 0.87 

 

Gait cycle time variability was 9±8 at baseline and increased to 11±11 at follow-up but the change 

was not significant (p = 0.84). 

3.4 Behavioral complexity 

The LZ complexity metric calculated for baseline and follow-up is shown on the box plot, Figure 

7-6. Even though the complexity trend was towards improvement, the p-value of 0.065 was not statistically 

significant. However, this value was the closest of all activity metrics (see section 3.1) to the 5% significance 

level. Therefore, as was the case for the hip-fracture patient population, complexity seems to explain 

improvements after rehabilitation better than the time spent in different activities or locomotion period 

analysis.  

 

Figure 7-6 – Box plot of the LZ complexity metric for baseline and follow-up for all 8 patients 
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Barcodes of all patients are shown in Figure 7-7 at baseline and follow-up. Barcodes appear to be 

richer in terms of both activity intensity and the number of changes between states at follow-up. It is worth 

mentioning that there were two subjects for which the complexity decreased (P6 and P8), and this could be 

visually observed by looking at their barcodes which were richer at baseline. 

 

Figure 7-7 - Activity barcodes for all patients at baseline (left) and follow-up (right) showing the values of the LZ complexity. The 
color code represents the different activity intensities explained in Chapter 4. 
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and locomotion parameters is due to the fact that patient 2 performed extremely low amounts of standing 

and walking at baseline and therefore the improvements at follow-up were drastic. 

Table 7-5 - Percent change and effect size for clinical tests and objective metrics. Highlighted metrics have absolute Cliff delta 
larger than 0.474 

Clinical tests %change (mean±SD) Cliff_delta 

NIHSS* -62.50±44.32 0.59 

MAL-30 246.62±562.06 -0.23 

mRS* -32.29±15.71 0.61 

EBI** 39.49±25.40 -0.84 

Fugl-Meyer  128.16±322.50 -0.41 

ARAT N/A (infinite) -0.16 

BBS* 95.82±233.14 -0.61 

TUG 3m -27.57±22.41 0.41 

Activity metrics 

%sit -7.47±20.47 0.47 

% stand 643.96±1267.65 -0.41 

% walk 21316.28±59675.14 -0.41 

Total duration (min) 7424.84±20337.51 -0.41 

Maximum duration (sec) 3244.64±9054.87 -0.16 

Mean duration (sec) 66.54±171.73 -0.09 

Total number (bouts) 1409.01±3528.61 -0.52 

#transitions 34.18±64.02 -0.16 

TD (mean) 0.50±10.38 0.06 

TD (90th percentile) 3.91±25.00 -0.09 

LZ complexity 56.47±95.99 -0.56 

 

Load and gait metrics are continued on the following page. None of these metrics provided a high 

effect size to be considered for latter individual analysis. The toe clearance exhibited a high effect size but 

in the direction of worsening, and therefore will not be compared to the clinical tests. Potential reasons 

behind this worsening are detailed in the discussion. 
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Load and Gait metrics 

Load SI 835.27± -0.06 

SV (mean) 27.30±52.70 -0.34 

SV (90th percentile) 27.69±44.69 -0.38 

SL (mean) 12.95±32.86 -0.22 

SL (90th percentile) 12.61±25.61 -0.25 

Cad (mean) 9.35±14.01 -0.34 

Cad (90th percentile) 8.89±10.74 -0.34 

Icad (mean) 12.32±14.22 -0.41 

Icad (90th percentile) -3.03±12.19 0.13 

HC, SI (mean) 4.75±44.86 0.03 

HC, SI (90th percentile) 22.51±51.76 -0.06 

TC, SI (mean) 48.38±60.18 -0.50 

TC, SI (90th percentile) 40.16±49.98 -0.50 

%stance, SI (mean) 2.63±40.50 0.06 

%stance, SI (90th percentile) 2.33±47.54 0.06 

Variability (mean) 11.09±32.43 -0.09 

Variability (90th percentile) 13.21±36.09 -0.19 

#Turning/bout 34.61±38.62 -0.16 

 

Parameters that improved with a high effect size are related in Table 7-6 for each subject. It is 

interesting to note that subjects whose complexity decreased performed less walking bouts and spent more 

time sitting at follow-up compared to baseline. Some values are extremely high owing to changes in subject 

7 who performed only 2 extremely short bouts of walking at baseline. 
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Table 7-6 - Clinical test scores and relevant objective metrics based on effect size for each individual. Values at baseline (B) and 
follow-up (F) are shown as well as the %change (highlighted) for each parameter and score 

ID  1 2 3 4 5 6 7 8 

NIHSS B 3.00 2.00 6.00 11.00 2.00 1.00 9.00 2.00 

F 3.00 1.00 0.00 11.00 0.00 0.00 0.00 1.00 

% 0.00 -50.00 -100.00 0.00 -100.00 -100.00 -100.00 -50.00 

mRS B 3.00 2.00 3.00 4.00 3.00 1.00 4.00 3.00 

F 2.00 1.00 2.00 3.00 2.00 1.00 2.00 2.00 

% -33.33 -50.00 -33.33 -25.00 -33.33 0.00 -50.00 -33.33 

EBI B 37.00 59.00 43.00 36.00 54.00 55.00 34.00 40.00 

F 55.00 64.00 63.00 51.00 64.00 64.00 64.00 59.00 

% 48.65 8.47 46.51 41.67 18.52 16.36 88.24 47.50 

BBS B 48.00 56.00 46.00 42.00 54.00 48.00 7.00 33.00 

F 51.00 56.00 50.00 49.00 56.00 52.00 54.00 50.00 

% 6.25 0.00 8.70 16.67 3.70 8.33 671.43 51.52 

% sit B 98.02 86.53 87.29 79.08 83.29 71.33 99.55 72.75 

F 71.38 79.71 74.51 71.27 74.16 92.55 66.96 82.75 

% -27.18 -7.88 -14.64 -9.88 -10.96 29.75 -32.74 13.75 

Total 

number 

(bouts) 

B 23.00 111.00 149.00 132.00 105.00 244.00 2.00 103.00 

F 254.00 219.00 192.00 206.00 172.00 105.00 204.00 81.00 

% 1004.35 97.30 28.86 56.06 63.81 -56.97 10100.00 -21.36 

LZ 

complexity 

B 0.12 0.20 0.22 0.21 0.21 0.29 0.09 0.30 

F 0.32 0.23 0.31 0.29 0.23 0.18 0.31 0.24 

% 165.98 14.36 40.37 40.12 12.73 -38.09 238.55 -22.29 

 

4 Discussion 

As in Chapter 6, this study aims to show the sensitivity to change of the instrumented shoes to health 

improvement. The study was designed in order to expect a functional improvement after rehabilitation 

process and to see in what extend objective outcome measures extracted from instrumented shoes is actually 

sensitive to this improvement. Outcomes measures divided into four categories (activity, complexity, gait 

and loading) highlight at different degree their relevance for objective outcome evaluation of rehabilitation 

in post-stroke population. All dimensions revealed trends in the direction of improvement and a few key 

trends revealed high effect size comparable to clinical test scores. 
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4.1 Activity profile 

The observed trend in activity profile was in the expected direction, with %sitting time decreasing 

and %upright (standing and walking) both increasing. For some patients, changes were substantial: patient 

7 for example had relatively no walking at baseline (2 short bouts) and increased to more than 4% at 

follow-up (204 bouts, Table 7-6). None of the trends was statistically significant but the results demonstrate 

the overall improvement of patients. 

All locomotion parameters also improved but did not reach the significant level. An interesting 

observation was that the maximum locomotion bout duration was not significantly different (which was the 

case for hip fracture patients in Chapter 6). The number and duration of transitions increased/decreased 

respectively, but not significantly.  

4.2 Load evaluation 

The load symmetry index revealed no significant changes even though it slightly decreased, 

indicating that loading is not a crucial factor of early stroke rehabilitation. However for LSI, p-value 

decreased when only walking was considered. This could be related to the gait spatio-temporal 

improvements. It seems that the difference between paretic and non-paretic side affects upper limbs more 

than the load transfer between the feet. 

4.3 Spatio-temporal gait parameters 

Gait performance improved between baseline and follow-up. Crucially, stride velocity increased up 

to 1m/s. Stride velocities below 0.8m/s were shown to be too low for some independent tasks (e.g. crossing 

the road on a traffic light) [350]. Patients were under that threshold at baseline but well over it at follow-up. 

The stride velocity at follow-up is also similar to what we observed in healthy older adults (Chapter 4). Thus 

a gain in functional independence can be confirmed by the velocity parameter. Stride length, cadence, and 

changed in the expected direction as well. The number of turning steps increased, however, when it was 

expected to decrease (patients would perform less turns to complete pivot tasks). This again could be due to 

the high increase in mobility of some patients (i.e. patients who walked very little at baseline).  

In terms of symmetry, heel clearance improved whereas toe clearance worsened. There is no 

conclusive explanation for this behavior at the moment, but it could be expected that patients might be 

overcompensating toe clearance at follow-up to avoid foot-drop or better negotiate obstacles. The percent 
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stance time did not change much at follow-up but was already at ~60% at baseline, similar to what is 

observed in healthy persons. 

Gait cycle time variability increased non-significantly at follow-up. Both measures were slightly 

high, indicating rehabilitation has not improved the regularity of walking. 

An important result is the Icad distribution: a bimodal distribution resembling healthy walking 

(Chapter 4) was observed for both baseline and follow-up, but the values of cadence mode were low at 

baseline. This could mean that patients negotiate locomotion bouts in a normal way early after stroke but 

with reduced cadence.  

 

To summarize, it appears that gait performance is a good first indicator of mobility improvements 

during rehabilitation of stroke patients, whereas gait symmetry still needs to be investigated. It would be 

highly relevant to monitor gait performance outside the clinic to see whether this is retained over longer 

periods of time. 

4.4 Complexity 

The LZ complexity increased between baseline and follow-up but with a statistically non-significant 

p-value of 0.065. However, this metric proved to be more sensitive to mobility change than classical posture 

metrics (i.e. percent time spend in each posture) because of this lower p-value. This result asserts the 

proposition in Chapter 6 that activity pattern is more important than simply the activity type of frequency, 

and that the richness of activity barcodes can be a clinical indicator for rehabilitation.  

4.5 Comparative analysis 

All clinical tests improved in the expected direction, even though some of them were not statistically 

significant. Using the effect size metric, it was shown that the LZ complexity had similar performances to 

some clinical metrics, a further argument in favor of using complexity as a global rehabilitation indicator. 

Beyond statistical significance, Cliff’s delta revealed relatively high effect sizes for the percent time spent 

sitting (and close to high for walking and standing); this could better explain the improvement trend than 

the p-values of the Wilcoxon Rank sum test with a low number of samples (8 subjects total). The number 

of walking bouts also had a high effect size. 

By observing the barcodes, two subjects (6 and 8) had their complexity scores lower at follow-up 

than at baseline. Patient 6 for example, had high test scores at baseline (Table 7-6) and this could mean that 
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their reduction in complexity is not because of deterioration (since they both improved at follow-up based 

on clinical scores), but rather a chance occurrence due to daily variations in activity. Monitoring time for 

complexity calculation is still an open question, but it would seem that more than one day would be required 

in the future to better understand the changes in activity complexity. 

Metrics with high effect size were able to show improvements for patients where clinical tests were 

similar between baseline and follow-up. An example is patient 1 whose clinical scores revealed mild 

improvements but whose complexity, %sitting, and total number of bouts were amongst the highest 

improvements across the 8 patients (Table 7-6).  

Patient 7 had the lowest scores amongst the group and achieved considerable improvements in both 

clinical scores and activity metrics, showing that these metrics are highly sensitive to large changes in 

mobility. 

4.6 Study limitations 

The main limitation of this study remains the low number of participants. However, the study is 

ongoing and up to 30 patients are expected to be enrolled for the final outcome analysis. Another limitation 

of the patient sample is the heterogeneity of age and stroke severity. Once the full sample is achieved, it 

would be expected to stratify into groups by either age or severity and perform the analyses for each 

subgroup. This could inform better on the rehabilitation mechanism, especially since it was observed in this 

study that patients who had major impairments at baseline benefited highly from the rehabilitation program.  

The monitoring duration was limited to one day; and this highlights the results especially in terms 

of complexity where two well-performing patients at baseline had slightly reduced performance at 

follow-up. The ongoing debate about the most suitable monitoring time to obtain relevant activity data is 

crucial, and based on the current results it could be said that one day is probably not enough to measure a 

full scale improvement especially when patients are already performing well at baseline. However, one day 

was enough to show improvements for patients whose mobility was quite restricted at the first monitoring 

day.  

The current analysis was limited to the clinic due to the currently available data. This is the first 

part of an ongoing study where patients will be monitored at home after discharge and 6 months later to 

quantify whether or not the perceived improvements in the clinic are retained at home. The results of the 

second part of the study will be highly interesting with regards to the literature since keeping up a good 

mobility performance at home is related to the rehabilitation program’s effectiveness and duration [334]. 
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In this study, functional mobility tests such as 20m gait or 6 minute walking test were not performed. 

It would have been interesting to have these tests to relate the capacity of patients to their daily performance. 

The main reason behind omitting these tests is the availability of several clinical scores that take time to 

obtain, and therefore the physiotherapist was unable to complete more tests with patients. The improvements 

in gait performance are high enough in this study compared to Chapter 6 though, even without gait capacity 

measures. 

Stroke patients have impairments in the upper limb as well, and this was not studied in this project 

since it is mainly related to the instrumented shoes. The monitoring also included sensors on both wrists and 

the sternum to quantify upper body mobility and the data will be analyzed in the future and compared to the 

outcomes obtained from the instrumented shoes. This will provide a rich and global analysis of functional 

mobility in stroke patients at the clinic and at home. 

5 Conclusion 

This study demonstrated the clinical validity of instrumented shoes in rehabilitation assessment of 

stroke patients. Activity, gait and complexity metrics revealed trends in the expected improvement direction 

as demonstrated by the clinical scores. Gait performance revealed the main improvements at follow-up with 

positive changes in stride velocity, stride length, and cadence. Even though some differences were not 

statistically significant, it was shown that complexity analysis in particular has an effect size similar to 

clinical tests and is therefore suggested to be used as a global metric for rehabilitation. Other metrics with 

high effect size revealed the possibility to monitor rehabilitation improvements even when clinical scores 

do not change highly, and were sensitive to change when patients exhibited drastic improvements. A crucial 

point for future studies will be the number of monitoring days to better assess rehabilitation outcomes as the 

day-to-day activity variability can have an effect on the results. The potential to provide an objective 

rehabilitation score from instrumented shoes will be explored at a later stage when the measurements 

conclude. 
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Chapter 8  

Conclusion 

1 Summary of main contributions 

In this thesis, instrumented shoes consisting of an inertial measurement unit and a force sensing 

insole were designed for the purpose of accurate activity classification and daily behavior monitoring in 

healthy and at-risk populations. The system included a relatively large number of sensors (3D accelerometer, 

3D gyroscope, 3D magnetometer, barometer, temperature sensor, and 8D force sensing), all placed at a 

single body location. The prototype in its current state is stable and reliable, providing an autonomy of about 

16 hours at a sampling rate of 200Hz, allowing a fine reconstruction of analog signals. The selection of this 

system as a daily activity monitoring solution was based on several premises related to movement analysis 

from the lower limb, namely the possibility to measure foot orientation in space and the foot loading during 

contact with the ground. The instrumented shoes proved to be an all-in-one activity, gait, and complexity 

analysis tool; an excellent compromise between having a single body sensor location and classifying activity 

with high accuracy, as well as finely characterizing activity during daily life and measuring outcomes of 

patient rehabilitation. No system based on single body location has so far provided activity monitoring 

concurrently with gait analysis, transition characterization, and behavioral complexity in daily life. The 

clinical application of the instrumented shoes was demonstrated in two longitudinal rehabilitation trials with 

relevant outcomes. 

 

The signals from the instrumented shoes proved to be appropriate for activity classification. The 

validation over the semi structured protocol revealed a high accuracy of activity type recognition for basic 

postures and more detailed locomotion types. The tuning parameters of the algorithm were insensitive to 

small changes and therefore the algorithm was robust against potential measurement inaccuracies that may 

appear in the context of long-term daily life monitoring.  
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The algorithm also performed exceptionally in daily life monitoring, albeit with a slightly lower 

accuracy. Besides activity classification and daily postural allocation, barcodes were extracted reliably from 

the instrumented shoes and could be used similarly to the reference system. Gait analysis was performed 

outside the lab using instrumented shoes for the first time, and reported parameters were similar to what is 

found in the literature. The system allowed the calculation of parameters such as foot clearance for the first 

time in real life conditions. 

 

The load measurement from the insoles provided a signal that could be used for transition detection 

and duration calculation. This was also the first study to perform postural transition characterization from 

instrumented shoes. Postural transition detection and classification accuracy was excellent, whereas the 

comparison of transition duration with a reference system was highly acceptable. The load estimation error 

was low using a simple calibration technique. Transitions in daily life measured with the instrumented shoes 

compared well to what was found in the literature but differed somewhat from trunk sensor measurements. 

 

Monitoring rehabilitation with instrumented shoes was the highlight clinical application of this 

novel system. Using all the metrics that could be obtained from the different sensors, improvements could 

be seen based on the population and analyzed in comparison to clinical tests. Activity, load, gait, and 

complexity all played their part, revealing interesting recovery outcomes that were also demonstrated by 

clinical test scores, proving that the instrumented shoe system is a viable objective tool for clinical 

rehabilitation monitoring. 

2 Biomechanics-inspired decision tree classification algorithm 

The expert-based decision tree that was designed to classify the different activities in Chapter 3 was 

implemented with the rationale that typical signal features that are subject independent could inform about 

the activity type. The selection of these features was based on common movements or states that occur for 

different activities: lifting the foot to perform locomotion, transferring the load on the feet to transition from 

sitting to standing and vice-versa, changing the elevation when climbing or descending, and inclining the 

foot when on a slope. This approach did not require a machine learning step like other common algorithms. 

In learning approaches, a classifier requires some input data to tune the classifier parameters and output the 

predicted activity class. This might be difficult to use when the algorithm is validated on a healthy subgroup 

and applied with patients. For example, hip fracture patients (Chapter 6) exhibited high asymmetry at 

baseline and therefore features obtained from their affected side are not similar to those obtained from 
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healthy older adults. The proposed algorithm performed exceptionally well in the semi-structured protocol, 

demonstrating the effectiveness of the expert-based method. The tuning parameters were changed within 

plausible ranges and showed that the algorithm is robust to small changes. The achieved accuracy of 97% 

was similar to what was reported by other studies using instrumented shoes and machine learning algorithms 

[110]. More importantly, the performance was on a par with multi sensor systems [40], [45] and better than 

single sensor systems placed at other body locations [48], [271]. The possibility to detect stairs and ramps 

has meaningful implications on monitoring avoidance behavior, since non-level locomotion requires more 

energy than level walking and could present obstacles that some persons try not to face (e.g. by taking the 

elevator). 

The application of the algorithm to real life data revealed, once more, an excellent classification 

accuracy for basic activity types. However, the result decreased slightly from the structured protocol and 

this was congruent with the literature, even though the classification remained highly accurate at 93%, as 

described in Chapter 4.  

The main conclusion in terms of activity classification is that our designed system and algorithm 

perform exceptionally well in structured protocols or at home, and are suitable for long term activity 

monitoring in healthy and at-risk persons. This is further confirmed by other extracted metrics such as the 

distribution of locomotion periods and cadence, which appeared to be consistent with what was observed in 

the literature for locomotion outside the confines of the lab [54], [275]. 

3 Gait and complexity in healthy persons 

Gait analysis using inertial measurement at the foot level has been validated in controlled conditions 

through previous studies [126], [136], [137], [141] from our lab. In this thesis, we extended the use of 

validated gait analysis algorithms to real life locomotion periods. This was possible because of the high 

accuracy of the activity classification algorithms, meaning that valid locomotion periods in daily life are 

analyzed. The analysis was limited to steady-state walking bouts where participants performed more than 

20 steps to ensure the measurement of meaningful gait parameters. The extracted parameters were similar 

to those measured with a large cohort of age-matched older adults performing a 20m gait test [194], [195]. 

An interesting result was the low correlation between stride velocity, the most commonly measured gait 

parameter, and foot clearance, a parameter that has not yet been reported in the literature during daily life 

monitoring (to the best of our knowledge). These two parameters are thus, with a high probability, 

independent, and should both be measured in daily life. Foot clearance has a crucial effect on fall risk since 

it determines whether subjects are able to overcome obstacles or not. 
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The barcodes defined in Chapter 4 using instrumented shoes activity output were used to calculate 

a complexity metric that correlated significantly with the reference system but demonstrated no correlations 

with gait parameters except for the maximum locomotion bout duration. This result corroborates the use of 

activity complexity as a global metric complementary to gait parameters.  

4 Classification and characterization of postural transitions and 

load under the feet 

In Chapter 5, the detection of sitting and standing postures that was proposed for the activity 

classification algorithm was improved by a transition detection method. This method was initially developed 

to analyze pulse and transition signals. After wavelet filtering, the total force signal resembled a bi-level 

signal that could be similarly analyzed. The method revealed sensitivity and precision exceeding 90% in 

detecting transitions and their types, a result that matches and even outperforms other single sensor location 

systems [244], [285]. From a clinical point of view, postural transitions are extremely relevant since they 

convey crucial information about mobility and independence. The number of transitions during a day can 

be an indicator of poor mobility, owing to the fact that transitions are necessary to start ambulation but have 

a high energetic impact in terms of performance. The transition duration is an equally important parameter, 

since it can be an indicator of lower limb strength [351] as well as frailty and fall risk [285], [352]. This 

duration was obtained through instrumented insoles and was validated in Chapter 5 using a force plate as 

reference system. The results were enhanced by applying a wavelet transform to the total force data, 

allowing a reliable detection of start and end events of postural transitions. Only a handful of start/end event 

combinations yielded low errors in laboratory conditions and were retained for real-life assessment. It was 

interesting to have a comparative result with the trunk inertial sensor as well, with a relatively similar 

performance in the lab but not entirely congruent in real-life. This could be explained by the differences in 

transition characteristics between lower body (load transfer) and upper body (trunk tilt), as well as the 

additional presence of the sit-to-walk and walk-to-sit transitions. Nevertheless, the transition 

characterization is a major achievement since this was never reported for instrumented shoes before. 

Moreover, the instrumented insoles that were used were not particularly designed for this type of analysis 

but rather for detecting load changes during locomotion activities. Hence the detection and characterization 

algorithm is all the more powerful, showing a completely innovative aspect of the instrumented shoes. 

The load estimation based on a simple calibration rule, i.e. that the weight measured during static 

standing corresponds to 100% body weight, returned low errors compared to force plate reference and 

showed the potential of our system in accurate load monitoring.  
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5 Application to rehabilitation 

Having shown the technical validity of the instrumented shoes to quantify activity, locomotion, 

transitions, gait, and complexity, the next step was to use the large number of parameters for outcome 

evaluation in rehabilitation programs. In order to have information on mobility improvement in 

homogeneous groups, two separate studies were conducted, one with post hip fracture patients and the other 

with stroke survivors. The results revealed excellent sensitivity to improvements when compared to clinical 

scores, and advocated the use of complexity as a global assessment metric, complementary to gait and load 

measurement.  

Hip fracture patients improved globally in terms of postural allocation, locomotion, and transition 

parameters. Incidentally, a major significant improvement was the maximum locomotion bout duration. 

Daily gait parameters also improved substantially, but gait capacity during the 20m clinical test revealed 

that patients could walk faster compared to daily life. Loading symmetry ameliorated significantly in this 

study, indicating a gain of function in the affected side post operatively. Changes in stride velocity at 

follow-up were congruent with the literature [353] but were not sufficient for total functional recovery [354]. 

This could be explained by the use of walking aids and the presence in the clinical environment, reducing 

the need to walk faster. Instantaneous cadence showed interesting improvements as demonstrated by its 

distribution change from unimodal at baseline to bimodal at follow-up. The increase in activity complexity 

was significant, indicating that this global metric could characterize improvement better than metrics of 

activity and locomotion considered separately. 

Activity profiles improved well in stroke patients, whereas the loading symmetry changed only 

slightly. However, based on clinical scores, their upper limb test scores ameliorated at follow-up. This could 

indicate that upper limb symmetry is more crucial at this stage of rehabilitation that foot loading. Patients 

performed more walking bouts and longer durations at follow-up but differences were not statistically 

significant. More importantly, they were able to achieve stride velocities of more than 1m/s indicating 

functional recovery of normal velocities after rehabilitation. An interesting result was the decrease in 

symmetry for toe clearance that could be due to overcompensation by the affected limb at follow-up in order 

to better lift the foot from the ground and avoid foot-drop. Complexity showed to be sensitive to change 

once again even though its improvement was not significant. 

Finally, objective metrics complemented clinical test scores by showing improvements for patients 

whose scores did not change substantially between baseline and follow-up. This is an important outcome 

since patients who already perform well at baseline could still benefit from mobility improvements 

notwithstanding their good clinical scores. For patients who improved drastically over the course of 
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rehabilitation as seen from their clinical scores, the objective metrics revealed similar trends and therefore 

were highly sensitive to mobility improvements. 

The significance of statistical tests is limited by the low sample size in both studies (8 patients each). 

Definitive conclusions will be drawn when the studies are completed with appropriate number of patients. 

A comparison of effect size for clinical scores and objective metrics was undertaken and showed that several 

parameters had a large effect size, therefore have little overlap between their distributions at baseline and 

follow-up: a good indicator of recovery. Once the measurements are completed, the correlation between 

objective metrics and clinical scores will be analyzed to identify associations between these measures. For 

the stroke population it would be possible to analyze upper limb movement as well, since inertial data from 

sensors attached to the wrists and sternum are available. This, of course, will be clear once the final sample 

size is reached and the full dataset analyzed. 

These findings are unique since monitoring patients for an entire day using instrumented shoes was 

not previously reported in the literature. The instrumented shoes, designed and validated in the current 

thesis, provide new possibilities for monitoring patients in their daily environment and offer new 

perspectives in wearable devices for clinical studies as described in the following section. The different 

recovery strategies (i.e. activity, complexity, load, or gait) can be detected with the instrumented shoes, and 

with appropriate monitoring timeline the succession of their improvement could also be revealed, e.g. 

improvement in gait at the clinic followed by increased activity levels at home. 

6 Future perspectives 

Research in wearable activity monitoring is at its peak today, especially in terms of activity 

classification and characterization. There are many potential areas of development, and in the case of 

instrumented shoes, several technical and clinical improvements can be foreseen. 

6.1 Technical developments 

6.1.1 System miniaturization and robustness improvement 

Examples of early designs of the instrumented shoes system are shown in Figure 8-1. These versions 

were not robust enough to withstand the forces applied on the insoles. The wires connecting the sensors 

would break after relatively few days of use. Therefore an alternative solution where sensors were connected 

in a flexible manner was important. This was demonstrated by the force insoles from IEE, LU. 
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The current prototype of the instrumented shoes described in Chapter 3 requires two connectors: 

one from the insole to the electronics box and another from the box to the inertial measurement unit. A 

system miniaturization would be beneficial since it would provide more comfort, ease of use, less hazards 

(e.g. wires getting disconnected), and no sensors protruding from the shoes. This implies that all sensors, 

electronics, logging, and power unit be inserted in an insole. This is not a simple task, with many ergonomic 

and mechanical stability requirements. In fact, a recently concluded European project was dedicated to the 

design of such a fully integrated insole1. The insole should be thin enough to remain comfortable, and the 

circuit design should allow some flexibility to prevent connection breaks. One option would be to use the 

surface under the medial arch of the foot, which is not fully in contact with the ground during walking, to 

place bulky components (e.g. battery, memory card). In order to provide better mechanical robustness and 

avoid broken connections under the foot, a future possibility would be to use stretchable electronics, an area 

that is expanding rapidly with good overall results [355]. In our current configuration, the insole sensors are 

almost sealed shut between two layers of neoprene (to avoid drastic changed in humidity and temperature), 

meaning that the access to individual sensors is practically impossible. This is an additional consideration 

when building a miniaturized prototype: how to protect the sensors from humidity and temperature changes 

while keeping the sensors and electronics accessible. Another perceivable development is to improve power 

autonomy in order to extend the duration of monitoring time and avoid interaction with the users (i.e. 

necessity to charge the system overnight). Currently, this is limited by the available battery technology and 

size, and also by the sampling frequency required to perform accurate gait analysis. Testing should be done 

at lower frequencies to validate the effects of down-sampling on parameter accuracy. There have been 

prototypes of self-powering insoles [356]; this could well be an alternative power source but it does require 

loading triboelectric nanogenerators during walking and could be inefficient with at-risk populations (or any 

population that does not walk enough). Another interesting future perspective in foot-worn sensing would 

be tailoring sensor insoles to the individual by 3D printing techniques, an idea already proposed by [357].  

 

                                                      
1 http://www.wiisel.eu/ (accessed 26.05.2016) 
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Figure 8-1 - Initial insole prototypes; a) Insole with standalone sensors from IEE, LU, b) Insole with standalone FSRs from 
Tekscan, USA. 

 

We are already testing a first miniaturized prototype where the inertial unit and the electronics are 

deported to a single box that is clipped on the lateral side of the shoe, therefore eliminating the need for 

external connecting wires, Figure 8-2. 

 

Figure 8-2 - Miniaturized instrumented shoe prototype with insole inserted in the shoe and inertial measurement unit clipped on 
the lateral side of the shoe. This system is also equipped with a Bluetooth data transmission chip 

 

The durability of such insoles and their wear over time could be the topic of a future study. Due to 

repetitive high loading during dynamic activities it would be crucial to know the long-term repeatability and 

stability of the sensors. 

a b 
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6.1.2 Force sensor characterization 

Throughout this thesis, a simple calibration method was used to obtain the total force under the feet, 

by assuming that the load measured during static standing corresponds to body weight. However, this 

assumption does not allow accurate load measurement of each sensor. Hence, a calibration procedure would 

be required to obtain individual forces. This could be done using a dedicated device such as Trublu® (Novel, 

DE)2, providing uniform, user-controlled pressure on the insole sensors. It would be worth investigating if 

such static calibrations retain their performance during dynamic activities such as locomotion. 

6.1.3 Real time activity monitoring and feedback 

An extremely powerful development in this area of research is to provide tailored feedback to 

individuals based on their mobility levels. For healthy older adults, this would benefit their longevity and 

increase their independence, whereas for populations at risk, fall prevention and balance/strength feedback 

could be crucial. One version of the instrumented shoes has already been equipped with Bluetooth 

transmission and real-time data from the system was used to create a stepping exergame that aims at 

increasing balance in older adults. The game uses the Kinect simultaneously to provide 3D foot position. 

The user is prompted to move one foot in a single direction and shift their weight, then go back to the initial 

position to start a second trial. The game recognizes stepping movements forward, backward, lateral, and 

oblique directions and gives direct feedback to the user on their correct/incorrect stepping patterns. 

Recognizing steps from non-step confounding movements was achieved with an accuracy exceeding 98% 

and the step direction classification accuracy was more than 99%. An illustration of the exergame is 

presented in Figure 8-3. 

 

                                                      
2 http://www.novelusa.com/assets/pdf/pedar/pedar_mobile-pedography_web.pdf (accessed 26.05.2016) 
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Figure 8-3 - Exergame with instrumented shoes. Left: user equipped with sensor system, middle: game visual interface, right: 
possible steps for each foot (blue for left, red for right). 

 

The integration of our activity classification algorithm into a real (or quasi-real) time framework 

has a great prospect in delivering a two way feedback: from the sensors to clinicians and from clinicians to 

patients, e.g. via a smartphone. For example, the time spent in sedentary posture (sitting or lying) would be 

logged and sent to the clinician. In turn, the clinician could send a suggestion to the patient or user to have 

a short walk. This example is interesting because it has been shown that breaks in sedentary time are 

beneficial for an individual’s health [309], [358], [359]. A possible system architecture illustrated in Figure 

8-4 was presented as a finalist of the student contest at the Singapore Challenge3, and a developed version 

won the first prize at the Nursing Informatics conference in June 2016 (also part of a student design contest)4. 

The proposed system relies on the data transmission of the current instrumented shoes’ sensors and a 

real-time algorithm that would be implemented on the smartphone. This algorithm should be capable of 

profiling the activity and analyzing gait as well as postural transitions. These parameters can then be 

provided to clinicians as described earlier. The smartphone will be used as the feedback interface to the user 

through motivational messages. 

 

                                                      
3http://www.nrf.gov.sg/gyss-one-north/gyss@one-north-2015/singapore-challenge/singapore-challenge-2015-
finalists/christopher-moufawad-el-achkar (accessed 26.05.2016) 
4 http://www.ni2016.org/newsletters/en/newsletter_160711.html (accessed 10.08.2016) 
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Instrumented shoes system architecture
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Figure 8-4 - Proposed system architecture for real-time activity monitoring and feedback through instrumented shoes and 
smartphone interface. 

 

The current algorithm relies on several decision tree rules some of which might be impossible to 

implement for real-time monitoring. For example, the elevation change is not a single event in time, but 

rather a continuous increase or decrease throughout the activity. For that reason, it would be valuable to 

have algorithms that could detect the type of each step and not only a bout with elevation change. This work 

was investigated in the framework of this thesis with dynamic time warping technique to classify different 

step types, achieving an accuracy exceeding 90% with only a subset of all the sensors. Since dynamic time 

warping is not ideal for online implementation (the calculation of cost matrices is rather time consuming), 

other techniques would have to be explored. The center of pressure under the foot could be an additional 

parameter used for improving movement classification and balance characterization. The accuracy that 

could be achieved with 8 sensors is questionable, but preliminary results showed that it could be possible to 

estimate the center of pressure with less than 10% error compared to force plate. These results should be 

fully validated before drawing any final conclusions. 

6.1.4 Fusing instrumented shoes with other sensors 

The instrumented shoes provide highly accurate activity, gait, and postural transition parameters. 

However, they do not evaluate upper body movement, for example. For more specific clinical applications 

they could thus be fused with sensors placed at the trunk or wrists, and measurements are already underway 

in the stroke study with one IMU on the sternum and one on each wrist. It is expected to profile upper body 
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behavior as well as activity and gait to provide a full picture of the recovery of stroke patients. The results 

will be available once the measurements are completed. 

6.1.5 Postural transition characterization 

The proposed system was able to correctly classify transitions with high accuracy and measure their 

duration with low error, a substantial improvement compared to other single sensor based systems. 

However, only the duration was proposed to characterize the movement itself. Several studies reported for 

that the smoothness of trunk movement during sit-stand-sit transition is a clinically relevant parameter to 

quantify movement impairment in frail older adults. A perspective of the instrumented shoes system could 

be to estimate a “projection” of upper body dynamics evaluated by the trajectory of the center of pressure 

measured with the insole force sensors. 

6.2 Clinical applications 

6.2.1 Home monitoring of patients after discharge 

The results of Chapters 6 and 7 demonstrated the possibility to use instrumented shoes for 

rehabilitation assessment in hip fracture and stroke inpatients. The presented results were limited to a small 

number of patients (data available during the timeframe of this thesis) but the two studies are ongoing, with 

more patients expected to be enrolled in the next months. It would have been interesting to compare the 

rehabilitation outcomes before and shortly after discharge, as well as a few months later, to understand if 

patients retain their improvements once intensive rehabilitation stops. This will be available for the stroke 

group since it was included in study design. The number of monitoring days was shown to be critical in 

relating reliable metrics, especially in terms of pattern complexity, and it would be desirable in future studies 

to include more than one day. This goes hand in hand with further technical developments allowing longer 

monitoring without having to change or recharge systems.  

In future studies, it would be interesting to investigate the relationship between functional tests (e.g. 

20m walk test, 6 minute walk test, 30s chair rise, 5 times sit to stand, timed up and go) that reflect the 

capacity of patients, and their daily performance. As observed in Chapter 6, post-surgery hip fracture 

patients improved their gait during a 20m test, but not during daily life. This indicated that patients were 

able to walk at higher speeds and with higher stride lengths, but did not reproduce this in their daily life 

behavior, possibly because their presence at the clinic did not require walking faster. Rehabilitation could 

be improved by tailoring it to each patient based not only on their clinical scores, but also on their maximal 
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capacity that would be reflected in their daily performance by appropriate means. Another interesting 

perspective would be to analyze the effect of using walking aids on activity and gait in daily life. 

6.2.2 Real time feedback on activity performance 

Feedback to patients on their mobility levels proposed in the previous section remains a major future 

development goal of the smart shoes. It was suggested that appropriate motivational feedback could increase 

the subject’s adherence and improve the quality of life of older adults [360], [361]. The delivery of feedback 

has many variables that should be accounted for, such as when to send feedback, how often, what type, how 

to involve the users/patients, etc… In the framework of instrumented shoes, it would be plausible to think 

of a smartphone or smart and connected watch (potentially using cloud storage) as the medium of 

information exchange. The data sent from the instrumented shoes could be processed on the phone itself, 

then the activity profile or gait performance would be sent to a clinician who will act accordingly. On a finer 

level, real-time feedback could be given to patients after surgery during gait rehabilitation, when they exceed 

a maximum allowed load threshold on their affected side. This could be given by an auditory or vibratory 

cue, and conveniently so if a vibrating motor were to be placed in the insole under the foot. Gait retraining 

would also become possible within a real-time framework by striving to correct asymmetries like those 

observed in Chapters 6 and 7. 

6.2.3 Application to sports and other environments 

The studied populations in this thesis consisted of able-bodied older adults for technical, and at-risk 

populations for clinical validation. Other applications could be relevant for the instrumented shoes. Several 

sports could benefit from such a system to measure variables like contact time, speed, load, and relate these 

to fatigue, performance, and injury prevention. The system is currently being tested on running performance 

analysis in the framework of a research grant in collaboration with industry, and could be extended to sports 

like football, rugby, basketball, golf, and many others. Sports that include frequent jumping movement such 

as volleyball or basketball could also benefit from the instrumented shoes: the time of flight or time spent 

in the air could be estimated from non-contact time of the insoles and used to calculate the height (through 

equations of projectile motion considering zero initial velocity). Another likely application is for 

occupational health in industrial environments, especially where workers are concerned with lifting loads 

regularly or walking on uneven surfaces. Workers could be trained with instrumented shoes to avoid 

excessive load and prevent injury.  
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6.2.4 Fall detection and risk estimation 

A paramount concern in today’s activity monitoring is fall detection [119] and risk estimation [362], 

due to the high socio-economic impact of fall events on the elderly community and geriatric bodies. It is 

unknown at the moment if falls could be detected using instrumented shoes. This would require the detection 

of events such as slipping or high shocks, requiring dedicated studies to build accurate fall detection 

algorithms. However, activity programs to decrease fall risk could be monitored and the interventions 

evaluated with the vast number of parameters the smart shoes could offer, several of which have already 

been linked to fall risk (e.g. stride velocity, foot clearance). 

6.2.5 Application in diabetes 

People suffering from diabetes are at high risk of foot ulceration leading in many cases to foot 

amputation. Appropriate loading of ulcer-prone regions under the foot could decrease the risk, and this is 

traditionally enhanced by selecting appropriate insoles and shoes [363]. Measuring accurate loading with 

the instrumented shoes after individual sensor calibration as described previously could be crucial in 

decreasing ulceration risk through direct feedback to patients. The patient could be continuously guided 

during walking to avoid excessive load in risky zones of the foot and prevent deterioration of lesions. On 

the other hand, tailored insoles and shoes could be improved by measuring gait parameters from the 

instrumented shoe system. 

6.2.6 Gait freezing 

It is common in persons with Parkinson’s disease that movement initiation becomes difficult; this 

is often referred to as gait freezing [364]. It is also a precursor of fall risk, but its detection in real life remains 

challenging. The instrumented shoes could be used for this type of detection as well as vibratory feedback 

to prevent the occurrence of freezing in Parkinsonian patients. Vibratory feedback has already shown 

promise in this field of gait monitoring [229]. A research grant has been submitted to pursue this application. 

6.2.7 Evaluation of ankle or knee arthrosis patients 

Unlike hip fracture, patients with ankle or knee arthrosis do not start walking immediately after 

surgery but spend some time on crutches or in a cast, without total loading of their affected side. It would 

be relevant to measure the improvement of such patients when they start walking and a few months later to 

see the effect of both the choice or surgery and the rehabilitation program on their daily mobility. To that 
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effect, we have already submitted an application to perform measurements with ankle arthrosis patient post 

operatively in collaboration with the university hospital (CHUV). 

 

In conclusion, the instrumented shoes present a myriad possible applications and have the 

potential to play a crucial role in activity monitoring in the coming years. 
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