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Preface to ”Wearables for Movement Analysis in

Healthcare”

Recent advances in technology offer one solution to innovate healthcare and meet demand at a

low cost. Wearable sensors are the most promising technology when it comes to: (a) supporting health

and social care providers in delivering safe, more efficient, and cost-effective care, (b) improving

people’s ability to self-manage their health and well-being, (c) alerting healthcare professionals about

changes in their condition, and (d) supporting adherence to the prescribed intervention. A variety

of compact wearable sensors available today have allowed researchers and clinicians to pursue

applications in which individuals are monitored at home and in community settings. Wearable

sensors can help to reduce time devoted to assessment and provide objective, quantifiable data on

patients’ capabilities, unobtrusively and continuously. These technologies provide the opportunity

not only to study motor function while patients perform daily-life activities but also to provide timely,

meaningful feedback to patients and their physiotherapists.

Paolo Capodaglio and Veronica Cimolin

Editors
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Abstract: The accurate and reliable assessment of gait parameters is assuming an important role,
especially in the perspective of designing new therapeutic and rehabilitation strategies for the remote
follow-up of people affected by disabling neurological diseases, including Parkinson’s disease and
post-stroke injuries, in particular considering how gait represents a fundamental motor activity for
the autonomy, domestic or otherwise, and the health of neurological patients. To this end, the study
presents an easy-to-use and non-invasive solution, based on a single RGB-D sensor, to estimate
specific features of gait patterns on a reduced walking path compatible with the available spaces in
domestic settings. Traditional spatio-temporal parameters and features linked to dynamic instability
during walking are estimated on a cohort of ten parkinsonian and eleven post-stroke subjects using
a custom-written software that works on the result of a body-tracking algorithm. Then, they are
compared with the “gold standard” 3D instrumented gait analysis system. The statistical analysis
confirms no statistical difference between the two systems. Data also indicate that the RGB-D system
is able to estimate features of gait patterns in pathological individuals and differences between them
in line with other studies. Although they are preliminary, the results suggest that this solution could
be clinically helpful in evolutionary disease monitoring, especially in domestic and unsupervised
environments where traditional gait analysis is not usable.

Keywords: RGB-D sensors; optoelectronic system; movement analysis; gait; Parkinson’s disease;
hemiparesis; spatio-temporal parameters

1. Introduction

The world population is aging rapidly as a consequence of the longer life expectancy.
According to an OECD analysis, by the middle of the 21st century, more than 20% of the
world population will be over 65, and this demographic change will affect both industrial-
ized and developing countries [1]. In addition, the World Health Organization estimates

Sensors 2022, 22, 824. https://doi.org/10.3390/s22030824 https://www.mdpi.com/journal/sensors
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an increase in the neurological diseases linked to the aging trend, particularly those ones
characterized by chronic or progressive disabilities such as Parkinson’s disease and stroke,
with a consequent exponential growth of healthcare costs [2]. It is, therefore, possible
to understand the importance of therapeutic assistance interventions which, in addition
to improving the psycho-physical conditions of the individual, can reduce the costs of
health care.

Stroke is one of the principal causes of morbidity and mortality in adults and one of
the leading causes of disability in industrialized countries [3,4]. Hemiplegia/hemiparesis
following stroke is one of the consequences of the acute loss of focal brain functions and it
is clinically characterized by a deficit of voluntary motor activity in one half of the body,
contralateral to the ictal lesion involving the primary motor cortex [5]. Six months after
the event, 50–70% of patients still present sensory and motor deficits, such as paresis and
spasticity of the limbs, which affect the ability to perform functional tasks, lead to reduced
quality of life, and reduce participation in activities of daily living. The chronic motor
disability then imposes significant challenges for prolonged treatment and patient care [6].
Focusing on post-stroke with hemiparesis condition, patients’ gait can be variably altered
by the impairments of motor functions (weakness and spasticity of lower limbs) and by
alterations in posture and balance controls [7].

Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
with a prevalence that increases with age [8]. The main characteristic is the progressive
worsening of motor control and coordination capabilities induced by the death of dopamin-
ergic neurons [9]. The expression of motor dysfunctions varies among subjects and over
time. Nevertheless, subjects mainly exhibit some typical symptoms, including tremor,
bradykinesia (slowness of movements), rigidity, postural instability and abnormalities,
gait disorders, alterations in speech, mimicry, and writing [10]. As for stroke, the pro-
gression of motor disabilities imposes significant efforts for prolonged patient care and
rehabilitation programs aiming to control symptom severity and enhance muscle strength,
balance, gait, and mobility [11]. Focusing on gait, the alterations in walking patterns such as
reduced speed, reduced step length, and increased step variability, combined with postural
instability, lead to limited mobility and increased falling risk [12].

As gait impairments are experienced to be particularly disabling by patients, the
walking recovery is a major objective in stroke and PD rehabilitation programs. Therefore,
in the last decades, walking capability has been the object of study for the development
of gait analysis methods in stroke survivors [13] and subjects affected by PD [14], both for
diagnostic and rehabilitation purposes.

In the literature, the gait pattern in post-stroke subjects was quantitatively described
using three-dimensional instrumented gait analysis (3D-GA), evidencing walking speed
reduction, asymmetric postural behavior during walking and standing [15], and altered
kinematics and reduced ankle push-off ability during terminal stance [16]. 3D-GA was
also used in PD subjects to quantify the efficacy of rehabilitation [17] and to estimate
spatio-temporal parameters [18,19].

3D-GA is widely used in clinical practice and research to investigate gait disorders, as it
provides complete and objective information regarding specific gait features, including joint
motion (kinematics), time–distance variables (spatio-temporal data), and joint moments
and powers (kinetics). Conventionally, body segment kinematic and kinetic parameters
are measured in gait laboratories, using marker-based optoelectronic systems and force
plates. 3D-GA is considered accurate [20], but the availability of specific laboratories, high
costs, and dependency on trained users [21,22] limit its use in clinical practice. Additionally,
optoelectronic 3D-GA generally requires few clothes to be worn, and this condition could
cause anxiety and embarrassment to patients [21,23].

Over the last decade, low-cost optical body-tracking sensors (i.e., RGB-D cameras)
have been introduced in the gaming market as innovative devices for a new paradigm of
human–computer interaction based on body movement. In particular, Microsoft Kinect©
was the first device developed and released for this purpose. Although RGB-D cameras
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have not achieved significant success in the gaming market, they have subsequently found
widespread use in other contexts, such as developing new rehabilitation systems for gait
analysis, limb motion tracking, and gesture and posture classification [24,25]. Kinect-based
solutions have become progressively more used in computer-assisted medical care and
treatment thanks to lower costs and non-invasive motion capture techniques. Consequently,
clinicians gained the possibility to explore the fields of body recognition and analysis of
motor function as promising tools to monitor patients also in out-of-hospital settings. This
need is considered extremely important for long-term care, for National Health System
(NHS) costs, and the hospital service management and resource policies.

In recent years, several studies considered the use of RGB-D cameras for the assess-
ment of the motor condition [26,27], for action and activity recognition [28], and motor
rehabilitation [29], especially combined with virtual environments [30,31]. Regarding gait
analysis [32], the first model of the Kinect sensor was widely used to analyze gait patterns
in young adults [33,34], healthy adults [33,35], and children [36]. The characteristics of the
next model include improvements of the on-board sensors, a wider field of view, stability of
the body-tracking algorithm, and higher resolution of color and depth streaming, leading to
higher performance and greater accuracy of motion capture than the older model [26,37–39]:
the enhanced features allowed more detailed investigations of gait characteristics in healthy
and pathological subjects. As for traditional gait analysis, some studies implemented a
multi-camera-based system in order to cover greater walking distances (generally up to
10 m). However, this entails an increasing complexity of the implemented solution for
the management, flow synchronization, and calibration procedures [40,41]. Other studies
combined optical sensors and treadmills as an alternative approach to capture a more signif-
icant number of steps for the gait assessment [42,43]. On the other hand, the high cost and
size of these approaches must be considered, which means that their implementation and
use are still limited to motion analysis laboratories, such as for 3D-GA. Thus, conducting a
walking test using these approaches could become impractical in smaller and unsupervised
environments such as domestic settings.

A more practical solution is to use a single camera approach, which makes it possible
to carry out walking tests in more confined spaces. Solutions based on a single camera
could be easily used in any environment and adapted to specific needs, thus addressing a
relevant clinical requirement, that is, the availability of a valid and straightforward method
for quantifying gait patterns in pathological subjects that is suitable for home settings.

Single-camera approaches have been used to evaluate gait patterns in people with dif-
ferent health conditions, including cerebral palsy [44], ataxia [45], Parkinson’s disease [46],
and polyneuropathy [47], or to analyze young and older individuals [48,49]. More generally,
RGB-D sensors (i.e., Kinect-like optical sensors) have been used in PD subjects to evaluate
upper limb tasks [50], lower limb and posture [51], and gait and postural stability [46].
Concerning post-stroke, RGB-D sensors have been used to predict the risk of falls [52],
evaluate the upper limb function [53], analyze balance recovery [54], rehabilitate upper
limbs [55], estimate gait features [56], and evaluate the reliability of gait assessment and
correlation with balance tests [57]. However, validating the accuracy of these non-invasive
devices in capturing gait outcomes appears to be mandatory.

Studies on Parkinson’s Disease [58,59], individuals with hemiplegia and stroke [56,60,61],
subjects with other pathologies and disorders [62–65], and healthy people [35,48] indi-
cate that some spatio-temporal gait parameters could be appropriately estimated using
a single-camera approach. Concerning the gait validation, some studies are available us-
ing treadmills [43,66,67], multi-camera approaches [40,41], or wearable sensors [12,68–70].
However, there is scarce information for comparing the spatio-temporal gait parameters
estimated by a single RGB-D sensor and an optoelectronic system on PD subjects [46,71],
post-stroke individuals [61], and those with both pathological conditions [60], especially
through a solution that is suitable for unsupervised or semi-supervised environments. In
fact, from a clinical point of view and to ensure the sustainability of the health system,
it is essential to have a simple method to quantify gait strategies in these pathological
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subjects. However, at the same time, it is necessary to define the level of accuracy and
any limitations to allow clinicians to target its use properly; for example, for diagnostic or
rehabilitation purposes.

Along this line of research, this study aims to extend our previous work [72] by validat-
ing the spatio-temporal gait parameters in level walking for both post-stroke individuals
and subjects with Parkinson’s disease. A single-camera approach on a reduced walking
path, which is thus suitable for the limited spaces in domestic environments, is proposed to
this end. The objective measurements estimated with this solution are compared with the
corresponding ones obtained from the instrumented 3D-GA and other validation studies
available in the literature, albeit on inhomogeneous subsets of spatio-temporal parameters,
correlation criteria, and populations. This solution could become, for example, a valid
method for evaluating and monitoring walking strategies over time, also integrating into
more complex solutions [51] that assess the patient’s general condition frequently and in
unsupervised environments, enabling the follow-up of patients even outside of healthcare
facilities. The possibility of home monitoring would allow the clinicians to constantly
assess the evolution of the disease and to target interventions according to real and current
patient needs, with the patient being able to feel “cured” and the national health care
system being able to save money through the careful management of hospitalization pe-
riods, when required, and personalized rehabilitation programs in both supervised and
unsupervised settings.

Furthermore, the non-invasiveness and versatility to different clinical needs could also
favor an increasingly important role in future ecological neuro-rehabilitative contexts by
stimulating patients at home and in daily activity [73,74] and ensuring the continuity of
those services currently provided only from health facilities.

In conclusion, the main goals of this study are summarized as follows: (i): evaluate the
agreement and robustness of the estimated gait parameters obtained from a single-camera
approach based on Microsoft Kinect v.2 versus an instrumented standard 3D-GA system;
(ii): objectively characterize the gait patterns on a cohort of parkinsonian and post-stroke
subjects; (iii): compare the estimated gait parameters with several studies in the literature.

2. Materials and Methods

In this section, the study design is described. Since the study aimed to characterize
the gait patterns in pathological subjects using a technological solution suitable for the
home setting, a validation phase was necessary to check accuracy and robustness versus
an instrumented 3D-GA system. To this end, two groups of subjects were enrolled to
participate in the experimental study. Then, a dedicated setup and an acquisition protocol
were defined to allow for the simultaneous motion capture and the estimation of gait
parameters through the two systems. Finally, statistical analysis was performed to compare
parameters and evaluate the correlation, reliability, and significant differences between the
two systems and the pathological groups.

2.1. Patients

The recruitment procedure of PD and post-stroke participants to the experimental
campaign, planned for this study and performed in a supervised setting, considered the
potential end-users of the proposed system in home settings. In particular, we included only
post-stroke (PS) and PD subjects who had already been evaluated and selected for standard
rehabilitation in the hospital setting, and furthermore, who would have benefited from
continuous and prolonged neurorehabilitation at home. Enrolment was then performed
at the Division of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto
Auxologico Italiano, Piancavallo (Verbania), Italy. The inclusion criteria for post-stroke
subjects were: minor disability of the lower limbs (possibility of walking), ability to walk
10 m without the assistance of another person or aids, ability to understand the instructions
for performing the gait analysis test. The inclusion criteria for PD subjects were: tremor
severity <=1, Hohen and Yahr (H&Y) score in 1–3 range. The exclusion criteria for both
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groups were: cognitive impairment with Mini-Mental State Examination (MMSE) < 27/30,
previous neurosurgical procedures, history of other neurological or musculoskeletal dis-
orders unrelated to stroke and PD. The exclusion criteria did not include age, sex, side
dominance, or therapy.

For the experimental test, we recruited eleven post-stroke subjects who presented
partial anterior circulation infarcts (PACI) according to Bamford’s classification [75], and
ten PD subjects who satisfied the inclusion criteria.

The clinical supervisor explained the experimental procedure in detail and instructed
all participants accurately about the systems and the acquisition protocol, so all participants
performed the walking test under the same conditions. The experimental campaign was
carried out following the ethical standards of Istituto Auxologico Italiano, whose local ethi-
cal committee approved the study, and the latest amendments of the Helsinki declaration
(1964). The enrollment procedure required all participants to sign informed consent forms
to participate in the study.

2.2. Characteristics of the RGB-D and 3D-GA Systems

A single RGB-D sensor was used to implement a non-invasive motion capture system
that includes hardware and software elements. The hardware relies on the Microsoft
Kinect© v2 sensor (Microsoft Corporation, Redmond, WA, USA) and an elaboration unit
consisting of a laptop running Windows 10 to which the RGB-D sensor connects through
a dedicated USB port. The optical sensor produces color and depth streams at about
30 frame/s, using the time-of-flight technology to estimate the depth information: these
features are adequate for the real-time motion capture and 3D reconstruction of the human
body movement. Human body movements map on a skeletal model consisting of 25 joints
that approximately correspond to specific anatomical points of the body: the tracking
algorithm recognizes body patterns via the depth streaming and identifies the spatial
regions associated with the joints of the skeletal model through a random forest classifier
trained on thousands of images [76]. For each joint, the relative 3D position to the origin of
the sensor reference system is available and returned for the 3D reconstruction of the body
movements. In our previous studies [51,72], the 3D trajectories of joints and segments were
compared to a gold reference system, verifying the accuracy and robustness of angular and
linear measurements.

The RGB-D motion capture system includes custom-written software consisting of
MATLAB® scripts (Mathworks Inc, Natick, MA, USA) that runs on the elaboration unit.
The software component implements access, saving, and analysis procedures of the raw
information provided by the RGB-D sensor through the Software Development Kit (SDK),
including color images, depth images, and structured skeletal model data. The analysis
procedure works on the collected 3D trajectories of joints to automatically segment every
step and estimate the gait parameters that will be compared with the 3D-GA system: the
Data Processing section (Section 2.4) describes the analysis procedure in detail. In addition,
the RGB-D system has a Graphical User Interface (GUI), managed by MATLAB scripts, to
simplify motion capture through specific utilities to check device operation, start and stop
acquisition, and check data acquisition correctness [72].

To satisfy the validation aims, the study compared the RGB-D motion capture system
to a standard 3D-GA system consisting of an optoelectronic system with six cameras
(VICON, Oxford Metrics Ltd., Oxford, UK; sample rate: 50 Hz) and two force platforms
(Kistler, Einterthur, CH). Optoelectronic systems represent the gold standard of technologies
used in motion analysis for the evaluation of kinematics. After taking some anthropometric
measurements, the operator placed the passive markers on the subject’s skin at specific
key points [77]. The reference systems for each segment of the lower limbs were calculated
starting from the 3D coordinates of the markers positioned on the pelvis, thigh, leg, and
foot: the angles of flexion–extension, abdominal-adduction and intra–extra rotation of the
joints of the lower limbs were computed. The kinematic (angles) and kinetic (moments and
powers) data from the 3D-GA system were not used for this study.
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Before starting the experimental test, the 3D-GA system was calibrated to ensure the
system’s accuracy and to allow the estimation of the 3D marker coordinates. The average
measurement error was computed based on the difference between the estimated and actual
distances of two passive markers fixed on the extremities of a rigid bar (actual distance was
600 mm): the calibration procedure ended with an average error within 0.3 mm (standard
deviation: 0.2 mm). In this condition, the calibrated working volume was 5 m in length
(x-axis of the laboratory reference system), 2 m in height (y-axis of the laboratory reference
system), and 2 m along the z-axis of the laboratory reference system.

2.3. Setup and Data Acquisition

In the movement analysis laboratory of the Institute, traditional gait analysis was
performed using a 10-m long walkway. However, considering that the body tracking of the
RGB-D system begins approximately 4.5 m from the sensor, it was necessary to define a
setup that allowed for a peer comparison between the two systems. The RGB-D sensor was
mounted on a tripod to ensure stability and placed at the end of the walkway. In this way,
it was possible to capture the participants’ gait as they moved towards the optical sensor
that was preferable [41].

Then, a gait analysis path (GAP) was defined inside the walkway to ensure the total
body tracking with the necessary accuracy: the start line was 4.2 m away from the sensor’s
position, while the end line was about 1.5 m away. This setup seemed to limit the analysis
to a restricted area of the walkway, which was, in any case, sufficient to capture at least
one complete gait cycle (or full stride) for each leg based on the motor conditions of the
participants [57]. Moreover, GAP was adequate to guarantee the maximum depth accuracy
on which the body-tracking accuracy and robustness also depend: according to [78], the
vertical and lateral scattering of light pulses affect the depth accuracy in the working
volume. The greater precision was along the central visual cone of the RGB-D system,
where the depth accuracy was less than 2 mm, increasing to 4 mm up to 3.5 m and over
4 mm beyond 4.0 m from the sensor. It was also necessary to consider that the GAP was
set approximately across the walkway mid-zone and around the force platforms, thus
enabling the simultaneous gait analysis using the 3D-GA system. Figure 1 shows the
experimental setup. Particular attention was paid to avoiding the presence, on the scene,
of reflective surfaces and light sources entering the RGB-D sensor: these elements could
interfere with the light pulses emitted by the device, generating artifacts in the depth
map and, consequently, errors in the detection of the body map and the reconstruction of
the 3D skeletal model. These measures can become constraints, especially for domestic
environments. In this scenario, further constraints concerned clothing: in particular, baggy
and too dark clothing and reflective objects needed to be avoided as they could interfere
with the accurate motion capture. All these requirements will be part of the domestic
experimental protocol, and all participants will have to be trained and supported in the
system’s configuration.

The acquisition protocol required participants to have completed two or more practice
trials across the walkway to understand and be comfortable with the experimental proce-
dure. After an initial familiarization, participants had to stand up and maintain an upright
posture for a few seconds and then walk straight at their normal walking pace, from the
beginning of the walkway to the RGB-D sensor. In this way, each subject entered and then
left the GAP at his/her maximum walking ability. Only forward walking was considered
for the gait analysis [79]. According to the experimental protocol, at least five trials were
performed by each participant to guarantee the reproducibility of the results.
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Figure 1. Experimental setup: position of the RGB-D sensor (light blue square); position of the force
platform for 3D-GA system; approximate position of the final area of the Gait Analysis Path on the
walkway for RGB-D system (yellow lines).

2.4. Data Processing and Estimation of Gait Parameters

For the analysis of 3D-GA data, the passive markers were used to identify the main
walking events from which to estimate spatio-temporal parameters. In particular, the first
heel-strike event was detected for each foot from the force platforms. Then, the previous
and following similar events were identified by comparing the first heel-strike kinematic
configuration (consisting of foot position, hip/knee/ankle flexion angles, and other specific
features) over the 3D-GA data collected during the entire walking test. These events
allowed the detection of at least two or three complete gait cycles inside the GAP, according
to the walking ability and health condition of the subject, which were the same as those
recognized by the RGB-D system.

For the data collected by the RGB-D system, the analysis procedure used dedicated
MATLAB scripts that worked on the 3D joints recorded during the walking test. The
analysis procedure consisted of three phases: data preprocessing, step segmentation, and
estimation of gait features. The preprocessing phase applied resampling and filtering
techniques to clean and align the data to the 3D-GA ones before using them for the step seg-
mentation phase. In particular, a 50 Hz resampling with cubic interpolation was performed
to ensure uniformity of the time baseline and avoid timestamp jitter due to a variable device
framerate at around 30 FPS. A 10 Hz low-pass filter was then applied to the resampled data
in order to exclude high frequency signal noise from the analysis.

The second phase relied on a custom-written step segmentation algorithm explicitly
designed to identify each step when the subject was inside the GAP zone. The step
segmentation algorithm worked on the 3D trajectories of the ankle joints to avoid the loss
of accuracy of foot joints [80]. When the subject entered the sensor’s field of view, the body-
tracking algorithm started to provide the skeletal model. However, for the gait analysis
with RGB-D system, it was essential to detect the time when the subject entered and left the
GAP zone to identify the time window to be analyzed. To this end, the algorithm firstly
estimated the 3D body center of mass (COMBODY) as in [51] and then used its 3D Euclidean
distance from the sensor to determine the time when the subject entered and left the GAP,
as in [72]. After identifying the time window, the step segmentation algorithm used the
3D trajectories of left (ANKL) and right (ANKR) ankles to analyze each leg individually
inside the GAP and estimate the related gait parameters. In particular, the z-component of
the 3D joint was used to apply a binary thresholding in order to identify the “stationary”
and “in movement” ankle periods. The stationary ankle period was when the difference

7



Sensors 2022, 22, 824

between two consecutive z-component values was less than the prefixed threshold; the
“in movement” ankle period was when the difference was over the prefixed threshold.
As in [72], the threshold was 2 cm: the aim was to verify that the threshold defined
for post-stroke subjects was also valid for PD subjects and that the step segmentation
algorithm worked exactly the same way without tuning parameters. The results of the
step segmentation algorithm were two binary arrays that allowed the extraction of some
traditional gait parameters per leg and overall, as in other reference studies using RGB-D
approaches [37,46,56,61,66]. Figure 2 shows an example of the sequence of steps and some
temporal parameters estimated from the binary arrays.

 
Figure 2. Results of the step segmentation algorithm: binary arrays for left (square line in blue) and
right (square line in red) ankles estimated from 3D trajectories. At the top, some of the spatio-temporal
parameters are shown; in particular, the step and gait cycle duration.

According to standard biomechanical protocols, the level walking analysis with 3D-
GA commonly estimates many parameters, but only a subset is traditionally considered
clinically relevant to highlight gait disorders [81]. For this reason, this study focused only
on some spatio-temporal parameters that typically characterize gait patterns in post-stroke
and PD subjects. It is important to note that the RGB-D and 3D-GA systems work on
detecting different and specific events to estimate the same gait parameters, as in [72]: the
two systems present differences in the physical location of passive markers and skeletal
model joints, other than in the data processing algorithms. Nevertheless, starting from the
events detected, it was possible to estimate the same spatial and temporal parameters and
their average value inside the GAP, both for each side (i.e., step length, speed, time, and so
on) and the overall walking test (i.e., cadence).

Another relevant feature of impaired gait pattern is related to the body sway during
walking [82,83]: in fact, evident body sways are the consequence of the attempt to correctly
balance walking in the presence of impairment and altered postural attitude while walking,
and this is true both for post-stroke and PD subjects. For this investigation, the 3D-GA
system estimated the position of the body center of mass from the 3D trajectories of the
passive markers [84] and its peak-to-peak sways along the medio-lateral and vertical
directions. Again, to limit the differences in locations of the body’s center of mass, the
RGB-D system computed the 3D midpoint of HIPL-HIPR segment (COMHIP): its peak-to-
peak sways along the medio-lateral and vertical directions were computed and compared
with the same parameters estimated by the 3D-GA system. Parameters estimated from the
center of mass were relative to the overall walking test.

2.5. Statistical Analysis

Three consistent trials were selected and considered for the analysis. For the estimation
of the spatio-temporal parameters, the two body sides were analyzed separately, while the
COM parameters were estimated as a single value for each trial.
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After applying the Kolmogorov–Smirnov test, a non-parametric analysis was consid-
ered as the parameters were not normally distributed; thus, the median and quartile values
of all the parameters were computed. The statistical analysis included two phases.

Firstly, all the statistical tests were performed on the entire group of patients (PS and
PD subjects). The Wilcoxon test was used to compare the measurements obtained by the
RGB-D system and those obtained by 3D-GA. The research for correlation between the
two methods was performed using Spearman’s rank-order correlation, while, to assess the
absolute agreement, the Intra Class Correlation (ICC) was used [85].

Then, the Bland–Altman plot was created to display the level of agreement between
the RGB-D and the optoelectronic systems. This is a graphical method for comparing
two measurements of the same variable in which the x-axis represents the mean of two
measurements, and the y-axis represents the difference between. The plot can then highlight
anomalies. For example, if one method always gives too high a result, then all points are
above or below the zero line. It can also reveal that one method overestimates high values
and underestimates low values. Otherwise, if the points on the Bland–Altman plot are
scattered all over the place, above and below zero, then it suggests that there is no consistent
bias of one approach versus the other.

Then, the analysis was performed by considering the two groups of patients (PS
and PD subjects) separately. A repeated measure ANOVA was performed on the pa-
rameters with the “within-subject” factor of systems (3D-GA vs. RGB-D system) and the
“between-subject” factor of groups (PD vs. PS group). Post hoc tests were performed, where
appropriate, for the significance threshold. A significance level of 0.05 was implemented
throughout. The statistical analysis was performed using Minitab® (version 18.1, State
College, PA, USA).

3. Results

In this section, we present the results of our study, which were determined from the
data collected on two groups of subjects during the experimental test. In particular, we
enrolled eleven post-stroke subjects (average age: 53.3 ± 13.9 years; 3 females and 8 males;
weight: 84.0 ± 21.7 kg; height: 1.8 ± 0.1 m; BMI: 25.6 ± 4.2 kg/m2), with the following
characteristics: four subjects with left and seven with right hemiparesis; 4.36 ± 1.54 years
from stroke event. Sensory deficits were present in nine patients, homonymous hemianopia
in five patients, dysphasia in four patients, and visuospatial disorders in five patients. In
addition, we enrolled ten PD subjects (average age: 66.4 ± 13.7 years; five females and
five males; weight: 85.6 ± 15.4 kg; height: 1.7 ± 0.1 m; BMI: 30.1 ± 5.8 kg/m2) with the
following features: 2.1 average H&Y score; 11.2 ± 7.5 years from disease diagnosis.

3.1. Statistical Analysis and Correlation Results

Firstly, the comparison results between the measurements obtained by the RGB-D
system and those obtained by 3D-GA are reported in Table 1, where the median values,
with the first and third quartiles, for each parameter, estimated on all participants’ walking
performance (eleven PS and ten PD individuals) captured simultaneously by the two
systems, are shown. The analysis indicated no statistical differences between the two
systems’ groups (p ≥ 0.05), showing the agreement between the two systems. The only
exception is related to the step width for which a statistical difference was found (p < 0.001).

All the parameters indicated good reliability between the measurements (V sway
showed moderate reliability), with the exclusion of step width, which displayed poor
reliability (ICC = 0.44). The Spearman’s correlation values between measures from the
3D-GA and RGB-D systems were all statistically significant (p < 0.05) and generally good
for the measurements; only step width and V sway showed moderate correlation values,
confirming the results obtained for ICC.

These results indicate, in general, a good agreement between the two methods.
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Table 1. Median (first and third quartile) values for spatio-temporal and COM parameters estimated
for the two systems, ICC and values of Spearman’s correlation coefficient between the 3D-GA and
RGB-D system (*: p < 0.05).

Spatio-Temporal
Parameters (Unit)

3D-GA System RGB-D System ICC
Spearman’s
Correlation

Step length (m) 0.43 (0.37, 0.56) 0.45 (0.32, 0.56) 0.81 0.67 *
Stance duration (%) 66.50 (62.65, 71.60) 67.00 (63.35, 71.19) 0.78 0.59 *

Double support duration (s) 0.46 (0.31, 0.91) 0.53 (0.34, 0.77) 0.80 0.71 *
Mean velocity (m/s) 0.74 (0.59, 0.99) 0.76 (0.54, 0.95) 0.95 0.90 *
Cadence (step/min) 97.20 (85.50, 105.18) 98.36 (87.77, 102.99) 0.97 0.82 *

Step width (m) 0.23 (0.19, 0.24) 0.17 (0.14, 0.20) * 0.44 0.45 *

Center of Mass
Parameters (Unit)

3D-GA System RGB-D System ICC
Spearman’s
Correlation

ML sway (m) 0.09 (0.07, 0.10) 0.09 (0.06, 0.12) 0.94 0.61 *
V sway (m) 0.05 (0.04, 0.06) 0.04 (0.04, 0.05) 0.60 0.48 *

In Figure 3, the Bland–Altman plot is displayed. It is a scatterplot of the mean of the
RGB-D system and instrumented 3D-GA method plotted against the difference between the
two methods [86]. It is possible to observe that the Bland–Altman graphs globally display
a good agreement between the two measurement systems as most of the points fell within
the interval.

3.2. Gait Patterns in PD and PS Subjects

In order to demonstrate the ability of the system in the qualitative characterization of
the walking performance, the following Figure 4 shows two examples of gait patterns. In
particular, Figure 4a represents the walking pattern of one PD participant, while Figure 4b
represents the walking pattern of one post-stroke (PS) participant. The aim of Figure 4 is
not to highlight the differences between the walking scheme of the two pathologies but to
verify the system’s ability to detect gait features in every circumstance, that is, in different
subjects affected by distinct pathologies with their own peculiar gait characteristics. The
PD subject (Figure 4a) performed five complete steps inside the GAP zone, whose length
was short and variable on both sides: the first and the last steps were at the limits of the
GAP zone, so the analysis procedure did not consider them. The graphical representation
of the COMHIP trajectory points out the small lateral sways during the walking test. This
qualitative information suggests impairment during gait. On the contrary, the post-stroke
subject (Figure 4b) performed four steps inside the GAP zone. The left steps seemed longer
than the right ones, denoting a symmetry deterioration in the walking scheme. In addition,
lateral sways seemed more accentuated than the PD subject, indicating greater instability
and compensatory strategies during gait.

However, quantitative and objective measurements should support the qualitative
evidence derived from the simple graphical representation. As reported in Table 2, the
estimated spatio-temporal and COM parameters confirmed the preliminary qualitative
indications. On average, PD performance showed an asymmetric gait, in length and speed,
characterized by short steps (step length), slight slowness (mean velocity and cadence),
and high stance phase (percentage of the gait cycles). In addition, the data confirmed the
low lateral sways of the body’s center of mass. On the other hand, PS performance also
showed asymmetry during walking, both in length and speed, but longer steps and higher
slowness than PD performance, slightly greater than double support duration, and less
stance duration. The data also confirmed more significant medio-lateral sway than PD
performance. In contrast, the step width and vertical sway were comparable, confirming
the lesser significance of these parameters. Finally, as expected, the best performance was
relative to the left side in both cases, which was in line with the subjects’ conditions: the
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PS subject showed a right-side residual hemiparesis, while the PD subject exhibited more
important symptoms on the right-side.

  

Figure 3. Bland–Altman plots of the mean of 3D-GA and the RGB-D systems against the difference
between the two methods for the spatio-temporal parameters and the COM Sway.
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(a) 

 
(b) 

Figure 4. Gait patterns of one PD (a) and one post-stroke (b) participant. The black dotted lines
delimit the GAP zone. The x-axis represents the 3D distance of the subject from the RGB-D sensor,
while the y-axis represents the position relative to the sensor’s x-axis. The magenta lines represent
the trajectory of COMHIP.

Table 2. Spatio-temporal and COM parameters for the left and right sides of PD and PS performance
shown in Figure 4.

PD #4–Figure 4a PS #7–Figure 4b

Parameters Left Side Right Side Left Side Right Side

Step length (m) 0.39 0.29 0.45 0.39
Stance duration (%) 76.20 77.69 72.20 72.65

Double support
duration (s) 0.60 0.60 0.70 0.70

Mean velocity (m/s) 0.77 0.56 0.59 0.55
Step width (m) 0.13 0.19 0.19 0.23

Cadence (steps/min) 114.65 79.47
ML Sway (m) 0.05 0.10
V Sway (m) 0.03 0.04
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The following radar graphs summarize the differences in the most significant spatio-
temporal parameters between PD and PS performance. Since the gait parameters represent
different physical quantities, they were normalized before representing them graphically.
In particular, a minimum–maximum normalization was used by considering the estimated
parameters for all the PD and PS walking tests that were collected and analyzed. Then,
each parameter value was scaled to be more effectively represented in a range 0–1, using a
minimum–maximum normalization. To this end, we considered the average normative val-
ues for healthy adult subjects [81] as the best walking performance, which practically would
be associated with the maximum values (i.e., 1). On the contrary, the lowest parameter
values estimated on the PD and PS groups were considered to represent the worst walking
performance associated with the minimum values (i.e., 0). It is important to note that a
direct relationship with the gait impairment characterized some parameters (stance dura-
tion, double support duration, and step width): in this case, the values of the parameters
increased with increasing gait dysfunctions. Therefore, according to our choices regarding
the graphical representation of the radar graphs, the worsening of these parameters (i.e.,
higher parameter values) corresponded to normalized values closer to zero.

Conversely, other parameters (step length, mean velocity) were characterized by an
inverse relationship with the gait impairment: in this case, the values of the parameters
decreased with increasing gait dysfunctions. The worsening of these parameters (i.e.,
lower parameter values) corresponded to normalized values closer to zero. In this way,
all the normalized parameters were within the 0–1 range, producing radar charts that
expanded outward when the gait performance was good, and collapsed inward when the
gait performance was impaired. The radar graphs corresponding to Figure 4 and Table 2
are shown in Figure 5.

 
(a) (b) 

Figure 5. Radar charts of the relevant gait parameters for the left and right sides of the PD (a) and PS
(b) performance.

3.3. Analysis of the PD and PS Groups

The median and quartiles for each parameter are presented in Table 3 for each group
of subjects and both systems. Measurements, commonly attributable to the left and right
sides, were averaged for this analysis.

Table 3. Median (first and third quartile) values for spatio-temporal and COM parameters estimated
for the two systems of the PD and PS group.

RGB-D System 3D-GA System

Parameters PD Group PS Group PD Group PS Group

Step length (m) 0.36 (0.29, 0.58) 0.46 (0.39, 0.56) 0.39 (0.37, 0.42) 0.49 (0.38, 0.64)
Stance duration (%) 65.75 (63.67, 71.14) 67.50 (62.75, 71.75) 70.30 (62.55, 74.53) 65.00 (62.52, 69.50)

Double support duration (s) 0.66 (0.37, 0.77) 0.51 (0.31, 0.69) 0.73 (0.28, 0.91) 0.42 (0.33, 0.57)
Mean velocity (m/s) 0.61 (0.54, 1.14) 0.80 (0.54, 0–94) 0.71 (0.54, 1.11) 0.74 (0.62, 0.94)

Step width (m) 0.15 (0.12, 0.16) 0.19 (0.16, 0.22) 0.23 (0.14, 0.24) 0.24 (0.21, 0.26)
Cadence (steps/min) 103.55 (98.90, 113.92) 95.24 (72.58, 99.17) 102.20 (97.20, 118.00) 93.90 (75.20, 99.40)

ML Sway (m) 0.08 (0.06, 0.11) 0.09 (0.08, 0.12) 0.08 (0.06, 0.09) 0.10 (0.08, 0.14)
V Sway (m) 0.04 (0.04, 0.07) 0.05 (0.04, 0.09) 0.05 (0.04, 0.08) 0.04 (0.03, 0.04)
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The results of the “between-subject” analysis of Group (that is, PD and PS groups),
the “within-subject” analysis of System (that is, 3D-GA and RGB-D systems), and the
Group × System interaction for each parameter are reported in Table 4.

Table 4. Results of the “between-subject” analysis of Group (PD and PS groups), the “within-subject”
analysis of System (3D-GA and RGB-D systems), and the Group × System interaction for spatio-
temporal and COM parameters. Statistically significant data are highlighted in bold.

Parameter Factor F p-Value Partial η2

Step length (m)
Group 2.20 0.143 0.0333
System 0.26 0.613 0.0040

Group × System 0.03 0.869 0.0004

Stance duration (%)
Group 0.66 0.090 0.0995
System 0.91 0.344 0.0140

Group × System 0.96 0.332 0.0147

Double support
duration (s)

Group 0.61 0.438 0.0094
System 0.41 0.525 0.0063

Group × System 0.18 0.677 0.0027

Mean velocity (m/s)
Group 0.45 0.502 0.0071
System 0.01 0.903 0.0002

Group × System 0.01 0.981 0.00001

Step width (m)
Group 10.75 0.002 0.1438
System 17.96 <0.001 0.2192

Group × System 0.001 0.982 0.0001

Cadence (steps/min)
Group 9.50 0.003 0.1293
System 0.02 0.885 0.0003

Group × System 0.10 0.752 0.0016

ML Sway (m)
Group 6.17 0.017 0.1281
System 0.05 0.819 0.0013

Group × System 0.40 0.533 0.0093

V Sway (m)
Group 0 0.958 0.0001
System 0.05 0.824 0.0012

Group × System 3.15 0.083 0.0698

The analysis confirms that, in general, there were no significant differences between
the two systems in the estimation of the spatio-temporal parameters and the sways of
the center of mass. The only exception seemed to be related to step width, where slightly
significant differences were highlighted both between groups and systems (but not in the
Group × System interaction): this suggests that step width is probably a very challenging
and sensible parameter related to the different positions of passive markers and joints of
the skeletal model.

Regarding the gait cadence, the analysis showed a significant difference between
groups (i.e., PD and PS) but not between systems (i.e., 3D-GA and RGB-D): the two systems
seemed to agree in the estimation of the gait cadence; therefore, it could be an effective
discriminatory parameter between the two groups of subjects. The same also occurred for
ML sway, which showed a significant difference between groups (i.e., PD and PS) but not
between systems (i.e., 3D-GA and RGB-D): again, this suggests that ML sway could be a
valuable parameter to differentiate the two groups of subjects.

3.4. Comparison Versus Other Studies

Some studies in the literature have analyzed and validated technologies and method-
ologies against the “gold standard” 3D-GA. Nevertheless, the direct comparison of the
results is generally problematic because not all studies consider the same spatio-temporal
parameters, correlation methods, populations, or technological approaches.
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An approach based on a single RGB-D sensor was used in [37] on healthy young
adults: this study reported a slightly greater agreement with 3D-GA than our findings,
in particular for step length (ICC= 0.93 [37] vs. ICC = 0.81 [our]) and average velocity
(ICC = 0.96 [37] vs. ICC = 0.95 [our]) under normal pace conditions. In [40], a multi-RGB-D
sensors approach (four cameras along the 10-m walkway) was used on healthy subjects: in
this study, the step width showed the lowest correlation (ICC = 0.65 [40]) compared to the
other spatio-temporal parameters. The same occurred in our study, in which we obtained
an even lower agreement value (ICC = 0.44 [our]).

Concerning the step width, our results for the Spearman correlation (r = 0.45 [our])
and agreement (ICC = 0.44 [our]) were comparable with the findings in [41], where values
for the Pearson correlation (r = 0.52 [41]) and agreement (ICC = 0.40 [41]) were reported.

However, the latter results for step width seem to disagree with [43] that reports a high
Pearson’s correlation coefficient (r = 0.85 [43]): in this study, the first model of Microsoft
Kinect was used, combined with a treadmill, on healthy participants. Again, with respect
to [43], our estimated Spearman correlation (r = 0.59 [our]) was globally lower than the
Pearson correlation of stride time and stance time (r = 0.85 [43] and r = 0.77 [43], respec-
tively). On the contrary, the result for double support seemed much better (r = 0.24 [43] vs.
r = 0.71 [our]).

The same controversial results for step width are present in [66] both as agreement
(ICC = 0.84 [66]) and Pearson’s correlation coefficient (r = 0.73 [66]): also, in this case, the
first model of the Microsoft Kinect was used in conjunction with a treadmill on healthy
participants. Regarding the other parameters, the results in [66] are worse for step length
(ICC = 0.76 [66] vs. ICC = 0.81 [our]) and mediolateral sway (ICC = 0.84 [66] vs. ICC = 0.94
[our]), referring to the lowest speed setting on the treadmill.

In [36], two Kinect v.1 and an automatic algorithm for step segmentation were used to
compare gait parameters on healthy children: the reported findings on average correlation
and agreement are slightly greater than our results for step length (r = 0.79 [36] vs. r = 0.67
[our]; ICC = 0.85 [36] vs. ICC = 0.81 [our]), but lower for average velocity (r = 0.79 [36] vs.
r = 0.90 [our]; ICC = 0.77 [36] vs. ICC = 0.95 [our]) and cadence (r = 0.79 [36] vs. r = 0.82
[our]; ICC = 0.79 [36] vs. ICC = 0.97 [our]).

Regarding the COM sway parameters during walking, objective results on correlation
or agreement do not appear to be available; nevertheless, the high average sway along
mediolateral direction suggested a concordance with the conclusions on pathological gaits
in [83].

The direct comparison between parameter values is even more difficult because only
a few validation studies specifically work on post-stroke and PD populations. Limiting
the comparison to the spatio-temporal parameters of Table 3 and to the RGB-D sensor ap-
proaches, our average values were in line with the normative data (age 50–59 years) of post-
stroke subjects in [61], as regards the step length (mean = 0.46 [61] vs. mean = 0.47 [our]),
double support (mean = 0.47 [61] vs. mean = 0.52 [our]), and step width (mean = 0.21 [61] vs.
mean = 0.19 [our]). On the contrary, the average values for walking speed (mean = 0.81 [61]
vs. mean = 0.72 [our]) and cadence (mean = 94.34 [61] vs. mean = 89.52 [our]) were lower in
our study, but this was probably related to the different composition of the PS group. For
the same reason, the average value for step length was in line with [56] (mean = 0.51 [56]
vs. mean = 0.47 [our]), while the walking speed (mean = 0.87 [56] vs. mean = 0.72 [our])
and double support (mean = 0.40 [56] vs. mean = 0.52 [our]) were slightly different.

Regarding studies on subjects with PD, our average values were comparable with those
reported in [46] (H&Y 2.5, single task condition), in particular for cadence (mean = 98.8 [46]
vs. mean = 101.81 [our]) and step width (mean = 0.10 [46] vs. mean = 0.15 [our]). However,
there were some differences regarding double support (mean = 0.4 [46] vs. mean = 0.65
[our]) and walking speed (mean = 0.9 [46] vs. mean = 0.77 [our]), probably due to
the different motor conditions of subjects included in our group. The average values
were also directly comparable with [66] for cadence (mean = 101.16 [66]), walking speed
(mean = 0.83 [66]), and stance duration (mean = 73.0% [66] vs. mean = 67.29% [our]).
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The mean values of parameters were also comparable with studies that used different
technological approaches, particularly inertial and wearable sensors, to analyze gait and
compare spatio-temporal parameters with gold reference systems. For example, [68]
and [12] employed inertial sensors and presented results on PD and post-stroke subjects.
In [68], the mean values obtained for walking speed are greater than our findings, both
for PD (mean = 0.85 [68] vs. mean = 0.77 [our]) and for post-stroke (mean = 0.61 [68]
vs. mean = 0.72 [our]). On the contrary, the mean values obtained for stance duration
are very similar, both for PD (mean = 66.70% [68] vs. mean = 67.29% [our]) and for post-
stroke subjects (mean = 66.70% [68] vs. mean = 66.91% [our]). We also compared the
mean values with [12]: in this case, the differences for stance duration were slightly higher
than with the previous study. In particular, the most evident difference referred to the
PD group (mean = 55.9% [12] vs. mean = 67.29% [our]) rather than post-stroke subjects
(mean = 64.5% [12] vs. mean = 66.91% [our]): this probably depended on some differences
in age, disease onset, and severity of the PD subjects involved.

However, despite some minor discrepancies due to different technological and method-
ological approaches in the referenced studies, the results globally demonstrated the reli-
ability of the proposed solution and segmentation algorithm to estimate relevant spatio-
temporal gait parameters that agree, concerning range and correlation, with studies that
rely on different approaches and populations.

4. Discussion

In order to test whether an RGB-D sensor is capable of identifying gait characteristics
and deviations during level walking in neurological diseases (in particular, post-stroke and
PD), the walking abilities of two small cohorts of subjects were analyzed simultaneously
with a single-camera solution and a 3D-GA system. In particular, the standard spatio-
temporal parameters and the estimation of the center of mass excursion during gait were
compared. The single-camera solution relies on an RGB-D sensor (i.e., Microsoft Kinect
v2) and its body-tracking algorithm is able to track, in real-time, the 3D movements of the
human body during gait on a reduced walking path (GAP) that is suitable for domestic
environments. For the experimental procedure, the GAP was set along the traditional
walking path used by the instrumented 3D-GA in order to allow a fair comparison and
validation of the two systems. A custom-written step segmentation algorithm extracted
some standard spatio-temporal parameters from the 3D trajectories of the skeletal model,
provided by the optical sensor, by detecting every step performed inside the GAP. The
computed COM information was used to determine when to perform the gait analysis
inside the GAP (i.e., when the subject entered and left the GAP) and then to measure any
dynamic balance anomalies during gait.

The results show that, using the implemented step segmentation algorithm, the RGB-
D system provided an estimation of the same standard parameters measured with the
optoelectronic system during the gait analysis test. Any slight differences between some
measurements are probably attributable to the different reference points (i.e., the 3D position
of markers on body and joints constituting the skeletal model) or to the different algorithms
used by the two systems to estimate gait parameters. Consequently, this could have affected
the agreement between the two systems and make it complex to compare results directly
with other studies.

Despite this, our results exhibited a good agreement between the two systems in all
the analyzed parameters, with the exception of the step width. No statistical differences
were found between the two systems, and good reliability between the measurements
was displayed according to the values of ICC. In addition, the research on the correlation
between the 3D-GA and RGB-D systems exhibited values that were statistically significant,
demonstrating, in general, a fair proportionality between the two methods. It is important
to underline that, in general, the correlation values and ICC presented high and satisfactory
values for all the parameters, with the exception of step width, as previously anticipated,
and the V sway parameters. Unlike the other parameters, the results related to these two
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parameters showed, in fact, only moderate reliability (ICC = 0.44 for step width, ICC= 0.60
for V sway) and correlation values (r = 0.45 for step width, r = 0.48 for V sway) between the
two measurements. The results were also confirmed by the Bland–Altman plots, which
globally displayed a good association between the two measurement systems as most of
the points fell within the defined interval.

The lower agreement obtained for the step width could depend on the close position
of the two feet in some of the tests, which resulted in a lower precision in the estimation of
the x-axis distance by the RGB-D system.

Similar considerations could be made for the V sway parameter. Although there
were no particular concerns about this index, it is evident that the obtained results, in
terms of ICC and correlation values, were lower than those of the other parameters. These
differences could be related to the different 3D COM positions estimated by the two systems,
which could have slightly interfered with the reliability of the results; or, more likely, to the
lesser relevance of vertical swaying during walking, which involves less marked up–down
body movements.

However, the results generally confirmed those obtained in previous studies carried
out on post-stroke and parkinsonian subjects, even if it is difficult to directly compare our
data with the literature.

The main difficulties for a fair comparison rely on the use of different correlation
methods (ICC, Spearman’s correlation, and Pearson’s correlation), technologies (optical
sensors, wearable sensors, and optoelectronic systems), experimental setup (single-camera,
multi-camera, and treadmills), and populations (healthy, pathological subjects, adults,
and young people): several studies in the literature adopt different methodological and
technological approaches and analyze gait in different groups of subjects, so the comparison
of results with other researches is not easy.

Concerning the agreement between vision-based and 3D-GA systems, as previously
highlighted in Section 3.4, in [37], a slightly higher ICC agreement for mean velocity and
step length was reported, while a greater Pearson’s correlation was estimated for cadence
in [40]. On the contrary, our results showed a greater agreement for step length and
mediolateral sway than [66]; and for step length, mean velocity, and cadence than [66].
The results for step width seem to be more controversial in the literature: for example,
while [40,41,72] obtained the lowest correlation and agreement for step width as our
analysis, other studies [43,66] presented satisfactory agreement data both in terms of ICC
and Pearson’s correlation. The Spearman’s correlation for the Stance duration, expressed
as a percentage of stride time, seemed to be in agreement with the Pearson’s correlation of
stride time and stance time in [43], while the agreement seemed to be greater in our study
for double support. The COM excursion results displayed high deviations, especially in
the mediolateral direction, as expected in pathological gait patterns [83]. The weak results
related to the vertical direction could be related to the different 3D COM positions (y-axis)
considered by the two systems, as discussed and confirmed in our previous research [72].

Considering the PD and PS groups separately, the ranges of values estimated by
the two systems were found to be in line, as evidenced by the median and the quartiles
in Table 3, except for minor discrepancies due to the different landmarks and analysis
algorithms. These data demonstrates that the RGB-D system is able to extract relevant
features of gait with an accuracy comparable to the 3D-GA for both pathological conditions
and this aspect is the most important finding of our study, according to its aim. The
graphical representation of gait patterns and COM trajectories provides an immediate and
intuitive qualitative indication about the global gait performance of PD and PS subjects
(Figure 4): this is, however, supported by objective measures (Table 2) and by the summary
representation of normalized parameters in the form of radar charts (Figure 5), which makes
it possible to easily quantitatively compare performance over time, to reveal differences
between body sides (as in Table 2, where more impairment is evidenced for the right
side), and to highlight different gait strategies for PD and PS subjects (as in Table 2, where
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there are relevant dissimilarities in mean velocity, cadence and ML sway between the two
evaluated subjects).

Specifically, the overall comparison between PS and PD groups confirmed that the two
systems did not show significant differences in estimating the spatio-temporal parameters
and the sways of the center of mass, as highlighted by the System and Group × System
analysis (Table 4).

The data analysis showed slightly significant differences in step width between pop-
ulations and systems. Furthermore, the same data were found to not be relevant for the
Group × System interaction: this confirmed that step width is probably a challenging
parameter to compare due to the different placement of passive markers and skeletal
model joints.

Regarding the gait cadence, there were significant differences between groups (i.e.,
PD and PS) but not between systems (i.e., 3D-GA and RGB-D): this suggests that the
two systems agreed in the estimation of the gait cadence, which could, therefore, be an
effectively discriminating parameter for different gait schemes due to different neurological
impairments. The analysis also showed a significant difference between groups (i.e., PD
and PS) but not between systems (i.e., 3D-GA and RGB-D) concerning ML sway: this
suggested that the two systems agreed in the estimation of ML sway that could be a
valuable parameter to differentiate the two populations. It is, in fact, highly probable that
the gait impairment due to hemiplegia in post-stroke subjects is associated with a more
dangling walking to compensate for gait imbalance.

According to the overall analysis, the RGB-D system seemed able to extract important
features of the gait patterns, in line with the 3D-GA system and regardless of the complexity
of gait of the two neurological diseases considered: this suggested the suitability of the
RGB-D system to perform objective measures of walking strategies where 3D-GA is not
applicable, such as domestic environments.

Particularly relevant is the fact that the obtained measures were found to be compara-
ble with those obtained by means of the optoelectronic system, which represents the gold
standard for movement analysis.

These results are also significant from a clinical and rehabilitative point of view. The
monitoring of gait parameters using an easy and non-invasive testing system may be
helpful in clinical settings to expand the number of patients examined. The RGB-D system
could be considered a valid means for a preliminary, quick, easy, and low-cost evaluation
of gait variables. However, it is important to underline that the proposed system does not
intend to replace gait laboratories based on optoelectronic systems. The optoelectronic
systems should continue to be used in clinical settings for a more in-depth assessment of gait
strategies and clinical decision-making. On the other hand, the more relevant advantages
of the RGB-D solution could be in unsupervised settings, overcoming the limitations of the
traditional gait analysis in laboratory settings and—not of secondary importance—without
undressing patients for marker placement, which is frequently a psychological barrier for
frail patients [21,23]. Furthermore, outpatient rehabilitation facilities could benefit from
the information obtained from the proposed system, which could provide quantitative gait
parameters even outside of gait-analysis laboratories, without excessively interfering with
the subject’s usual activities.

For rehabilitation purposes, the application of these kinds of solutions could be ex-
ploited both in the hospital (at entrance and discharge of patients), in the outpatient
ambulatory, and in-home settings. In addition to objective evaluation of gait patterns,
solutions based on optical devices, such as the RGB-D sensors, could be helpful also for
remote rehabilitation, which has proved to be a promising intervention to reduce the effect
of impairment and improve quality of life both for post-stroke and parkinsonian subjects.

In both pathologies, continuous rehabilitation and physical activity are required to
reduce motor and cognitive decadence. The possibility of simple clinical monitoring would
allow a more specific and targeted therapeutic action in wider cohorts of patients.
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Several systematic reviews [87–90] agree on the effectiveness of remote rehabilitation
interventions for recovery from the motor, cognitive, and psychological dysfunctions linked
to neurological events. This aspect could be crucial, especially in countries with a scarcity
of socio-economic resources. In addition, the recent COVID pandemic restrictions have also
made it clear that telemedicine could become a valid and desirable means to continue health
care at home, especially in frail subjects, even in the advanced economies. The current
pandemic scenario has highlighted the need to offer telemedicine, remote assistance, and
monitoring services when access to health facilities is limited or impossible. In this way, it
would be possible to follow patients remotely, especially in cases of chronic and disabling
diseases, avoiding the worsening of psycho-physical conditions and the onset of a sense
of abandonment, as recent studies on the effects of the pandemic have shown. Several
systems are now available for the remote monitoring of subjects with specific pathologies
in the real world, including diabetes [91], osteoarthritis [92], respiratory dysfunctions [93],
amyotrophic lateral sclerosis [94], and cognitive rehabilitation [95].

In this context, the system we described could permit the real-time integration of
remote objective motor evaluation with exergames and ecological exercises, allowing more
intensive rehabilitation training activities to be carried out at home with lower costs. This
possibility represents a strength of the system: the specialists in the rehabilitation sector, in
fact, claim greater effectiveness for the exercises defined as “ecological”, that is, referring
to the behaviors, habits, and activities of daily life. This result could be achieved through
easy-to-use and low-cost solutions, such as the one we proposed, that constantly and
intensively analyze, monitor, evaluate, stimulate, and rehabilitate the patients, developing
their motor and cognitive potential to the maximum.

Nevertheless, the study has some limitations. At present, the small sample size
could limit the generalization of the results to a broader range of disease severity and
other neurological pathologies. In subsequent studies, we will extend the sample size by
including more PD and PS subjects with wider disability scores to confirm our preliminary
results, and we are planning to also collect data in-home settings. In addition, the following
point must be made regarding the use of Microsoft Kinect© v2 as the RGB-D sensor of the
proposed solution: although the device was discontinued a few years ago, it is still widely
used for clinical research, as evidenced by several recent studies in the literature. In any
case, the availability on the market of other RGB-D sensors will allow us to improve the
current analysis and results using non-invasive technologies and vision-based approaches
with higher performance and accuracy, as recent studies have shown [96,97].

It is important to underline that, in this study, only the spatio-temporal parameters
and the COM sways were analyzed, even if other kinematic variables were calculated.
However, it is well-known that spatio-temporal parameters are among the measurements
most used by clinicians for evaluating gait patterns in post-stroke and parkinsonian patients.
Effectively, the spatio-temporal parameters accurately represent the patient’s ability to
satisfy the general gait requirements, such as weight acceptance, support on a single
limb, and progression of the swing [98]. They are also able to highlight the presence
of asymmetrical gait strategies, due, for example, to anomalous stance phase, double
support duration, slow walking speed, or shorter steps: these are among the main features
considered in the clinical practice for the characterization of pathological gait patterns on
which to evaluate, for example, the effects and benefits of rehabilitation treatments. By
considering only reliable measurements, we can still obtain a significant clinical picture
of the gait. In future studies, other relevant information on walking strategies could be
analyzed more in-depth, such as upper limb movements and postural attitude during gait,
thereby improving the overall characterization of pathological gait and focusing on the
specific neurological condition of interest.

In conclusion, it is important to underline that even if this study focuses only on gait
analysis, one of the most challenging motor tasks for vision-based solutions, it is part of
a broader project on parkinsonian and post-stroke subjects. The project aims, in fact, to
automate and comprehensively assess the motor conditions of pathological subjects through
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RGB-D sensors and computer vision techniques, thus adopting non-invasive and easy-to-
use approaches that are suitable for unsupervised contexts, such as the home setting.

5. Conclusions

This study proposed a vision-based solution for assessing gait patterns and dysfunc-
tions due to neurological impairment associated with post-stroke and Parkinson’s disease
comorbidities by means of a single RGB-D sensor capable of capturing the 3D trajectories
of body movements on a reduced walking path that is also suitable for domestic settings.

The qualitative analysis of the spatio-temporal parameters and COM demonstrated the
capability of the RGB-D system to extract gait characteristics and differentiate specific gait
patterns in agreement with the more complex and demanding gold standard 3D-GA. In fact,
the data analysis confirmed that no difference between the two systems was statistically
significant, except for step width, the results of which were in line with other reference
studies: this indicates that the two systems measure the same quantities. It is noteworthy
that some parameters, particularly cadence and ML sway, showed statistically significant
differences between the two groups of subjects, suggesting that the system is also able to
catch discriminatory parameters in populations with different gait patterns. However, a
more in-depth analysis is necessary to confirm this finding by enlarging the sample size.

The ability to estimate gait parameters in agreement with standard 3D-GA systems is
essential to monitor gait parameters in unsupervised settings, such as domestic environ-
ments, where traditional 3D-GA systems are not applicable. At this stage of development,
immediate clinical implications relate to the possibility to schedule rehabilitation programs
at home, both exclusively or in combination with hospitalization periods. In fact, the
non-invasiveness, portability, and easy-to-use features of the proposed solution allow the
combining of evaluation and rehabilitation tasks for home settings, thus defining new
strategies for the management of neurological diseases and frail subjects. Future develop-
ments could be focused to the potential diagnostic capability of the system: in this case,
the high sensibility of the system for detecting minimal alterations of movements could be
exploited as a support for clinical judgments and differential diagnoses.
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55. Aşkın, A.; Atar, E.; Koçyiğit, H.; Tosun, A. Effects of Kinect-based virtual reality game training on upper extremity motor recovery
in chronic stroke. Somatosens. Mot. Res. 2018, 35, 25–32. [CrossRef]

56. Latorre, J.; Llorens, R.; Colomer, C.; Alcaniz, M. Reliability and comparison of Kinect-based methods for estimating spatiotemporal
gait parameters of healthy and post-stroke individuals. J. Biomech. 2018, 72, 268–273. [CrossRef]

57. Clark, R.A.; Vernon, S.; Mentiplay, B.F.; Miller, K.J.; McGinley, J.L.; Pua, Y.H.; Paterson, K.; Bower, K.J. Instrumenting gait
assessment using the Kinect in people living with stroke: Reliability and association with balance tests. J. Neuroeng. Rehabil.
2015, 12, 15. [CrossRef]

58. Rocha, A.P.; Choupina, H.; Fernandes, J.M.; Rosas, M.J.; Vaz, R.; Silva Cunha, J.P. Kinect v2 based system for Parkinson’s disease
assessment. In Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), Milan,
Italy, 25–29 August 2015; pp. 1279–1282. [CrossRef]

59. Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring
movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [CrossRef]

60. Cao, Y.; Li, B.Z.; Li, Q.N.; Xie, J.D.; Cao, B.Z.; Yu, S.Y. Kinect-based gait analyses of patients with Parkinson’s disease, patients
with stroke with hemiplegia, and healthy adults. CNS Neurosci. Ther. 2017, 23, 447–449. [CrossRef]

61. Latorre, J.; Colomer, C.; Alcaniz, M.; Llorens, R. Gait analysis with the Kinect v2: Normative study with healthy individuals
and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J. NeuroEng. Rehabil. 2019, 16, 97.
[CrossRef]

62. Salonini, E.; Gambazza, S.; Meneghelli, I.; Tridello, G.; Sanguanini, M.; Cazzarolli, C.; Zanini, A.; Assael, B.M. Active video game
playing in children and adolescents with cystic fibrosis: Exercise or just fun? Respir. Care 2015, 60, 1172–1179. [CrossRef]

63. Zoccolillo, L.; Morelli, D.; Cincotti, F.; Muzzioli, L.; Gobbetti, T.; Paolucci, S.; Iosa, M. Video-game based therapy performed by
children with cerebral palsy: A cross-over randomized controlled trial and a cross-sectional quantitative measure of physical
activity. Eur. J. Phys. Rehabil. Med. 2015, 51, 669–676.
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Abstract: Body sensor networks (BSNs) represent an important research tool for exploring novel
diagnostic or therapeutic approaches. They allow for integrating different measurement techniques
into body-worn sensors organized in a network structure. In 2011, the first Integrated Posture
and Activity Network by MedIT Aachen (IPANEMA) was introduced. In this work, we present
a recently developed platform for a wireless body sensor network with customizable applications
based on a proprietary 868 MHz communication interface. In particular, we present a sensor setup
for gait analysis during everyday life monitoring. The arrangement consists of three identical
inertial measurement sensors attached at the wrist, thigh, and chest. We additionally introduce
a force-sensitive resistor integrated insole for measurement of ground reaction forces (GRFs),
to enhance the assessment possibilities and generate ground truth data for inertial measurement
sensors. Since the 868 MHz is not strongly represented in existing BSN implementations, we validate
the proposed system concerning an application in gait analysis and use this as a representative
demonstration of realizability. Hence, there are three key aspects of this project. The system is
evaluated with respect to (I) accurate timing, (II) received signal quality, and (III) measurement
capabilities of the insole pressure nodes. In addition to the demonstration of feasibility, we achieved
promising results regarding the extractions of gait parameters (stride detection accuracy: 99.6 ± 0.8%,
Root-Mean-Square Deviation (RMSE) of mean stride time: 5 ms, RMSE of percentage stance time:
2.3%). Conclusion: With the satisfactory technical performance in laboratory and application
environment and the convincing accuracy of the gait parameter extraction, the presented system
offers a solid basis for a gait monitoring system in everyday life.

Keywords: body sensor network; gait analysis; inertial sensors; ground reaction force

1. Introduction

Healthcare costs have risen massively in recent years and the trend does not seem to be reversed.
According to the United States (US) National Health Expenditure, spending has tripled in the US since
1995 and amounted to 18% of GDP in 2018 [1]. With an increasing life expectancy together with a
stagnating birth rate in the corresponding countries, an aging society is being observed. The actual
effects of this development are difficult to estimate and are the subject of current studies. It can be
assumed that the burden on health care systems will continue to increase. Therefore, new cost-effective
concepts for medical care are needed to maintain the standard of living and the quality of care.

Sensors 2020, 20, 7325; doi:10.3390/s20247325 www.mdpi.com/journal/sensors
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Body sensor network (BSN), alternatively wireless body area network (WBAN), technology could
make a decisive contribution to relieving the burden on health systems and thus keeping them viable
for society in the future [2,3]. A (wireless) body sensor network as defined in the IEEE 802.15.6 standard
is a specific wireless network realization that combines body-worn sensors of a single (human or
animal) being into a dedicated network. By definition, this makes the most important difference
to wearables in the conventional sense or single body-worn sensors, such as a Holter ECG. BSNs,
which in general are not strictly limited to wireless communication, have originally been introduced
for data acquisition in personalized healthcare. Portable measurement systems can facilitate patient
monitoring and alert healthcare professionals in emergencies such as heart attacks or falls. The use
of these systems in everyday life could provide access to data that were previously difficult to be
obtained and could offer new therapeutic approaches [4]. These inconspicuous interventions could
lead to immense financial long-term savings and a considerable improvement in the quality of life.
To increase the acceptance of the devices, the sensors must not become a burden for their wearers.
In this sense, unobtrusiveness applies to many different aspects, such as wearing location, battery
charging, handling for both patients and medical staff, and many others.

The choice of the radio–communication interface has to be carefully considered during the
development process since a variety of different communication standards is eligible for the data
transfer within a BSN. The carrier-frequency is directly connected to the respective communication
standard (Wi-Fi: 2.4 GHz/5 GHz, Bluetooth: 2.4 GHz, ZigBee: 900 MHz/2.4 GHz). As stated in
previous studies and theoretical considerations [5–7], lower frequency bands have lower signal
attenuation as compared to the 2.4 GHz band. The Industrial, Scientific, and Medical (ISM) band and
the Short Range Device (SRD) band provide additional frequency bands at 433 MHz and 868/915 MHz,
respectively. These frequency bands allow for the implementation of an application-specific proprietary
protocol under certain restrictions. Proprietary communication standards thus can avoid commonly
known complications such as collisions with similar communication standards in the 2.4 GHz band,
data rate limitations, high power consumption, or shadowing effects of human tissue towards higher
frequencies. Especially, the latter has to be considered for a BSN application for gait analysis.

Many research projects have addressed mobile sensorized monitoring systems for varying health
and fitness applications. Specifically, in the area of gait analysis, three sensor modalities have proven
high usability for wearable monitoring systems: inertial measurement units (IMUs) including magnetic
field sensors to monitor posture and motion, insole-integrated force sensing resistors to monitor
ground reaction forces (GRFs), and surface-mounted electromyographic (sEMG) sensors to monitor
muscular activity [8–12]. The latter is not considered for long-term monitoring due to the use of
electrodes that have to be attached to the patient’s skin. In contrast, the IMU and GRF sensors are
extensively integrated into scientific research platforms in long-term monitoring applications for gait
analysis [8,12].

IMUs, which include accelerometers and gyroscopes, were first proposed as a functional tool for
gait analysis half a century ago [13] and has gained importance with the development of low-cost
piezo-resistive and micro-electromechanical inertial sensors [14]. In recent years, IMUs were integrated
into different mobile motion and activity monitoring devices [8,15–23]. These devices usually consist
of one single node [23,24] or multiple sensing nodes that are organized in a BSN [8,18,20]. For both
single and multiple node applications, different sensor locations were proposed and investigated for
different types of targeting diseases.

GRF sensing devices usually consist of different kinds of pressure sensors that are attached to
the insole or the shoe of the subject. Pressure sensors are implemented by commercially available
sensors, such as force sensing resistors (FSRs) [25–30], flex sensors [29] and barometric pressure
sensors [31], or customized solutions, such as electronic textiles-based pressure sensors [32,33],
light-sensing chambers with pressure-actuated optical barriers [34] or carbon-embedded piezo-resistive
materials [35].
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In this work, a modular BSN for long-term motion monitoring is designed and tested. It follows
the basic ideas of the Integrated Posture and Activity Network by MedIT Aachen (IPANEMA). The first
version of IPANEMA was developed in 2007 [36]. In 2009 and 2011, the BSN was extended by version
2.0 and 2.5, respectively [37]. The third version was recently finalized with a completely revised design.
A comparison of the IPANEMA v2.5 mainboard to the mainboard of IPANEMA v3.0 is shown in
Figure 1. Table 1 additionally compares the main features of both versions. As an application scenario
of the recently developed platform, we present a sensor configuration for unobtrusive gait analysis
within this contribution. The sensor network consists of three identical IMU sensors and a single
FSR-based insole for recording of GRFs. Since the IMU-based evaluation for this study was already
presented in previous publications [38,39], this specific contribution focuses on the evaluation of the
technical reliability of the whole system and the extension by an FSR-based GRF sensor.

Figure 1. Comparison of the board layouts of the Integrated Posture and Activity Network by MedIT
Aachen (IPANEMA) v2.5 (left) and v3.0 mainboards (right). The most important components are
color-coded for each board.

Table 1. Comparison of main characteristics of the IPANEMA v2.5 and v3.0 mainboard.

Feature IPANEMA v2.5 (2011) IPANEMA v3.0 (2019)

Controller MSP430F1611 CC1310
Architecture 16-Bit RISC ARM Cortex-M3
RF Transceiver CC1101 integrated
Frequency Band 433 MHz 868 MHz/915 MHz
max. TX Power 10 dBm 14 dBm
TX Current * 29.2 mA 13.4 mA
RX Current 15.7 mA 5.5 mA
Battery 330 mAh 230 mAh
Operating Time ** ca. 4 h ca. 12 h
max. Data Rate 500 kBit/s 4 MBit/s
Sensitivity −116 dBm −124 dBm

* At transmission output power of 10 dBm, ** mainboard equipped with an inertial measurement sensor.

2. Methods and Material

2.1. The IPANEMA Mainboard

A single network node of a BSN basically contains a CPU, a radio unit (i.e., transceiver and
antenna), an energy management system, and specific measurement circuits for the acquisition of
physiological or biomechanical parameters. In the case of IPANEMA, each node is equipped with
a mainboard, a sensor board, and a 230 mAh lithium-ion battery. The mainboard contains the CPU,
the RF transceiver and an antenna, the power supply unit, and a sensor controller (SC) that directly
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connects to the sensor boards via two socket-connectors (compare (cf.) Figure 1). The key component of
the IPANEMA v3.0 mainboard is the CC1310 sub-1 GHz wireless micro-controller (Texas Instruments).
It contains an ARM Cortex-M3 main CPU, an RF controller, an integrated sensor controller, and several
peripherals such as a Real-Time Clock (RTC) module, an AES-128 encryption module, a Direct Memory
Access (DMA) controller, different communication interfaces, and timer modules. The RF controller is
based on an ARM Cortex-M0 architecture. It supports several sub-1 GHz ISM and SRD bands such as
the 433 MHz, 868 MHz, and 915 MHz. In contrast to IPANEMA v2.5, the physical layer of v3.0 is based
on the 868/915 MHz band. To overcome communication conflicts, European regulations prescribe
channel sensing for duty cycle-free occupancy of these sub-bands [40]. In the IPANEMA v3.0 protocol
stack, Polite Spectrum Access (PSA) is implemented by a Listen-Before-Talk (LBT) approach, where
the current Receive Signal Strength Indicator (RSSI) is used to determine the channel occupancy.

The basic idea of the IPANEMA BSN is to serve as a flexible scientific communication platform for
different sensor modalities. Therefore, the mainboard contains expansion ports to connect to different
types of sensor boards. The connectors contain the 3.3 V supply and battery voltage, and additional
pins that directly connect to the multi-functional general-purpose input/output (GPIO) pins of the
integrated SC. The SC operates completely independent from the main CPU and organizes the
communication with the respective sensor board, i.e., the initialization and configuration process,
reading data from analog or digital sensors, and triggering the CPU.

For communicating with the sensor boards, the SC provides different standard interfaces such
as the Inter-Integrated Circuit (I2C) bus, the Inter-IC Sound (I2S) bus, the Serial Peripheral Interface
(SPI), and the Universal Asynchronous Receiver Transmitter (UART) bus. It also contains an integrated
12-bit Analog-to-Digital Converter (ADC), several interrupt functions, comparators, and counting
modules to interact with measurement circuits. The sampling rate can be adapted individually for each
different sensor modality within the SC configuration. The SC and the main CPU share a dedicated
memory space to exchange data to be further processed and sent over the network. The main CPU
organizes the communication following the proprietary network protocol. Sensor data are retrieved
from the shared memory and transmitted in network packets. The data are received by the master
node and either forwarded to a PC system via a USB port or stored on an integrated micro SD card
for long-term monitoring purposes. For telehealth applications, the data are additionally transferred
to large-scale memory servers for further processing the obtained data. A graphical overview of the
system is given in Figure 2.

Main CPU

866 MHz
RF Transceiver

Sensor Controller

Battery
and Power

Management

Digital/Analogue
Interfaces

230 mAh Lithium
Polymer Battery

Micro USB
Connector

CC1310
IPANEMA Main Board

To PC System
Application

SD Card
Extension

Case: Master Node

Data
Storage

Sensor
Extension

IMU Node
• BNO055
• BMP280

FSR Insole
• 12 bit ADC
• 4x FSR402

Data
Acquisition

Case: Sensor Node

Figure 2. The IPANEMA mainboard can be equipped with either the master node extension board or a
specific sensor board. The master board contains a USB port that establishes the data connection to the
corresponding PC application. The sensor board is equipped with different types of sensors depending
on the target modality.
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2.2. Proprietary Network Protocol

The IPANEMA BSN consists of a master node (MN) and several sensor nodes (SNs) that are
organized in a star-shaped network. The proprietary internal network protocol is based on this
topology. The MN initializes the network structure for a predefined maximum number of SNs
connecting to the MN. The communication is controlled by a time division multiple access (TDMA)
process that assigns dedicated time slots to each SN connected. A higher-level communication frame
allows for periodical re-synchronization of the SNs and network error handling by the MN. For this
purpose, the MN sends re-synchronization beacons each second and eventually reconnects lost SNs.
In this case, a careful re-synchronization is not only necessary to comply with the dedicated time slots
of the TDMA protocol, but additionally, ensure an accurate time-stamping of a single sampling point
for any sensing modality. After each SN has registered and received its individual unique network ID,
the MN broadcasts the start beacon initiating the TDMA protocol on all nodes (Figure 3).
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Figure 3. Timing diagram according to the communication procedure between the master node (MN)
and sensor node (SN) including initialization routine and standard data acquisition procedure.

The core communication and sampling procedures take into account different timing modules to
maintain reliably identical clocks. These include the MN core clock module, the SN core clock module,
and the RF clock module of the respective SN. The MN clock provides the internal global network time
TMN|sync broadcasted within each re-synchronization beacon with a range of 32 bit and a resolution of
ΔTLSB = 10μs. The RF module of each slave node captures the exact receiving time TRF,SN|sync of the
re-synchronization packet from the isolated RF clock. When a packet is received by the RF module,
it triggers an event for further processing. The temporal delay between receiving and processing the
packet is obtained from the RF clock module

ΔTproc = TRF,SN|proc − TRF,SN|sync (1)

where the current sensor timestamp TSN|sync and the processing timestamp TRF,SN|proc are obtained
simultaneously from the local sensor clock module and the RF clock module, respectively. This way,
each SN can calculate the exact sampling time with respect to the unique global network clock MNTSN

MNTSN[k] = TMN|sync +
(

TSN[k]−
(

TSN|sync − ΔTproc

))
(2)

After receiving a synchronization beacon, the corresponding timestamps, TMN|sync and TSN|sync,
and the processing time ΔTproc are updated accordingly. If a synchronization beacon is missed,
e.g., due to transmission errors, the previous timestamps are retained for further calculation of the
current global network time until the next synchronization frame is received. This way, possible
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deviations of the oscillator components are compensated and both the TDMA protocol timing and the
sampling clock are robust against hardware-dependent variances.

The internal 32-bit timer together with the timer resolution ΔTLSB allows for a maximum recording
time Tmax of

Tmax =
232 · 10μs

3600
= 11.93 h, (3)

which is in the range of the theoretical maximum operating time due to limitations of the battery
capacity (cf. Table 1). Still, the network provides a comparably fine sampling resolution of 10μs.
The integrated oscillator (TSX-3225 24 MHz, Seiko Epson Corporation, Suwa, Japan) has a frequency
tolerance of ftol = ±10 ppm. This results in a theoretical temporal deviation ΔTerr,max according to
component tolerances of

ΔTerr,max = 232 · 10μs · (±10 ppm) = ±0.43 s. (4)

In the context of the intended application of long-term gait analysis, this means a theoretical deviation
of about one stride over 12 h, if only the compensation of the static time offset is considered.

2.3. Inertial Measurement Node

The inertial measurement node consists of the integrated inertial measurement unit (IMU) BNO055
(Bosch Sensortec, Reutlingen, Germany) and an absolute barometric pressure sensor BMP280 (Bosch
Sensortec, Reutlingen, Germany). The IMU contains an accelerometer, a gyroscope, a geomagnetic
field sensor, and a Cortex M0+ microcontroller for on-chip sensor fusion. However, the magnetic
field sensor was not used in our approach to reliable indoor orientation estimation. On the one hand,
the usage of only accelerometer and gyroscope saves energy with respect to long-term monitoring
applications. On the other hand, magnetic field sensors are often distorted by ferrous material or
power lines within an indoor environment [41]. The accelerometer and gyroscope data were fused
to obtain the current orientation of a sensor node. The barometric pressure sensor (BPS) includes a
piezo-resistive sensing element and a temperature sensor to compensate for temperature-depending
drifts. The BPS was utilized to estimate changes in absolute altitude for detection of stairs walking,
floor elevating, sit-to-stand transitions, or drops. The communication was realized via the I2C bus for
both integrated circuits. An overview of the characteristic parameters for the integrated sensors is
given in Table 2.

Table 2. Characteristic parameters of the IMU sensor nodes implemented for the BSN.

Parameter Accelerometer Gyroscope Pressure Sensor

Range ±4 g 2000◦/s 300 . . . 1100 hPa
Resolution 14 bits 16 bits 17 bits
Noise 150μg/

√
Hz 0.014◦/s/

√
Hz 1.3 Pa

Sampling Rate 100 Hz 100 Hz 125 Hz

2.4. Measurement of Ground Reaction Forces

The measurement of ground reaction forces (GRF) was implemented by integrating four force
sensing resistors (FSRs) into an insole. The four FSR402 sensors (Interlink Electronics, Irvine, CA, USA)
with a diameter of 13 mm of sensing region were placed below (a) the distal phalanges (i.e., the big toe),
(b) the first and (c) the fifth metatarsophalangeal joints, and (d) the heel (Figure 4a). The FSR sensors
are subjected to a varying load in the successive phases of one gait cycle, as depicted in Figure 4b. This
way, the GRF is sampled spatially along the different regions of the foot that mainly contribute to the
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overall GRF. The quantitative GRF approximation is determined by calculating the average (arithmetic
mean) of the digital FSR signal components

FSRsum[k] =
1
4

4

∑
i=1

FSRi[k]. (5)
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(a) Positioning of the FSR sensors. (b) Exemplary FSR measurement over one gait cycle.

Figure 4. Implementation of the force sensing resistor (FSR) insole. (a) The insole is equipped
with four FSR402 sensor pads located at the distal phalanges (FSR2), the first (FSR4) and the fifth
metatarsophalangeal joints (FSR3), and the heel (FSR1). (b) An exemplary measurement of a step with
this sensor setup. Note that the FSRsum does not reflect the actual force, since the setup is not calibrated
to the individual pressure distribution.

Each FSR sensor is part of a voltage divider supplied by the reference voltage URe f = 3.3 V
(Figure 5). The resulting signal is filtered by a low-pass circuit with a corner frequency of fc = 15.92 Hz
and subsequently sampled by the 12-bit Analog-to-Digital Converter (ADC) MCP3204 (Microchip
Technology Inc.). The ADC is connected to the sensor controller via the SPI bus.

Figure 5. Hardware design of the FSR measurement circuit. Each FSR sensor is low-pass filtered to
eliminate measurement noise and adapt to the gait dynamics.

2.5. Unobtrusive Sensor Setup for Gait Monitoring

While stationary gait analysis systems are traditionally used in movement laboratories, long-term
monitoring systems require a maximized level of acceptance and compliance by the patient.
Unobtrusive measurement of physiological or biomechanical parameters has become increasingly
important in recent decades, as it provides insights into the everyday-life behavior of the patient.
An unobtrusive sensor setup in a BSN application for gait analysis is characterized by wearable sensors

31



Sensors 2020, 20, 7325

that are located on the human body so that they do not affect natural motion and the patient ideally
does not take note of the additional sensor equipment.

Smart electronic devices, i.e., mobile phones and smart-watches, and their integrated sensor units
offer a promising opportunity to unobtrusively collect motion data. Concerning the fundamental idea
of an unobtrusive sensor setup for everyday-life monitoring, we chose a setup including three IMU
sensors, attached to the thigh, the wrist, and the chest as well as one FSR insole. This setup is motivated
by typical wearable devices and their preferable wearing location: A cell phone in the pocket (thigh)
and a smart-watch at the wrist supplemented by a pendant sensor for fall detection (cf. Philips Lifeline
AutoAlert or similar) and an ordinary insole. With this sensor setup, we ensure on the one hand a
broad acceptance for wearing these sensors and on the other hand cover movements of the lower
extremities, the trunk, the upper extremities, and the ground contact. The typical applications are
twofold. On the one hand, it is possible to conduct long-term measurements with the MN directly
attached to the human body, in our case at the second wrist. On the other hand, the BSN can be used
to record data in a motion laboratory environment, where the MN is connected to a PC system to
enable online tracking of the data streams. The two application scenarios are depicted in Figure 6
showing the individual sensor locations for each case. Please note that in the motion laboratory the
distance between MN and the participant walking on the treadmill was approximately 6–8 m due to
infrastructural constraints.

Figure 6. Application scenarios of the proposed sensor system realized in within this contribution.
(a) The typical unobtrusive sensor setup for long-term measurements in everyday life. (b) Measurement
setup during treadmill walking trials in the motion laboratory conducted for the validation process.

2.6. Detection of Physical Activity in Long-Term Measurements

Detection of physical activity, more specifically the extraction of gait phases, during long-term
measurements of everyday life activities is a key feature of the proposed sensor system. We identified
the sensor node located at the thigh as the most reliable node for determining gait phases in specific.
We implemented a simple algorithm to detect phases of physical activity using the signal vector
magnitude (SVM) of the three-dimensional thigh acceleration data athigh = [ax ay az]T

SVM[k] = || a[k] ||2 (6)

=
√

a2
x[k] + a2

y[k] + a2
z [k]. (7)
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The standard deviation of the SVM, σSVM[i], was calculated window-based in the first step with a
fixed window size of 1 s. The SVM was binary sampled with a threshold of 0.1 g,

σSVM,bin[i] =

{
1, σSVM[i] ≥ 0.1 g

0, else
, (8)

which suppresses low-energy artifacts, such as low dynamic movements, and the global signal noise
of the accelerometer of approximately 1.5 mg. The resulting decision vector was median-filtered with
a filter length of five samples, which equals a time section of five seconds. The averaged decision
vector was finally filtered with a 1-dimensional opening function to eliminate short periods of physical
activity, which for some reason may not be significant for further analysis. Please note that based on
the algorithm, it is not possible to differentiate between any kind of physical activity, where the leg
or thigh is majorly involved. Since every long-term recording associated with this contribution took
place in the office environment and none of the participants reported differently, physical activity in
this particular case is only referred to as walking activity.

2.7. Algorithm for Gait Segmentation Based on FSR Measurements

The most important characteristic points for wearable-based gait analysis are the heel strike
(HS) and toe off (TO) events, respectively. These events indicate the two main phases in human gait,
the stance phase, and the swing phase (Figure 7) and usually represent prominent and, therefore, easily
detectable landmarks in wearable sensor data. Therefore, they are commonly used as key features in
gait segmentation. Based on the specific application, other key features such as mid swing or mid
stance can also be detected in wearable-based data. Since the FSR-based gait segmentation is in the
main scope of this contribution we focus on the detection of HS and TO events. The summed-up FSR
time series serves as the input signal for the segmentation algorithm. Since insole-integrated FSR
measurements besides GRF are subject to additional motion artifacts due to contact pressure of the
shoe and, therefore, differ from standard GRF measurements (i.e., force plate), we implemented a
specific algorithm for HS and TO detection in FSR data.

≈ 60–70% ≈ 30–40%

Stance Swing
StanceSwing

HSright TOright HSright
TOleft HSleft

Figure 7. The two main components of the basic gait cycle consist of the stance phase and the swing
phase. During normal gait, the stance phases of both left and right leg overlap during the double
support phase. The stance and swing phases are separated by the heel strike (HS) and toe off (TO)
event, which are the key characteristic points to be extracted from the GRF.

Firstly, we calculate the local minimum of the summed-up FSR signal, which corresponds to the
lowest pressure during one gait cycle. Since in higher walking speeds the plateau of the maximum foot
pressure alters to a double peak due to the swing phase initiation of the opposite leg (cf. Figure 4b),
the maximum peak pressure is not a reliable indicator. We assume a minimum distance of 0.7 s between
two adjacent peaks for the parameterization of the peak detection. Then, we identify the beginning of
the falling (TO) and the rising edge (HS), respectively, starting from the local minimum. Therefore,
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we find the closest positive and negative value exceeding certain threshold values in the approximated
derivative (diff()) of the summed-up FSR signal. These thresholds values were determined based on
the FSR measurements conducted during the walking trials related to this contribution. Therefore,
we investigated the empirical cumulative distribution function (eCDF) of the single difference signals
of the summed-up FSR data. As shown in Figure 8, the eCDF can be separated in three main parts:
a flat distribution region of negative signal slope, a relatively small transition region, and a flat region
indicating positive slopes. This characteristic is mainly due to the signal shape of a band-limited
rectangular signal. We identified the key characteristic points of the eCDFs, which we defined as the
turning points from negative slope flat since these points statistically separate falling and rising edges
from signal plateaus. For every single normalized eCDF, we identified the turning points by searching
the minimum distance between the eCDF curve and [0, 1] for d+min and [0, 0] for d−min, respectively.
Subsequently, we calculated the mean value of the normalized amplitudes to define a fixed threshold
with respect to the maximum and minimum amplitude values of each eCDF. Due to computational
reasons we rounded the values to integer fractions.
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Figure 8. Illustration of the procedure for determining the threshold values used for the detection of
HS and TO events.

Since the falling edge was found to be steeper as compared to the rising edge, the thresholds were
identified as

thrrising =
1
6

max
k

diff (FSRsum) [k] and (9)

thrfalling =
1
7

min
k

diff (FSRsum) [k]. (10)

The basic procedure of identifying the threshold values is depicted in Figure 8. In addition,
the final threshold values thrrising and thrfalling according to Equations (9) and (10) are given. Finally,
an exemplary illustration of the FSR-based gait segmentation algorithm is shown in Figure 9.
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Figure 9. Exemplary illustration of the segmentation algorithm. The algorithm utilizes the summed-up
FSR signal and its derivative, respectively, to identify TO and HS events during gait phases.

2.8. Trial Designs for the Validation of the Sensor Setup

Three different test scenarios were chosen to validate the performance of the proposed sensor
setup. Firstly, the functional capability of the system was investigated in a technical validation setup in
terms of transmission performance and timings. Secondly, we recorded long-term motion data during
everyday life activities to validate the system reliability in a real-life application scenario. Finally,
we conducted a smaller clinical study with ten participants to validate the activity detection algorithm
and confirm the ability to correctly extract gait parameters from the obtained sensor data, respectively.

• Technical laboratory setup: The validation of the technical functionality in terms of transmission
and timing performance was performed in a technical laboratory. The static measurements
were conducted inside a laboratory room with as low electromagnetic interference as possible.
The spatial signal strength measurements were conducted outside the building to reduce reflection
disturbances. The SN was mounted on a turnable robot arm (Mitsubishi Movemaster) to avoid
human tissue interference during the measurements and guarantee accurate spatial recordings.

• Long-term measurements: We conducted several long-term measurements with healthy subjects
equipped with the proposed system during their everyday office life, while normally continuing
their business. The records were used to validate the system reliability in a real-life scenario.
Comparable to the technical validation, we focused on the evaluation of the transmission
performance of the system.

• Gait parameter study: Since gait analysis is in the main scope of this contribution and the
main purpose of the proposed system, we validated the system with respect to the extraction of
gait parameters. We conducted a clinical trial in the movement laboratory of the Department
of Geriatrics of RWTH Aachen University Hospital to compare the outcome of the system to
clinically relevant gait parameters. The study was approved by the ethical committee of the
University Hospital at RWTH Aachen University (Ref. No. EK 024-20) and included ten healthy,
young participants (29.8 ± 4.24 years, 3 female, 7 male, average body height 175.7 ± 8.65 cm).
In each trial, the participant was asked to walk on a treadmill (Zebris FDM-T, Zebris Medical
GmbH) at different walking speeds (1–4 km h−1). The treadmill includes integrated force plates
and generates the reference data for the gait parameters.
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3. Results

3.1. Transmission Performance

The transmission performance of a wireless communication system can be quantified by two
main characteristics: the Receive Signal Strength Indicator (RSSI) and the Packet Error Rate (PER).
Several measurements were conducted recording the RSSI and the number of transmitted packets
(NoP) for each SN under different environmental conditions to evaluate the transmission performance
of the IPANEMA v3.0 mainboard. The PER can directly be calculated from the NoP. The performance
tests were conducted in a technical laboratory setup, as well as during long-term measurements
of everyday-life activities and gait trials in a movement laboratory. The RSSI and the NoP are
automatically captured by the MN for each packet arriving.

The technical evaluation measurements include recordings of RSSI at an increasing distance
with varying transmission power output in a laboratory environment, where the antennas of both
sender (SN) and receiver (MN) have been aligned accordingly. As expected according to theoretical
considerations following the free-space path loss, the RSSI decreases with increasing distance and
decreasing transmission power output. Here, also the transmission output power, matching network
loss, and antenna gain are included in the measurement results, which results in an overall offset
of approximately −30 dBm. In a second experiment, the RSSI was recorded from different spatial
angles in a free-space environment, where the sensor node was placed on a turnable end-effector of a
robot arm (Figure 10). During the measurement, the sensor node was rotated by 360◦ in the x-y-plane.
The receive signal quality was recorded by the master node that was placed at varying distances
(Figure 10b).

Additionally, measurements with static and moving human tissue within the direct signal path
were performed. An additional signal attenuation of approximately 5–15 dBm occurs with human
tissue interference. For moving human tissue, the RSSI pattern shows inconsistent behavior with both
increased and reduced signal attenuation compared to the non-moving measurements. For loss-less
data transfer, a minimum of −78 dBm RSSI was determined. At 10 dBm transmission output power,
a maximum of 2.2% PER was found. The proposed sensor system can, therefore, be applied in
telehealth sensor systems with human tissue interference.

Finally, we investigated the long-term measurements with regard to the transmission performance
of the proposed setup in an everyday-life scenario. Different healthy subjects were asked to wear the
measurement setup (sensor nodes at the left wrist, in the right pocket (thigh), at the chest and as an
insole (ankle), the master node at the right wrist) in their everyday office life. In addition to the actual
sensor data, we additionally recorded the RSSI and the number of packages received by the master
node to calculate the PER. The overall results are given in Table 3. The performance evaluation yielded
satisfying results with an average PER of 5.45% on average and 7.38% during gait. We performed a
correlation analysis between the RSSI and PER values from every single measurement and sensing
location, to investigate the relationship between successful packet transmissions and the received
signal strength. The correlation analysis yielded an overall correlation coefficient of ρraw = 0.778.
The correlation analysis of the averaged performance parameters from Table 3 even resulted in a
correlation coefficient of ρav = 0.993. Please note, that we used the absolute RSSI values to correlate a
decreasing radio signal strength with an increasing PER tendency. We additionally identified the gait
phases within the long-term measurements using the algorithm described in Section 2.6 and calculated
both RSSI and PER for each sensor location. The correlation analysis yielded correlation coefficients of
ρgait,raw = 0.154 and ρgait,av = 0.986, respectively.
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Figure 10. Receive Signal Strength Indicator (RSSI) measurements. (a) Measurement setup of the
spatial RSSI recordings. The sensor node is placed at the end-effector of a turnable robot arm (red
circled enlargement). The master node is statically placed at a fixed distance in front of the sensor node.
(b) Receive Signal Strength over spatial angles for different distances (42 cm and 168 cm) and with
additional interference of non-moving and moving human tissue (HT). Antenna (cf. PCB in Figure 1) is
aligned with 180◦.

Table 3. Transmission performance during long-term measurements from unsupervised everyday
office life activities. The calculation of RSSI and Packet Error Rate (PER) was performed for the entire
data set (all) and gait phases only (gait) to specifically investigate the transmission behavior during gait.

Data Parameter Wrist Thigh Chest Ankle Averaged

All RSSI [dBm] −62.80 −63.41 −56.95 −68.32 −62.87
PER [%] 5.42 6.36 1.16 8.87 5.45

Gait RSSI [dBm] −65.07 −60.11 −57.10 −67.32 −62.40
PER [%] 9.34 4.76 3.75 11.68 7.38

3.2. Synchronization Performance

Several long-term measurements were conducted to evaluate the timing performance and
long-term stability of the RF communication implementation. The devices under test were placed
in a standard technical laboratory environment during the long-term recordings. The SNs were
placed around the MN with a distance of about 20 cm to ensure optimal transmission performance.
We recorded the master timestamp TMN|sync received by the SN, the local slave timestamp TSN|sync,
and the processing delay ΔTproc that are used to compensate for the static timer offset due to different
times of initialization and for linear timer drifts due to component tolerances (cf. Section 2.2).

We recorded data of 20 devices under test during the long-term measurements of
approximately 1 h. Two of the devices showed unsatisfying timing performance yielding many
missed synchronization beacons and, thus, non-synchronized timestamps. Subsequently, we separated
the test measurements into two groups to further analyze the results: passed timing performance test
(18 devices) and failed timing performance test (2 devices). We obtained different indicators to quantify
the timing performance of every single device based on the time differences of master and sensor
clocks. Therefore, we first calculated the deviation between the sensor clock and the master clock
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ΔTMN,SN[k] = TMN|sync [k]− TSN|sync [k] (11)

and approximated this time series by a second-order polynomial fit

ΔTMN,SN[k]
!
= p2

(
k
Fs

)2
+ p1

k
Fs

+ p0. (12)

Based on this approximation, we further analyzed the key characteristics of the oscillator
deviations. The results are given in Table 4 on average (mean) for the group of devices that passed the
test and for the device with the worst result. Please note that the two devices that failed the test were
excluded from the averaging. The divergence ΔT

s is given by the linear slope p1 from Equation (12).
Additionally, we calculated the average of the absolute divergence |p1| for all devices. The temporal

linearity of the oscillator misalignment is characterized by the ratio of
∣∣∣p2

p1

∣∣∣. We determined the root
mean squares error with regard to the linear fit RMSElin to identify short-time irregularities. Finally,
we calculated the divergence of the adjusted timestamps MNTSN to prove the correct operation of the
adaption formula in Equation (2). As can be seen, the absolute divergence after adjusting the local
clock is significantly below 1μs/s and, therefore, the system can be used for synchronized multi-sensor
gait analysis.

Table 4. Results of the synchronization evaluation.

Indicator
Average

Passed Test
Worst Case

Divergence [μs/s] −11.69 −−
Abs. Divergence [μs/s] 18.63 46.445.59
Linearity 2.907 × 10−6 3.29 × 10−8

RMSElin [s] 1.081 × 10−4 0.025
Abs. Adj. Divergence [μs/s] 20.532 × 10−3 7.539 × 10−3

3.3. Qualitative GRF Measurement

The GRF can be obtained from the FSR sensor data and contains information about the gait
stability, gait control strategy, or pathological gait patterns. For example, the position of the Center of
Pressure (CoP) and its derivatives are key characteristics in terms of gait stability. It can be deduced
from the 2D plantar GRF that is reconstructed by interpolating between the single sensor locations and
recalculating the local foot pressure for the specific foot geometry. Further analysis of GRF-related gait
quality indicators is not part of this contribution. Instead, we focus on a qualitative validation of the
GRF signal morphology. The quality of the signal morphology has a high impact on the detection of
HS and TO events using the proposed algorithm. Of course, the morphology individually differs due
to foot size, footwear, and contact pressure. Therefore, the insole-based FSR signal is more sensitive to
individual gait behavior as compared to the force plates.

To validate the reproducibility of GRF by the FSR insole, we conducted a clinical trial study with
10 healthy, young participants, who volunteered in a treadmill walking trial. The subjects walked
on the treadmill for 7 min per trial at increasing speeds from 1–4 km h−1. Each speed step was kept
constant for one minute and increased by 0.5 km h−1 in between by the trial advisor. The treadmill
included integrated force sensors underneath the walking plane, which was used to generate the
reference data. The force data from the treadmill can be integrated over the 2D foot area to obtain
the vertical GRF of the corresponding gait cycle. Gait cycles within the reference force can be easily
detected by thresholding the signal with the smallest possible threshold since the force plate yields
zero force during the swing phase. The recorded FSR signal is separated using the algorithm presented
in Section 2.7. To analyze the qualitative reproducibility, we averaged over all gait cycles at one speed
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step for both summed-up FSR and reference force signal. A visual comparison of the FSR measurement
and the reference force is depicted in Figure 11.

We additionally calculated the coefficient of variation (CoV), which is defined as the standard
deviation in relation to the mean value of a quantity, for the individual stride morphologies of both
FSR and reference force plate data to give a measure of variability for the corresponding measurement
principle. It should be noted that human gait, of course, inherits a certain amount of stride-to-stride
variability. Therefore, the CoV in this case is not a measure of precision for the corresponding technical
system. The CoV rather needs to be compared to the reference outcome. Secondly, the swing phase
does not contribute to the CoV for the reference system since the effective output is zero when the foot
does not have ground contact. As can be seen in Table 5, the CoV of the FSR insole data on average is
approximately 40% higher compared to the reference force plate data.

Table 5. Coefficient of variation [] for the mean FSR morphology compared to the reference morphology
obtained from the treadmill force plates.

Data
Walking Speed [km h−1]

1.0 1.5 2.0 2.5 3.0 3.5 4.0

CoVFSR 0.126 0.108 0.095 0.091 0.099 0.091 0.108
CoVRef 0.112 0.084 0.071 0.065 0.061 0.061 0.065
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Figure 11. Exemplary comparison of the summed-up FSR signal and the force plate measurement
during one walking trial of subject 1 from 1–4 km h−1. The graphs show the mean morphology over all
gait cycles at one particular speed. The gait cycles have been separated by the HS events detected by
the proposed algorithm and the gait analysis software of the treadmill, respectively.

3.4. Speed-Related Gait Parameters

The capability of the IMU sensor nodes have been intensively investigated before [38,39] and is,
therefore, not in the scope of this contribution. Instead, we focus on the speed-related gait parameters,
that we can additionally obtain from the GRF measurements. As key characteristic parameters of
human gait, we extract the total number of strides, the stride time, and the stance time from the
summed-up FSR signal.

The stride time is defined as the temporal distance between two successive ground contacts of the
same foot. The exact stride time can, therefore, be extracted by any periodically recurring feature in
the FSR signal, such as the HS or TO events. Since HS and TO are the two most dominant featured in
the FSR signal, we calculated the stride time from both HS and TO and compared it to the reference
treadmill data. The correlation and Bland–Altman plots for the HS-based and TO-based stride time
extraction are given in Figure 12a. Since HS-based stride time extraction provided more reliable
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results, we decided to use the HS events for any further parameter calculation. The stride time is thus
calculated by

ST[l] = T|HSl+1
− T|HSl

(13)

and averaged over a period of one minute to calculate the mean stride time.
The number of strides (NoS) is given by the sum of detected HS events. Concerning the conducted

gait study trial, we counted the number of strides in each speed interval, which yields a second
important gait parameter: the cadence (strides per minute). We calculated the detection accuracy to
give a quantitative measure of the overall stride detection

Accuracy = 1 − |NoSRef − NoSFSR|
NoSRef

. (14)

The percentage stance time (PST) indicates the temporal percentage of the stance time in relation
to the entire gait cycle (stance time + swing time of one leg) and is calculated by

PST[l] =
T|TOl

− T|HSl

T|HSl+1
− T|HSl

=
T|TOl

− T|HSl

ST[l]
. (15)

Both the mean stride time and the percentage stance time can be validated using the RMSE

RMSE =

√√√√ N

∑
l=1

(yFSR[l]− yRef[l])
2

N
, (16)

where yFSR is the respective measure to be validated against yRef and N equals the number
of observations.

The gait sequences were extracted from the overall recording time by applying the gait phase
detection from Section 2.6. All measures were subsequently extracted from the summed-up FSR signal
according to Equations (13)–(16). The extracted gait parameters are given in Table 6. Additionally,
the results of the validation of the speed-related gait parameters are depicted in Figure 12b.

Table 6. Results of the extraction of speed-related gait parameters: the number of strides, the mean
stride time, and the percentage of the stance phase. Values are given in mean ± standard deviation.

Number of Strides/Cadence Mean Stride Time Percentage Stance Phase

Speed

[km h−1]

FSR

[min−1]

Ref.

[min−1]
Accuracy

[%]
FSR
[s]

Ref.
[s]

RMSE
[ms]

FSR
[%]

Ref.
[%]

RMSE
[%]

1.0 29.8± 4.25 29.1± 4.15 97.8± 1.62 2.05± 0.31 2.05± 0.32 22.36 77.36± 3.96 76.30± 2.99 2.76
1.5 35.5± 3.73 35.5± 3.66 99.7± 0.58 1.71± 0.21 1.71± 0.21 2.80 72.53± 3.22 72.37± 1.79 2.47
2.0 40.5± 3.46 40.5± 3.44 99.9± 0.38 1.49± 0.15 1.49± 0.15 7.93 70.45± 3.02 70.45± 1.53 2.53
2.5 44.5± 3.55 44.4± 3.56 99.9± 0.34 1.36± 0.12 1.36± 0.12 0.35 68.65± 2.10 69.22± 1.35 1.70
3.0 47.9± 3.73 47.9± 3.77 99.9± 0.33 1.26± 0.11 1.26± 0.11 0.40 68.18± 2.19 68.20± 1.21 1.99
3.5 50.1± 3.09 50.1± 3.05 99.9± 0.31 1.20± 0.08 1.20± 0.08 0.77 67.81± 2.70 67.40± 1.31 2.52
4.0 52.8± 3.38 52.9± 3.35 99.9± 0.29 1.14± 0.08 1.14± 0.08 0.58 67.24± 2.00 66.55± 1.27 2.10

Average 43.0± 8.5 42.9± 8.6 99.6± 1.0 1.46± 0.3 1.46± 0.3 5.027 70.32± 4.4 70.07± 3.6 2.296
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Figure 12. Validation results of the speed-related gait parameters. (a) Correlation (left) and
Bland–Altman (right) plot for the HS-based stride time extraction (above) and the TO-based stride
time extraction (below) for all strides detected during walking trials. (b) Graphical representation of
the overall extraction performance with regard to the calculation of the mean stride time, the cadence,
and the percentage stance phase (cf. Table 6).

4. Discussion

Within this contribution, we introduced the recently redesigned version 3.0 of the IPANEMA BSN
based on an 868 MHz communication interface. The current version was implemented for the specific
application in gait analysis. Therefore, we integrated two different kind of sensor nodes: an IMU node
and a sensorized insole for GRF measurement. We proposed a sensor setup to unobtrusively obtain
movement data in long-term measurements.

Our results show that the concept of an 868 MHz communication interface for a BSN is generally
applicable in a measurement setup for gait analysis in long-term data. The averaged RSSI values of
approximately −62.5 dBm for both the entire data set and gait phases only (cf. Table 3) correspond
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to the technical evaluation of the transmission performance (approximately −75 to −45 dBm, cf.
Figure 10b). As expected, the PER increased during the real-life application in the long-term
measurements compared to the laboratory measurements (2.2% versus 5.5–7.4%). During gait phases,
we also found an increased PER, which can be explained due to additional movement artifacts.
Nevertheless, it should be noted that we identified erroneous packets by a simple cyclic redundancy
check (CRC) and, thus, the PER equals the packet loss rate. Minor bit errors are currently not corrected,
but will be part of future work to reduce the PER. Nevertheless, we showed in Section 3.4 and
in [39], respectively, that gait parameter extraction is not drastically affected by missing data points.
The correlation between RSSI and PER interestingly decreases during gait phases (ρgait,raw = 0.154
versus ρraw = 0.778). This can be explained by highly dynamic changes of the received signal strength
during the gait cycles, which can cause a comparatively high PER, while the average RSSI suggests
a stable transmission performance. Please note that transmissions with very low signal strengths
are not detected by the receiving master node, which means that theoretically low RSSIs can not be
considered for the averaged RSSI calculation. Based on these findings, we consider to adaptively
adjust the transmitter output power during the gait phases using a model-predictive approach by
characterizing the transmission channel of each individual sensor node. This would not only improve
the PER, but also the operating time of the system.

According to Table 1, the maximum operating time of the system due to battery limitations was
determined to be about 12 h. This corresponds to the currently implemented, maximum timestamp
of the local BSN clock (cf. Section 2.2. During the timing evaluation measurements, we found
two of the tested devices (10%) that showed large oscillator deviations and, thus, did not function
appropriately. Since the deviation of these devices was approximately 50 ms/s, the synchronization
beacon will be missed every second time and transmission collisions are not guaranteed to be avoided
by the TDMA. Additionally, the power consumption of these devices is excessively higher, since once a
synchronization beacon is missed, their RF core remains active until the next re-synchronization beacon
is received. For these reasons, devices that failed the timing test (absolute deviation ΔTMN,SN > 1 ms/s)
were excluded from further consideration. The polynomial fit of the absolute deviation of each
individual sensor clock yielded high linearity for all devices during the long-term measurements.
Therefore, additional nonlinear time-invariant influences on the system need not be expected.
Both the mean deviation and mean of the absolute deviation of the devices that passed the test
corresponded to the tolerances of the oscillator. Short-time fluctuations of the clock precision were
found to be approximately 0.1 ms, which is below the global sampling period of Ts = 20 ms of the
current BSN system. Thus, the setup satisfies the requirements for a gait analysis application in
long-term measurements. In case further different sensor modalities are required, the evaluation
of the timing performance must be revised with regard to the required sampling rate. As expected,
the absolute divergence of the sensor clock is significantly below the global clock tick of 10μs and is
therefore negligible.

A further indicator for validating a system for monitoring and analyzing gait in everyday life
is the range of recorded sensor signals with respect to the configured measurement range given in
Table 2. During the walking trials in the motion laboratory, we extracted maximum acceleration
ranges of approximately [±3.5 g] for the thigh sensor, [±1.9 g] for the chest sensor, and [±2 g] for
the wrist sensor. For walking speeds covered by the proposed study, the chosen range is, therefore,
sufficient. In the case that higher values are expected, for example from an accelerometer located at the
ankle or foot, the range can be extended by software. Similar values were also observed during the
long-term measurements. Temporary instances of senor saturation could be attributed to short-term,
high-energy events that were not associated with the gait phases. In addition to the IMU, the BPS is
also an important component of the mobility sensor nodes at the thigh, the wrist, and the chest. In the
current sensor configuration, the BPS provides an effective precision of approximately ±10.9 cm at
sea level due to the measurement noise. Nevertheless it should be noted that the barometric pressure
measurement is highly sensitive to minor pressure fluctuations, such as closing or opening of doors or

42



Sensors 2020, 20, 7325

windows, and changes in temperature. During the long-term measurements, we could observe that
significant changes in altitude, such as floor elevating and stairs walking could be simply detected
within the BPS data, whereas the detection of minor changes requires additional signal processing.
First approaches to detect falls or even sit-to-stand transitions yielded promising results, while taking
into account the additionally recorded motion data. This topic will, therefore, be subject of future
investigations. In the current sensor setup, the signal noise of the pressure sensor equals a standard
deviation of the altitude estimate of approximately 10.9 cm at sea level (cf. Table 2). In addition, the
pressure measurement is highly sensitive to temperature changes and minor pressure fluctuations,
such as the opening or closing of doors or windows.

The FSR insole is used to calculate important speed-related gait parameters, such as the total
number of strides, the cadence, the stride time, and the percentage stance phase. GRF-based analysis
is known to provide reliable results for these parameters and therefore often used in movement
laboratories. The applicability to a wearable long-term monitoring system is evaluated in this
contribution. The results of the validation measurements in the movement laboratory are given
in Table 6 and Figure 12, respectively. First, we investigated the stride detection performance of both
HS and TO-based by comparing the extracted stride time to the reference stride time (Figure 12a).
As the correlation plots and Bland–Altman plots show, the HS-based stride time extraction slightly
outperforms the TO-based calculation (RMSE 0.07 s versus 0.09 s). These results may be explained by
the foot anatomy and resulting pressure distributions and additional forces due to contact pressure of
the shoe. We assume that the heel sensor (FSR1, Figure 4a) yields a more precise and better defined
signal contribution as compared to the ball of the foot and the toes (FSR2–FSR4). Therefore, we decided
to use the HS-based event detection for further parameter extraction. Furthermore, the reference
data of the force plates (cf. Figure11) suggest the conclusion that besides HS and TO further gait
phase parameters such as mid stance can be extracted from the GRF signal. Nevertheless, this is
a challenging task with regard to FSR-based measurements since the signal morphology is often
corrupted by additional motion artifacts of the insole.

The qualitative validation of the GRF measurements demonstrated that the proposed sensor setup
satisfies the requirements of an unobtrusive gait analysis system. Although the signal morphology
differs between the implemented insole and the reference force plate data (cf. Figure 11), it can be
concluded that four FSR sensors located at the proposed landmarks provide sufficient information
for further gait parameter extraction. Similar setups with only FSR sensors integrated also reported
the reliability of this arrangement [27,42]. Since the system makes no claim to an exact calculation of
the CoP lines or even pressure prints for the detection of foot malpositioning, an extension of the FSR
insole is currently not necessary. However, an appropriate calibration routine of the FSR sensors to
map the measured resistance to an effective force or pressure, can improve the FSR-based parameter
extraction. Nevertheless, we proved the basic concept with the presented FSR sensor arrangement
to extract gait parameters. Since the FSR sensors cover the most important points that have ground
contact during stance phase, the summed-up FSR signal can be assumed to majorly reflect the GRF
morphology (cf. Figure 11). Since the detection of HS and TO events is based on the summed-up
FSR signal, no matter which sensor is the main contributor at which time of the gait cycle, it can be
assumed that this also applies to pathological gait patterns such as they may occur in equinus foot.
Within this contribution, we presented a study with healthy young participants without any diagnosed
gait impairments, such that we were not able to prove this hypothesis. A more intensive investigation
of the FSR sensor technology regarding the ability to reflect pathological gait patterns, the dynamic
repeatability and long-term stability for the development of a calibration routine will therefore be part
of the future work.

The number of strides reflect the sum of the detected HS events. The cadence can be calculated
from the number of strides per minute. Table 6 shows that the proposed stride detection algorithm is
able to detect most strides with an overall accuracy of 99.6 ± 0.8%, which is comparable to the recently
published setup of an FSR insole for step counting purposes [27]. Here, the authors conducted a
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trial with indoor and outdoor walking at self-selected (approximately 5.2 km h−1) and maximal speed
(approximately 6.3 km h−1) and achieved an accuracy of 99.5% and 99.6%, respectively. It should
be noted that we intentionally included slow walking speeds 1–4 km h−1 in our study due to the
target application in the monitoring of movement disorders, which are often accompanied by reduced
walking speeds. At very slow walking speeds (1–1.5 km h−1) our proposed system provided worst
results due to the increased amount of movement artifacts during the transitions of swing and stance
phase and the swing phase itself. The increased error in gait parameter extraction at very slow walking
speeds is, therefore, due to incorrect gait segmentation. As can be seen in Figure 12a, the error variance
of the individual stride times most likely increases with decreasing walking speed. Nevertheless,
averaging over a certain period of time can compensate for this effect to a certain extent since deviations
in the stride time determination will have the opposite effect on the subsequent gait cycle (cf. Table 6).
At higher walking speeds of 2–4 km h−1, the system yielded satisfying results (99.9%).

The mean stride time can be either calculated by the reciprocal cadence or the mean over the
temporal distance between two HS events. In this case, we have calculated the stride-to-stride interval
and averaged over the recording period of one minute. In contrast to the direct comparison of the
stride times (cf. Figure 12a), the mean stride time yields a very high correlation with the reference data
featuring an RMSE of approximately 5 ms. An accurate calculation of the mean stride time is of course
directly connected to the accuracy of the stride detection. Therefore, these results correspond to the
formerly discussed performance of the stride detection algorithm.

As can be seen in Figure 11, the summed-up FSR signal highly correlates with the force plate
measurements regarding the falling and rising edges due to the HS and TO events. However,
the determination of the exact time of HS and TO still is a challenging task due to movement artifacts of
the shoe contact pressure during the swing phase. The percentage of the stance phase in relation to the
total stride time varies by approximately 10% at the given walking speeds of 1–4 km h−1 (cf. Table 6).
This change was equally observed in both FSR and reference data. The FSR-based calculation of the
PST resulted in an RMSE of approximately 2.3%, which is acceptable for a wearable gait monitoring
system. A significant difference was found in the standard deviation of the PST calculation, which
corresponds to the assumption that FSR-based HS and TO detection are less accurate compared to
the force plate measurements. Since the FSR-based PST extraction has proven to be reliable, we will
expand the system in the future to include a second insole that is worn in the opposite shoe. This will
provide the possibility to extract additional gait parameters, such as the single and the double support
time, to identify the load response and the pre-swing phase or even to obtain an approximation of the
CoP lines.

The cadence, the mean stride time and the percentage stance phase are of course important
parameters to observe the progression of the locomotor system or superordinated movement disorders,
which initially requires a reliable event detection. Nevertheless, the variability of different gait
parameters, such as the stride time variability, contains valuable information about gait stability [39].
The robust stride detection thus fulfills an important requirement of a long-term monitoring system,
but also an exact temporal determination of the stride event is of high interest. Therefore, the focus
of the future work is to improve the stride-to-stride interval extraction, which not only concerns the
algorithmic approaches but also a robust transmission and an accurate time synchronization. On the
sensor side, future developments include the addition of an IMU on the insole for a more precise
detection of HS and TO by fusing this information with the FSR data. The inclusion of information
from the other IMU sensors at the wrist, chest, and thigh is an important part of the future algorithmic
work to further improve the accuracy of the gait parameter extraction.

5. Conclusions

In this contribution, we presented the recently developed version 3.0 of the IPANEMA BSN
based on an 868 MHz communication interface. We evaluated the transmission performance and the
synchronization protocol with regard to an application in a wearable long-term monitoring system for
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unobtrusive gait analysis. We demonstrated the general functionality of the system within technical
laboratory measurements and during long-term measurements in everyday life activities in an office
environment. We proposed two different kinds of sensing modalities, IMU motion sensors and
FSR-based insoles for GRF measurements, and validated the insoles in a study trial against reference
data obtained in a movement laboratory. Therefore, we presented an algorithm to identify the HS
and TO events in the summed-up FSR signal. We extracted three different clinically relevant gait
parameters, the number of strides, or the cadence, respectively, the mean stride time and the percentage
stance time. The system proved an overall satisfying performance for an application in a long-term
monitoring setup to gain information of clinically relevant parameters in the patient’s everyday life.
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Abstract: A promising but still scarcely explored strategy for the estimation of gait parameters
based on inertial sensors involves the adoption of machine learning techniques. However, existing
approaches are reliable only for specific conditions, inertial measurements unit (IMU) placement
on the body, protocols, or when combined with additional devices. In this paper, we tested an
alternative gait-events estimation approach which is fully data-driven and does not rely on a priori
models or assumptions. High-frequency (512 Hz) data from a commercial inertial unit were recorded
during 500 steps performed by 40 healthy participants. Sensors’ readings were synchronized with a
reference ground reaction force system to determine initial/terminal contacts. Then, we extracted a
set of features from windowed data labeled according to the reference. Two gray-box approaches
were evaluated: (1) classifiers (decision trees) returning the presence of a gait event in each time
window and (2) a classifier discriminating between stance and swing phases. Both outputs were
submitted to a deterministic algorithm correcting spurious clusters of predictions. The stance vs.
swing approach estimated the stride time duration with an average error lower than 20 ms and
confidence bounds between ±50 ms. These figures are suitable to detect clinically meaningful
differences across different populations.

Keywords: gait analysis; spatio-temporal parameters; wearable sensors; decision trees

1. Introduction

Clinical gait analysis is routinely performed by medical operators to assess ambulatory
functional limitations in people with musculoskeletal or cognitive impairments [1,2], as
well as to evaluate an individual’s quality of life, morbidity and/or mortality [3]. Spatio-
temporal gait parameters (i.e., gait speed, stride duration, step length, step width, etc.)
provide an immediate picture of an individual’s gait profile [1]. They can be used to predict
fall risk [4–6] and/or to quantify rehabilitation outcomes [1,2,7–10].

In the last decade, considerable effort was devoted to provide valid and practical
alternatives to overcome the limitations of traditional laboratory testing, namely, expensive
equipment and time-consuming setup [11,12]. A clear research and development trend
appeared towards systems able to capture people’s motion without expensive equipment
and with limited expert knowledge required [13]. In this landscape, inertial measurements
units (IMUs) emerged as a promising family of devices to enable daily-life, affordable,
unobtrusive diagnosis and rehabilitation of gait in a wide plethora of cohorts, ranging from
neurological diseases to stroke patients [12,14–17].

Among the most appealing advantages of IMU-based gait evaluation in daily routine
activities is the opportunity to capture walking adaptations in response to environmental
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changes or perturbations [16], thus, substantially enhancing the ecological validity of
testing [18]. This poses severe challenges to the development of algorithms able to provide
accurate measurements despite the natural gait variability [16].

Estimating spatio-temporal parameters from IMU data is not a trivial task due to
inherent sensors noise and drift problems [11]. This partly explains why these systems
(despite the recent flowering of commercial products [11]) have achieved moderate and
sometimes inconsistent performances to date [17], that in turn limited their widespread
use for pervasive healthcare [19]. Drifts, in particular, are susceptible to produce large devi-
ations in the calculated results when a double-integration-based sensor fusion approach is
adopted [11,20,21]. This approach heavily depends on raw data quality even when an error
state Kalman filter is applied to correct sensors’ data [5,14]. Most studies achieved gait
events detection by sorting peaks, valleys, and zero-crossing in the signals [22,23]. Other
algorithms exploited a combination of continuous wavelet transform to detect initial/final
contacts (heel-strike, toe-off) and the inverted (double) pendulum model to extract spatio-
temporal parameters from sensors’ readings. Examples exist where the sensing device was
placed on the pelvis, typically in correspondence of the L4–L5 vertebrae [24,25] (assumed
to approximate body center of mass location [26]), or alternatively on the foot, exploit-
ing information on the angular velocity of leg swing and size to obtain stride and step
lengths [10]. Solutions were also proposed where the temporal detection of gait cycles was
based on the norm of the angular velocity of the foot relative to an empirical threshold [27].

A promising but still scarcely explored strategy for the estimation of gait parameters is
based on machine learning techniques. In this context, spatio-temporal gait parameters are
predicted using a set of features extracted from the IMU signals [11]. Zhang and collabora-
tors used support vector regression models to estimate fundamental gait parameters from
an IMU-equipped insole [19]. Hannink et al. used deep convolutional neural networks to
map stride-specific IMU data to the resulting stride length, training the model on a publicly
available database of 101 geriatric patients [5]. Stride length was estimated with an error of
0.01 ± 5.37 cm [5]. They did not, however, focus on temporal parameters.

The achieved accuracy claimed by most of the existing researches is in principle
potentially feasible to enable clinical comparisons in terms of temporal parameters [28].
In particular, stride duration was mostly determined with an error (typically measured
against a reference system such as optical motion capture, force platforms or instrumented
walkways) lower than 50–60 ms [11,29]. However, the main weakness of these approaches is
that they are reliable only for particular subjects’ conditions [19], for specific IMU placement
on the body, for few protocols [22], or when combined with additional devices [19]. In this
paper, we tested an alternative gait-events estimation approach based on machine learning
algorithms which is fully data-driven and does not rely on a priori models or assumptions.

Section 2 will describe the experimental design, the equipment involved, the process-
ing steps, and the statistical computations performed. Results will be shown in Section 3
and separately discussed in Section 4, where limitations and possible practical implications
of the study are also reported; Section 5 contains concluding remarks and perspectives.

2. Materials and Methods

2.1. Experimental Design and Participants

This study involved the simultaneous collection of data with a commercial IMU device
and a force platform during walking. Ground reaction force data were used as a reference.
Forty healthy participants (19 women, 21 men) aged between 22 and 55 years voluntarily
took part in the experimental sessions; inclusion criteria were: (i) no diagnosed gait-related
impairments and (ii) ability to walk comfortably at different speeds. All of the subjects
were able to complete the test and coped with the provided instructions. Only anonymized
signals were analyzed and no clinical nor personal information was requested.
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2.2. Experimental Setup

A wearable IMU device (Physilog 5, GaitUp Ltd., Lausanne, Switzerland) was clipped
to the participants’ right shoe in correspondence to the navicular bone (Figure 1). This
IMU is a six-axes stand-alone unit integrating a three-axis accelerometer and a three-axis
gyroscope. Device settings were set to a sampling frequency of 512 Hz, and a dynamic
range of ±16 g for the accelerometer and 2000◦/s for the gyroscope. The unit is sized 47.5
mm × 26.5 mm × 10 mm and weights 36 g. The sensors’ inertial right-handed coordinate
system is oriented as displayed in Figure 1 (it is worth mentioning that GaitUp Ltd. also
provides a commercial gait analysis solution, which has been validated and already used
in several studies as described in [11]. As our goal was not to re-evaluate the GaitUp
algorithms, only the raw data from the IMU development platform were processed in this
study).

Figure 1. GaitUp Physilog size (top) and placement on the foot (bottom). Direction of the local
right-handed reference frame axes is also reported.

A schematic representation of the laboratory setup is depicted in Figure 2. The labo-
ratory was equipped with two 46.5 × 51.8 cm2 AMTI OR6-7 force platforms (Advanced
Mechanical Technology, Inc., Watertown, MA, USA) sampling at 200 Hz, used to collect
ground reaction forces (GRF) data. AMTI OR6-7 are strain gages-based force platforms
designed for biomechanics applications. In the adopted configuration (10-V bridges excita-
tion), full scale output in the medial and anteroposterior directions was 4450 N, while in
the vertical direction it was 8900 N.

To provide a visual representation of the foot position during gait, the 3D position
of four passive reflective markers was recorded with an optoelectronic motion capture
system (SMART DX400, BTS Bioengineering, Milano, Italy) with a sampling frequency of
100 Hz. Markers were placed in correspondence to the lateral aspect of the foot at the fifth
metatarsal head, on the heel, on the lateral malleolus and on the knee in correspondence to
the lateral femoral epicondyle. Optical and ground reaction forces data are automatically
synchronized. Global laboratory reference frame was oriented with the x axis horizontal
and directed along the walking direction, the y axis pointing upwards, and the z axis
mediolateral and pointing to the participant’s right (Figure 2).
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Figure 2. Experimental setup—tests were conducted on the middle laboratory lane with force platform embedded on the
floor. Motion capture cameras are fixed on the wall in a standard gait analysis configuration.

2.3. Procedures

After starting the recording of both motion capture and IMU data, subjects were asked
to hit a force platform three times with their right foot. This enabled to synchronize the
two measurement systems (motion capture system and IMU) [30], as explained in the
following paragraph.

Subsequently, all subjects performed a sequence of short straight-line level walking
tests, from three to ten steps each, at self-selected comfortable speed, which were measured
by means of the optical system.

2.4. Data Processing and Features Engineering

Data were processed by means of custom Matlab (v. 2019b, The Mathworks Inc.,
Natick, MA, USA) routines. GRF and inertial readings were time-aligned prior to each
recording (maximum 30 s each) by determining the delay corresponding to the peak of
the cross-correlation function among the vertical force and vertical acceleration signals
at the beginning of the recording (Figure 3). The maximum synchronization error when
dealing with cross correlation algorithms is typically lower than 1 sampling period [31]. In
our case this is 10 ms, thus entailing a standard uncertainty lower than 3 ms. This value is
trivial in comparison with the intrinsic variability of the observed phenomenon, as detailed
later. Reference time events were obtained from foot–ground contact information, setting a
binary GRF threshold of 10 N [32]. Stride time was computed as the time interval between
two consecutive initial contacts of the right foot.

The classification of gait phases and events followed a gray-box approach. First,
sensor readings related to each step were trimmed in order to contain two consecutive heel
strikes. The data stream was subsequently segmented in 64-sample (0.125 s) windows. A
fixed-width, 64-sample moving window on the 6 IMU channels (acceleration and angular
velocity) with step equal to 1 sample was used to compute 48 statistical features in the time
and frequency domains, similarly to what previously done in [33]. In the time domain,
the root mean square, variance, kurtosis, skewness, and correlation between each pair of
accelerometer and gyroscope (angular velocity) axes were computed. In the frequency
domain, the dominant frequency and the power at the dominant frequency were obtained
(Table 1). Data processing flow is depicted in Figure 4.
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Figure 3. Sample vertical (z-axis) raw accelerometer readings during a test. The first three spikes
correspond to the synchronization signal and the following data refer to gait events.

Table 1. Statistical and frequency-domain features.

Signal Time Domain Frequency Domain

Acceleration (3 channels) Root mean squared Dominant frequency
Variance Power at dominant frequency
Kurtosis
Skewness
Linear Correlation (x-y, x-z,
y-z)

Angular velocity (3 channels) Root mean squared Dominant frequency
Variance Power at dominant frequency
Kurtosis
Skewness
Linear Correlation (x-y, x-z,
y-z)

2.5. Gait Events and Phases Classification

Three binary classifiers, supporting two alternative approaches, were implemented
to identify:

• 1a: windows containing a heel strike vs. any other event.
• 1b: windows containing a toe off vs. any other event.
• 2: windows corresponding to stance vs. swing phases.

The results of gait event classifiers (1a) and (1b) were subsequently combined. Each
window was labelled based on the reference output: in the case of gait events classifiers,
label “1” was attributed to the windows containing a heel strike (1a) or a toe-off (1b), and
label “0” elsewhere. In the case of classifier 2, label “0” was assigned to the swing phase
and label “1” to the stance (ground contact) phase, evaluated at the time of each window’s
first sample.

The whole sample of labelled features was split into a training (70% strides) and a test
(30% strides) set. Of note, as the sequence of events is crucial to the problem of classifying
gait phases, we randomly allocated strides (collection of consecutive observations), and no
single observations.
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Figure 4. Data processing flow: sensors’ readings (in the top panel, sample acceleration signal) were windowed (dashed
blue boxes represent the window moving across the signal); subsequently a set of features were obtained for each window,
which was labelled according to the reference ground reaction force output. The whole set of collected strides (each one
containing a collection of features) were randomly split into a training and a test set. HS: heel-strike, TO: toe-off.

The Matlab Machine Learning Toolbox identified decision trees as the most accurate
binary classifiers relative to the concurrent application. Decision trees also allow for good
classification speed and for features importance evaluation [33]. For these reasons, it was
decided to base the following analysis on this classifier method.

The output stream returned by each classification approach was subsequently submit-
ted to a “correction algorithm” aimed at detecting and removing isolated short clusters
embedded in larger areas belonging to the opposed class. A cluster was considered “iso-
lated” if it was shorter than half a window (i.e., 32 samples or 0.063 s), preceded and
followed by a differently classified array of larger size (Figure 5). The correction algorithm
works sequentially and “prefers” the current class. That is, if we are within a “stance”
phase, short clusters labelled as “swing” are reversed into “stance”. The transitions be-
tween classes on the obtained output stream identified the correspondent gait event: for
instance, the transition between the stance and the swing phase denoted a toe-off event.
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Figure 5. Correction algorithm: isolated short (counter < threshold) clusters were corrected according to the surroundings,
as schematically reported in the bottom diagram.

2.6. Statistical Analysis

The error’s bias and random component in the identification of heel-strikes, toe-offs,
stride, stance, and swing times were determined on the test set. To do so, the mean and
standard deviation of the difference between the reference and the estimated value were
computed, as well as the corresponding root-mean-square (RMS) error and 95% confidence
intervals (95%CI). The standard error of the mean was computed for the whole test set (U)
and for 10 strides (U10), the latter considering a common number of repetitions per subject
in clinical gait applications [1].

Paired Students’ t-tests were performed between estimated and reference stride, stance
and swing times, and associated with the corresponding Cohen’s d effect size (ES): values
of d ≤ 0.5, 0.5 < d ≤ 0.8, and d > 0.8 were considered low, moderate, and large effects,
respectively. The coefficient of determination (R2) was obtained between estimated and
reference stride time, and between the related error and the corresponding gait speed. A
statistical significance threshold of 0.05 was implemented throughout.

3. Results

Overall, participants performed 10–15 strides each, for a total of 500 recorded strides.
Of them, 75 were discarded due to inconsistent or incomplete data. Therefore, the training
set included 298 strides and the test set 127 strides. The global number of collected
observations (64-sample windows) was 311,802.

Figure 6 and Table 2 report the output of the three binary classifiers: the gait events
classifiers (1a and 1b) returned an accuracy of 91–93%, while the stance vs. swing classifier
(2) reached 95.6% before being submitted to the correction algorithm. Some features were
remarkably more predictive of the correct class. In particular, vertical acceleration played a
substantial role in all the models, while angular velocity was less important to discriminate
between stance and swing phases.
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Figure 6. Classification performance of the three tested approaches. Left: heel-strike (1a) and toe-off
(1b) events detection; Right: stance vs. swing moving windows classification (2).

Table 2. Classifiers (decision trees) technical figures. The reported accuracy refers to the classification outcome, not to the final gait
event estimation result. The outputs of Methods 1a and 1b were subsequently combined.

Item Heel-Strike vs. Other (1a) Toe-Off vs. Other (1b)
Stance vs. Swing

(2)

Prediction accuracy 93.3% 91.4% 95.6%
Observations 218,933 218,933 218,933
Misclassification cost 14,713 18,754 9428
Prediction speed 7 × 106 observations/s 7 × 106 observations/s 6.9 × 106 observations/s
Training time 52.145 s 18.137 s 49.694 s
Size of training data 87 MB 85 MB 87 MB
Validation Hold-out Hold-out Hold-out

Features whose importance
was greater than 5%

Mediolateral mean ω

Vertical acc. RMS

Vertical acc. Mean
AP ω mean
AP ω var

Vertical acc. RMS
AP acc. Mean

Acc.: acceleration, AP: anteroposterior, ω: angular velocity, RMS: root-mean-square; var: variance.

Globally, the stance vs. swing approach returned lower errors in determining all the
considered parameters (Table 3). In particular, events identification returned an average
error between −11 and 5 ms (95%CI, heel-strike) and between −13 and 50 ms (toe-off).
Conversely, the approach involving methods 1a and 1b returned larger uncertainty values,
reaching 35 ms (heel-strike) and 74 ms (toe-off) when considered over 10 strides. Gait
phases estimation were therefore significantly different with small-to-medium effect sizes
for the approach 1a–1b, while the stance vs. swing method showed no statistical differences
for stance and swing phases duration (p = 0.098 and p = 0.782, low effect); the same approach
underestimated the stride time by (p = 0.004, 95%CI between −37 and −7 ms) with a low
effect size. However, as displayed in Figure 7a, the coefficients of determination were 0.796
and 0.808 for the gait-events classifiers (1a and 1b) and stance vs. swing (2) approaches,
respectively (p < 0.001 for both).
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Table 3. Descriptive statistics (in ms) of the heel-strike and toe-off identification, as well as swing/stance/stride time estimation, with
respect to the reference system (force platform).

Method Mean SD RMSE U U10 95%CI p ES

Heel-strike identification
Heel-strike and toe-off (1a, 1b) −20 111 113 7 35 −33, −6 - -
Stance vs. swing (2) −3 59 59 4 19 −11, 5 - -
Toe-off identification
Heel-strike and toe-off (1a, 1b) 95 233 251 21 74 54, 136 - -
Stance vs. swing (2) 19 165 166 15 52 −13, 50 - -
Stance phase estimation

Heel-strike and toe-off (1a, 1b) −113 214 241 19 68 −150,
−75 <0.001 0.514

Stance vs. swing (2) −26 168 169 16 53 −50, 5 0.098 0.158
Swing phase estimation
Heel-strike and toe-off (1a, 1b) 39 221 224 20 70 0, 78 0.048 0.205
Stance vs. swing (2) 5 179 178 17 56 −29, 38 0.782 0.034
Stride time
Heel-strike and toe-off (1a, 1b) −74 140 158 12 44 −98, −49 <0.001 0.258
Stance vs. swing (2) −22 79 81 7 25 −36, −7 0.004 0.122

ES: Cohen’s d effect size; RMSE: root mean square error; U: standard error of the mean; U10: standard error of the mean on 10 strides; p:
paired t-tests.

 

(a) (b) 

Figure 7. Regression plots comparing estimated and reference stride time (a) and the measurement error as a function of
gait speed (b). Regression lines (dashed) and 95% confidence bounds (solid lines) were reported.

In the best case (stance vs. swing approach), we found a single totally erroneous
heel-strike (2% of the test set, difference from the reference of about 0.7 s) and seven toe-off
events whose error was higher than 0.2 s (6% of the test set). There was not a significant
correlation between the estimation error and the walking speed (Figure 7b), being R2 equal
to 0.004 (p = 0.482, approach 1a and 1b) and 0.021 (p = 0.135, approach 2).

4. Discussion

By exploiting uncorrected, high-frequency acceleration and angular velocity data
readings combined with a grey-box machine-learning approach, in this paper, we showed
that it was possible to estimate gait events (heel-strikes and toe-off) with an average error
lower than 20 ms and confidence bounds between ±50 ms. This led to determine stride
time with a root-mean-squared error of about 80 ms.
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4.1. A Data-Driven Approach

The discrimination of stance vs. swing phases (approach 2) outperformed the first
approach (1a and 1b), intended to detect time windows where the initial/final contacts
occur. This was partly expected, as gait events per se are distinct instants in time: a moving
window, even if relatively short (64 samples at 512 Hz equals 125 ms) turned out to be
prone to systematically anticipate (heel-strike, negative bounds of 95% CI) or delay (toe-off,
positive bounds of 95%CI) the events detection. This inevitably led to significant systematic
differences between the estimated temporal gait parameters (low-to-moderate effect sizes)
and the reference system (force platform).

Conversely, the stance vs. swing approach almost halved the measurement error.
Stride time resulted still significantly lower than that detected by the reference system,
but with a low effect size and a reduced uncertainty (U10 = 25 ms). The RMSE of about
80 ms were slightly higher than a more sophisticated experimental setup based on an
instrumented insole [19]. Confidence interval was limited to 29 ms and between the limits
of agreement obtained by Yeo and colleagues [29] (60–100 ms), who also reported a very
similar error of 20 ms. The correlation coefficient with the reference measure was r =
0.89, substantially in line with [11] and slightly lower than in Zhou and collaborators [16]
(r = 0.95). Swing and stance time confidence intervals (−29, 38 ms and −50, 5 ms) were
comparable with those provided by Godfrey and collaborators, who obtained (−35, 49
ms and −39, 49 ms) with a pelvis-mounted IMU and event detection based on Gaussian
continuous wavelet transform [25].

Notably, these outcomes were purely data-driven. In other words, they were obtained
without a priori assumptions, neither concerning subjects’ anthropometrics or speed nor
regarding raw signal conditioning (i.e., filtering, sensors’ bias compensation), which was
deliberately avoided to show the potential of the approach. Not relying on any determin-
istic model, the algorithms provided are potentially able to capture unconventional gait
patterns, for instance with long stance phases and shorter steps than normal, as in the case
of Parkinson’s disease [14,17,28].

Discrepancies from previous research performances should also be read in the light of
the numerosity of the experimental cohort. Instead of gathering a large number of strides
from a relatively reduced sample of participants, we decided to extend the survey to a
wide (n = 40) range of subjects, higher than those observed in similar studies (e.g., five
subjects in [11], 14 subjects in [19], and 30 subjects in [29]). This was done to enhance the
generalizability of results, despite it could have introduced interindividual variability and
reduced the estimation accuracy.

Besides their limited computational cost, an advantage of the regression trees used
as the main classification algorithm is the opportunity to easily examine features’ relative
contribution. Vertical acceleration [23] and anteroposterior angular velocity were the most
revealing among a reduced set of discriminant statistical features. In that, the grade of
variability of a signal throughout a time window (accounted for by the signal’s variance)
was probably key to capture quick variations due to initial contact and/or toe-off. Ad-
ditionally, limiting the number of relevant features adds to the feasibility of a real-time
implementation. This reduces the computational burden often associated with end-to-end
complex machine learning models (as deep convolutional neural networks [19]) or double
integration approach (exploiting zero-velocity update technique), which requires sensors
fusion algorithms [11]. Lastly, the proposed correction algorithm is simply enabling a sort
of data cleaning prior to the determination of gait events, and its execution requires very
simple and inexpensive operations.

4.2. Effect of Measurement Uncertainty in the Real Instrument Usage Context

Normative data in healthy adults report an interindividual variability (standard
deviation) of stride time of about 80–120 ms [34]. This parameter tends to increase with
age [34–36] and when a perturbation (physical, pathological, or cognitive as dual-task)
arises, reaching values up to 180 ms [17,37]. Other investigations on orthopaedic patients
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reported a variability of 90 ms in the stride times measured in a single participant at
self-selected speed across over ten gait cycles [8]. In this context, the obtained U10 value
of 25 ms appears tolerable to properly characterize temporal gait parameters, even when
the goal is detecting mean differences across populations: as a reference, Beauchet et al.
reported between-sexes differences in stride time of about 50 ms [34], while Hollmann and
collaborators denoted an increase in stride time higher than 60 ms between 70–74 years
and 85+ years old women [35]. Significant differences of about 20–30 ms were also found
between healthy controls and Down Syndrome patients at lower walking speed [38].

4.3. Limitations

The purpose of this study was to show the feasibility of classifying gait phases and
determining the related events during walking in healthy adults. While we claimed
that this method could be easily extended to other forms of locomotion like running or
hopping, the proposed approach could not necessarily directly apply to patients with
locomotor impairments. The collection of new training data in these conditions would be
probably required. Likewise, in order to correctly capture the specific walking variability
of pathological or pediatric populations it is advised that additional training data would
be collected and combined. The real-time implementation of the algorithm was beyond the
scope of this paper, and will be addressed in upcoming research.

A second limitation is that the original dataset was randomly split into a training
and test set, without explicitly separate subjects. This was done to ensure the highest
generalizability of the training set, but it also means that in principle, steps from the same
participants could have be assigned to both splits.

The sampling frequency of the reference laboratory equipment (force platforms)
was 200 Hz. This brought in an inherent uncertainty of 5 ms/2·√3 = 1.4 ms. In this
sense, referring to instrumented walkways (e.g., Microgate’s Optogait [39]) the higher
time resolution (up to 1 ms) would lead to a minor reduction in the overall measurement
uncertainty. However, previous investigations relied on optical systems with a sampling
frequency of 100 Hz to perform the same comparison [16]. Moreover, as previously
discussed, differences in gait temporal parameters of this magnitude (<10 ms) are not
clinically meaningful.

Lastly, we did not face the issue of multiple units’ synchronization, that, in principle,
could be an additional source of uncertainty [40].

5. Conclusions

IMU-based solutions for the assessment of the gait function in real-world settings
are continuously improved to provide personalized and pervasive healthcare [16]. In
this study, we proposed a novel data-driven approach for the determination of tempo-
ral gait parameters based on inertial sensors and simple machine learning algorithms.
Measurement errors were comparable to existing IMU-based methods, still, the proposed
approach did not rely on any particular raw data processing constraint, and it was robust to
inter-subject variability, thus, making it unnecessary to collect patient- or condition-specific
training data [19]. Further, the proposed approach opens to further advancements on
this path, which offers reduced computational burden and the potential to detect gait
phases even when unconventional ambulatory modes are evaluated outside from restricted
laboratory settings.

This study also reinforces the use of a movement analysis laboratory as a required
reference when testing the measurement uncertainty of new devices. In the current market
situation, in which we are witnessing the rapid spread of different systems for measuring a
wealth of parameters related to human movement, it is necessary to adopt methods aimed
at rigorously verifying the quality of the data produced.
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Abstract: Walking remains a highly recommended form of exercise for the management of obesity.
Thus, comfortable and adequate shoes represent, together with the prescription of a safe adapted
physical activity, an important means to achieve the recommended physical activity target volume.
However, the literature on shoes specific for obese individuals is inadequate. The aim of the present
study was to compare the performance of shoes specifically designed for subjects with obesity with
everyday sneakers during instrumented 6-min walking test and outdoor 30-min ambulation in
a group of subjects with obesity using a single wearable device. Twenty-three obese individuals
(mean age 58.96 years) were recruited and classified into two groups: deconditioned (n = 13) and
non-deconditioned patients (n = 10). Each participant was evaluated with his/her daily sneakers and
the day after with shoes specifically designed for people with obesity by means of a questionnaire
related to the comfort related to each model of shoes and instrumentally during the i6MWT and
an outdoor walking test. The results showed that the specifically designed shoes displayed the
higher score as for comfort, in particular in the deconditioned group. During the i6MWT, the distance
walked, and step length significantly increased in the deconditioned group when specifically designed
shoes were worn; no significant changes were observed in the non-deconditioned individuals. The
deconditioned group displayed longer step length during the outdoor 30-min ambulation test. In
the non-deconditioned group, the use of specific shoes correlated to better performance in terms
of gait speed and cadence. These data, although preliminary, seem to support the hypothesis that
shoes specifically conceived and designed for counteracting some of the known functional limitations
in subjects with obesity allow for a smoother, more stable and possibly less fatiguing gait schema
over time.

Keywords: obesity; walking; 6-min walking test; wearable system; inertial sensor; rehabilitation

1. Introduction

Footwear conditions influence gait variables. This is of particular importance in
subjects experiencing difficulties in deambulation and balance, such as with frail, elderly,
and obese subjects. For the latter, finding appropriate footwear that meet comfort and
safety expectations is sometimes difficult. Their options rely often on sports footwear
capable of accommodating a wider foot, or on orthopaedic shoes for specific foot pain
conditions, but choice in-between for everyday life shoes appears limited. Gait in subjects
with obesity has been studied with 3D motion capture and it is known that subjects
with obesity walk slower than lean individuals, with reduced step length and frequency,
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wider stance, reduced hip and knee flexion and increased ankle plantarflexion [1–4]. Joint
loading is increased during walking and obesity elevates the risk for musculoskeletal
disorders such as osteoarthritis, low back pain, soft tissue injury, tendinitis and plantar
fasciitis [5,6]. Musculoskeletal injuries represent a frequent cause of dropping out of
physical activity programs. However, despite being a critical source of biomechanical
loading, walking remains a highly recommended form of exercise for the management of
obesity. Comfortable and adequate shoes represent, together with the prescription of a
safe adapted physical activity, an important means to achieve the recommended physical
activity target volume.

Literature on shoes specific for obese individuals is limited. Peduzzi de Castro et al. [7]
tested the effects of two pressure relief insoles developed for people carrying an extra-
weight, like backpackers and subjects with obesity, based on the ground reaction forces and
plantar pressure peaks during gait. They demonstrated that insoles showed positive effects
for either the plantar pressure distribution or the ground reaction forces parameters. Russel
et al. [8] showed by means of gait analysis positive effects of a prophylactic wedged insole
for reducing the magnitude of the load on the knee’s medial compartment in obese women
who are at risk for knee osteoarthritis development. Griffon et al. [9] demonstrated that the
orthosis intervention at foot level significantly improved the ambulatory performances of
obese individuals during the 6-min walking test (6MWT), reduced the perception of fatigue
and the postural changes occurring after the 6MWT.

Despite the widespread use of 6MWT in clinical studies, the mere output of the test is
the distance walked. Additional subject-specific factors such as stride length, velocity or
body posture, granularity of overall gait patterns or body segment kinematics, and gait
parameters are not measured during the test. In spite of the increasing body of evidence for
the use of wearable sensors during gait, their use during the 6MWT (i6MWT: instrumented
6MWT) is not common [10]. i6MWT provides a comprehensive assessment of gait without
adding further burden to the patient and represents an alternative to traditional gait
analysis and postural control assessment. Those, in fact, require expensive equipment,
are time-consuming and provide detailed information only for a very limited number of
consecutive gait cycles [11]. Considering the hundreds of steps taken during the 6MWT,
the information that can be extracted from this clinical test is potentially very valuable.

Thus, the aim of the present study was to compare the performance of shoes specif-
ically designed for subjects with obesity with everyday sneakers during i6MWT and an
outdoor 30-min ambulation in a group of subjects with obesity using an existing single
wearable device.

2. Materials and Methods

2.1. Participants

A sample of 23 obese individuals (OG, 6 males, 17 females, mean age 58.96 years,
BMI > 30 kg/m2) admitted for a comprehensive multidisciplinary rehabilitation program
at the Istituto Auxologico Italiano, Piancavallo (VB, Italy), were recruited for the study on a
voluntary basis. At the time of the experimental tests, all of them were free from any acute
musculoskeletal, neuromuscular, psychological and/or cardiopulmonary conditions able
to significantly affect their walking abilities and postural control.

According to the value of 6MWt distance, participants were classified into two groups:
deconditioned (n = 13) and non-deconditioned patients (n = 10). The patient is classified
as deconditioned if the 6MWT walked distance is lower than 400 m; in this case patient is
considered sarcopenic or potentially frail [12]. If the distance walked during 6MWT is over
400 m, the patient is classified as non-deconditioned. Their anthropometric features are
reported in Table 1.
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Table 1. Participant characteristics.

Deconditioned Non-Deconditioned p-Value

(n = 13) (n = 10)

Gender, n (%)

Male 3 (23.1%) 4 (40%)
Age (years) 63.78 ± 8.67 58.55 ± 8.61 0.989
Height (m) 1.59 ± 0.07 1.64 ± 0.07 0.092

Body mass Index
(kg/m2) 41.34 ± 3.69 39.82 ± 3.17 0.118

Each participant was evaluated by means of a questionnaire related to the comfort
related to each model of shoes and instrumentally during the i6MWT and an outdoor
walking test. The tests were repeated in different sessions: in the first session, with his/her
daily sneakers and in the second session with shoes specifically designed for people with
obesity. The second session was performed the day after the first one, asking the individuals
to wear the specifically designed shoes during their normal daily activities.

The questionnaire related to the comfort was a 7 items self-assessment questionnaire:

• Rearfoot pain
• Midfoot pain
• Forefoot pain
• Comfort at rest
• Comfort during walking
• Stability
• Safety

The score of each item is from 0 (absence) and 3 (presence).
All participants were required to sign a written informed consent form, in which the

details of the experimental tests were reported. The study was carried out in compliance
with the World Medical Association Declaration of Helsinki and its later amendments.

2.2. Data Collection and Processing

For the i6MWT and the outdoor 30-min outdoor ambulation test, a single miniaturized
inertial sensor (G-Sensor®, BTS Bioengineering, Milan, Italy), previously validated for
investigations on gait in unaffected individuals and people with several pathological
conditions [13–17] was placed on participants’ lower backs, approximately at the L4-L5
vertebrae position. The sensor, which is sized 70 mm × 40 mm × 18 mm and weighs 37 g,
was built with a triaxial accelerometer 16 bit/axes with multiple sensitivity (±2, ±4, ±8,
±16 g), a triaxial magnetometer 13 bit (±1200 mT) and a triaxial gyroscope 16 bit/axes
with multiple sensitivity (±250, ±500, ±1000, ±2000 ◦/s).

The i6MWT was performed indoors, along a long, flat, undisturbed 30-m hospital
corridor with the length marked every 5 m; turnaround points were marked with a cone.
Patients were instructed to walk as fast as they could. Encouragement was given every
minute during the test until subject exhaustion using only standardized phrases as specified
in the “ATS Statement: Guidelines for the Six-minute Walk Test” [18]. Chest pain, severe
dyspnoea, physical exhaustion, muscle cramps, sudden gait instability or other signs of
severe distress were additional criteria for stopping the test [18].

After a 15-min recovery, participants performed a supervised outdoor 30-min ambula-
tion test in the hospital park. Participants were asked to refrain from speaking throughout
the test.

In each test, acceleration data, acquired at 100 Hz frequency, were transmitted via
Bluetooth to a PC and processed using dedicated software (BTS® G-Studio, BTS Bioengi-
neering S.p.A.; ver. 3.2.20) which performs data acquisition, elaboration, reporting and
storage. The software used is BTS G-Studio has a specific protocol capable of analysing
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the i6MWT and gait test, which automatically generates a report for each trial. The first 5 s
of acquisition (during which the subject was asked to stand still) were used to verify the
orientation of the sensor and then use such information to correct the acceleration vectors
data during the acquired trials.

Based on the raw acceleration data, the main spatio-temporal parameters were cal-
culated following the approaches described by literature for each stride [15,19,20] in each
session. As for the i6MWT the values of walked distance, gait speed, step length and
cadence were computed during the entire test; as for the outdoor 30-min gait test, the
values of gait speed, step length and cadence were computed during the early (1st minute)
and last (30th minute) segment of the test.

2.3. Obesity-Specific Shoes

The shoes specifically designed for obese individuals (Figure 1) were developed in
order to decrease the foot hyper-pronation with valgus of the knees, to compensate the
lack of the natural shock absorber given by the arch of the foot (collapsed due to excess
weight) and by the heel (the tissues have an excess of fat) and to accommodate the foot
extra-volume (usually, subjects with obesity wear 1–2 size larger shoes).

 
(a) 

 
(b) 

Figure 1. Image related to the obesity-specific shoes (a) and description of key elements of obesity-
specific shoes with the role of each part (b).

Their sole is composed of rubber tread with high resistance to abrasion, an EVA
midsole (light material with shock absorber properties able to cushion the impact between
foot and ground) and an insert in composite fibers with high resistance and elasticity. In
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the medial and lateral part of the heel, the sole insert has 2 piers of 16 mm that prevent
excessive pronation and supination and at the same time the collapsing of the sole. This
elastic insert in composite fibers also has the ability to deform itself during the stance phase,
accumulating energy, and to release it during the push off phase. The sole is displayed in
detail in Figure 2.

 
Figure 2. Details of the sole of the obesity-specific shoes used in the study.

These shoes are able to provide propulsive boost, support and stabilization to the foot.

2.4. Statistical Analysis

All the previously defined parameters were computed for each participant in the two
sessions and used for analysis.

The Kolmogorov–Smirnov test was necessary to verify if the parameters were nor-
mally distributed. Because assumptions of normality were fulfilled, media and standard
deviations relating to all indices were calculated for the obese groups (deconditioned and
non-deconditioned group) of participants.

A repeated measure ANOVA was performed on the data of i6MWT with the within-
subject factor of shoes (daily sneakers vs. specific shoes) and the between-subject factor
of group (deconditioned vs. non-deconditioned). A repeated measure ANOVA was
performed on the data of the outdoor 30-min ambulation test with the within-subject
factor of shoes (daily sneakers vs. specific shoes) and the between-subject factor of time
(1st minute vs. 30th minute). Post-hoc tests were performed where appropriate by apply-
ing Fisher’s correction for the significance threshold. A significance level of 0.05 was imple-
mented throughout. The statistical analysis was performed using Minitab® (version 18.1,
State College, PA, USA).

3. Results

Out of the total sample of 23 subjects, 7 were men and 16 were women. The age
and anthropometric characteristics of the two study groups are shown in Table 1; their
characteristics were not significantly different between groups.

In Table 2 the median and range values of the score for each item of the questionnaire
related to comfort for the two groups are reported for the two sessions (daily sneakers vs.
specific shoes). It is possible to observe that in the deconditioned group no differences
appeared in terms of pain between the two sessions (daily sneakers vs. specific shoes),
while as for the other items (comfort stability and safety) the specific shoes seemed to show
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the higher score. In the non-deconditioned group only, stability and safety appeared to
have the higher score in the session when the specific shoes were worn.

Table 2. Median (minimum and maximum) values of the score for the questionnaire related to
comfort for the two groups are reported for the two sessions (daily sneakers vs. specific shoes).
* = p < 0.05, statistically significant in the post hoc comparison daily sneakers vs. specific-obesity shoes.

Deconditioned Non-Deconditioned

Daily Sneakers Specific Shoes Daily Sneakers Specific Shoes

Rearfoot pain 0 (0–3) 0 (0–2) 0 (0–1) 0 (0–1)
Midfoot pain 0 (0–3) 0 (0–3) 0 (0–1) 0 (0–1)
Forefoot pain 0 (0–3) 0 (0–1) 0 (0–1) 0 (0–1)

Comfort at rest 2 (1–3) * 3 (2–3) 2 (0–3) 3 (2–3)
Comfort during

walking 2.5 (0–3) * 3 (2–3) 3 (0–3) 3 (2–3)

Stability 2 (0–3) * 3 (2–3) 2 (0–3) 3 (3–3) *
Safety 2 (0–3) * 3 (2–3) 2 (0–3) 3 (2–3) *

In Table 3 the mean and the standard deviations of i6MWT parameters for the entire
test of the two groups are reported for the two sessions (daily sneakers vs. specific shoes).

Table 3. Mean and standard deviation of i6MWT parameters of the two groups are reported for the
two sessions (daily sneakers vs. specific shoes). * = p < 0.05, statistically significant in the post hoc
comparison daily sneakers vs. specific-obesity shoes; + = p < 0.05, statistically significant in the post
hoc comparison deconditioned vs. non-deconditioned group.

Deconditioned Non-Deconditioned

Daily Sneakers Specific Shoes Daily Sneakers Specific Shoes

Walked distance (m) 332.15 (125.82) + 358.32 (122.04) *+ 539.14 (59.73) 533.53 (62.36)
Gait speed (m/s) 1.08 (0.28) + 1.12 (0.28) + 1.62 (0.18) 1.61 (0.19)
Step length (m) 0.58 (0.11) + 0.61 (0.11) *+ 0.78 (0.09) 0.78 (0.08)

Cadence (step/min) 109.69 (17.53) + 115.91 (12.82) + 124.03 (5.69) 122.64 (6.69)

Walked distance (Figure 3a): The main effect of Group [F(1, 38) = 38.84; p < 0.001; partial
η2 = 0.5054] was significant, with lower value for the deconditioned patients and also the
main effect of Shoes was significant [F(1, 38) = 0.11; p = 0.039; partial η2 = 0.1030], with
lower value with the personal shoes; the Group × Shoes interaction was confirmed as
significant [F(1, 38) = 1.19; p = 0.032; partial η2 = 0.1070].

  
(a)  (b)  

Figure 3. Mean and standard deviation of walked distance (a) and step length (b) during the i6MWT
of the two groups are reported for the two sessions (daily sneakers vs. specific shoes). * = p < 0.05, sta-
tistically significant in the post hoc comparison daily sneakers vs. specific-obesity shoes; + = p < 0.05,
statistically significant in the post hoc comparison deconditioned vs. non-deconditioned group.
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Gait speed: The main effect of Group [F(1, 38) = 46.60; p < 0.001; partial η2 = 0.5508]
was significant, with lower value for the deconditioned patients, while the main effect of
Shoes was not significant [F(1, 38) = 0.05; p = 0.821; partial η2 = 0.0014]; the Group × Shoes
interaction revealed to be not significant [F(1, 38) = 0.09; p = 0.770; partial η2 = 0.0023].

Step length (Figure 3b): The main effect of Group [F(1, 38) = 39.66; p < 0.001; partial
η2 = 0.5107] was significant, with lower value for the deconditioned patients and also the
main effect of Shoes was significant [F(1, 38) = 0.03; p = 0.043; partial η2 = 0.1034], with
lower value with the personal shoes; the Group × Shoes interaction was confirmed as
significant [F(1, 38) = 1.09; p = 0.041; partial η2 = 0.1008].

Cadence: The main effect of Group [F(1, 38) = 8.20; p = 0.007; partial η2 = 0.1775] was
significant, with lower value for the deconditioned patients, while the main effect of Shoes
was not significant [F(1, 38) = 0.44; p = 0.513; partial η2 = 0.0114]; the Group × Shoes
interaction revealed to be not significant [F(1, 38) = 1.08; p = 0.306; partial η2 = 0.0276].

Values of parameter in the 1st and 6th segment of 6MWT, where no statistical results
were obtained, are not reported.

In Tables 4 and 5 the mean and the standard deviations of the parameters during the
outdoor 30-min gait test were reported during the early (1st minute) and last (30th minute)
segment of the test during the two sessions (daily sneakers vs. specific shoes) for the
deconditioned (Table 3) and for the non-deconditioned group (Table 4).

Table 4. Mean and standard deviation of parameters during the outdoor 30-min gait test for the
deconditioned group during the early (1st minute) and last (30th minute) segment of the test during
the two sessions (daily sneakers vs. specific shoes). * = p < 0.05, statistically significant in the post
hoc comparison daily sneakers vs. specific shoes; § = p < 0.05, statistically significant in the post hoc
comparison 1st minute vs. 30th minute.

Deconditioned

Daily Sneakers Specific Shoes

1st Minute 30th Minute 1st Minute 30th Minute

Gait speed (m/s) 0.92 (0.28) 0.90 (0.18) 0.96 (0.28) 0.99 (0.32)
Step length (m) 0.68 (0.61) 0.60 (0.08) §* 0.67 (0.08) 0.68 (0.07)

Cadence (step/min) 87.04 (31.10) 90.96 (14.09) 89.40 (26.91) 93.52 (30.75)

Table 5. Mean and standard deviation of parameters during the outdoor 30-min gait test for the
non-deconditioned group during the early (1st minute) and last (30th minute) segment of the test
during the two sessions (daily sneakers vs. specific-obesity shoes). * = p < 0.05, statistically significant
in the post hoc comparison daily sneakers vs. specific-obesity shoes.

Non-Deconditioned

Daily Sneakers Specific Shoes

1st Minute 30th Minute 1st Minute 30th Minute

Gait speed (m/s) 1.13 (0.36) * 1.14 (0.22) * 1.28 (0.28) 1.23 (0.32)
Step length (m) 0.75 (0.10) 0.76 (0.10) 0.76 (0.25) 0.76 (0.25)

Cadence (step/min) 92.63 (27.38) * 95.85 (16.78) * 104.98 (24.76) 99.91 (19.91)

Here, the results for the deconditioned group are reported (Table 4):
Gait speed: The main effects of shoes [F(1, 48) = 0.07; p = 0.798; partial η2 = 0.0014]

was not significant, the main effect of Time [F(1, 48) = 6.15; p= 0.017; partial η2 = 0.1135]
was significant; the Time × Shoes interaction revealed to be not significant [F(1, 48) = 1.06;
p = 0.309; partial η2 = 0.0216]

Step length (Figure 4): The main effect of shoes [F(1, 48) = 0.27; p = 0.043; partial
η2 = 0.1056] was significant, with lower value with the daily sneakers, the main effect
of Time was significant [F(1, 48) = 0.15; p = 0.046; partial η2 = 0.1032], with lower val-
ues as for the 30th minute; the Group × Shoes interaction was confirmed as significant
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[F(1, 48) = 0.39; p = 0.041; partial η2 = 0.1081], with significant difference in the comparison
between the 1st and the 30th minute with the daily sneaker and between the daily sneaker
and the specific-obesity shoes at the 30th minute.

 

Figure 4. Mean and standard deviation of step length during the outdoor 30-min gait test for the
deconditioned group during the early (1st minute) and last (30th minute) segment of the test during
the two sessions (daily sneakers vs. specific shoes). * = p < 0.05, statistically significant in the post
hoc comparison daily sneakers vs. specific shoes; § = p < 0.05, statistically significant in the post hoc
comparison 1st minute vs. 30th minute.

Cadence: The main effects of shoes [F(1, 48) = 0.02; p = 0.888; partial η2 = 0.0004] and
Time [F(1, 48) = 2.84; p = 0.099; partial η2 = 0.0558] were not significant; the Time × Shoes
[F(1, 48) = 0.05; p = 0.819; partial η2 = 0.0011] interaction was not significant.

Below, the results for the non-deconditioned group are reported (Table 5):
Gait speed: The main effect of shoes [F(1, 36) = 0.10; p = 0.043; partial η2 = 0.1028] was

significant, with lower values with daily sneakers, the main effect of Time [F(1, 36) = 1.85;
p = 0.182; partial η2 = 0.0489] was not significant and the Time × Shoes [F(1, 36) = 3.21;
p = 0.082; partial η2 = 0.0819] interaction was not significant.

Step length: The main effects of shoes [F(1, 36) = 0.02; p = 0.902; partial η2 = 0.0004] and
Time [F(1, 36) = 0.01; p = 0.910; partial η2 = 0.0004] were not significant; the Time × Shoes in-
teraction was confirmed to be not significant [F(1, 36) = 0.001; p = 0.972; partial η2 = 0.0001].

Cadence: The main effects of shoes [F(1, 36) = 0.15; p = 0.046; partial η2 = 0.1060] was
significant, with lower values with daily sneakers, the main effect of Time [F(1, 36) = 1.89;
p = 0.178; partial η2 = 0.0498] was not significant and the Time × Shoes [F(1, 36) = 4.27;
p = 0.705; partial η2 = 0.0040] interaction was not significant.

4. Discussion

The influence of obesity on gait biomechanics has been extensively investigated with
quantitative gait analysis, but far less attention has been devoted to the effects of footwear
on walking capacity in individuals with obesity.

The purpose of this study was to compare the comfort and the performance of shoes
specifically designed for subjects with obesity with everyday sneakers during i6MWT and
outdoor 30-min ambulation test in a group of obese subjects using a single wearable device.
We wanted to test whether subjects with obesity could improve distance walked during
the 6MWT and reduce fatigue using shoes specifically designed for them as compared to
habitual shoes. Whereas the technology of new shoes for subjects with obesity remains the
focus of this paper, its originality relates to the simple, indirect method used to assess their
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performance by means of commonly used clinical and ecological tests instrumented with a
single wearable device.

Our results showed that in terms of comfort the specifically designed shoes that were
worn displayed the higher score, in particular in the deconditioned group; no differences
appeared in terms of pain reduction.

As for the instrumental tests, during the i6MWT, the distance walked and step length
significantly increased in the deconditioned group when specifically designed shoes were
worn. No differences were found in terms of gait speed and cadence, even if a trend
towards an increase could be observed. No significant changes were observed in the non-
deconditioned individuals. As for the results related to the outdoor 30-min ambulation test,
the deconditioned group displayed better performance when using specific shoes, with
longer step length as compared to that obtained using daily sneakers. While no statistically
significant differences were found in the comparison between the beginning (1st minute)
and the end (30th minute) of the outdoor ambulation test when using specific shoes, a
significant reduced step length was observed at the 30th minute of walking outdoor when
using daily sneakers. In the non-deconditioned group, the use of specific shoes correlated
to better performance in terms of gait speed and cadence, with no differences in terms of
time (1st vs. 30th minute). Those data seem to support the hypothesis that shoes specifically
conceived and designed for counteracting some of the known functional limitations in
subjects with obesity allow a smoother, more stable and possibly less fatiguing gait schema
over time.

These preliminary results show encouraging data about the use of the specific shoes
tested as compared to daily sneakers in a group of individuals with obesity. In particular,
the positive effects are evident in the deconditioned group, characterised by more limited
parameters as compared to the non-deconditioned group.

Our study presents with some limitations. Firstly, the small number of participants
for each group (deconditioned and non-deconditioned) with a wide age range (from 35
to 83 years), which result in limited strength of the statistical findings. A larger and more
homogeneous group of patients in terms of age could strengthen the results. Secondly, both
males and females were recruited for this study in order to improve the generalizability of
the results. Combining male and female subjects, though, introduces a source of potential
variability, as obesity modifies the body geometry by adding mass to different regions
and dissimilar fat distribution in males and females could produce gender-related effects.
However, with our sample it was not possible to consider them separately. Thus, potential
differences between males and females who are obese will need further study. Another
limitation is related to the absence of a stratification of the participants in terms of the
severity of obesity. Future larger studies for each obesity class are needed for a deeper
understanding of the effects of specific shoes, as effects may be related to the degree of
severity of obesity.
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Abstract: The Timed Up and Go (TUG) test quantifies physical mobility by measuring the total
performance time. In this study, we quantified the single TUG subcomponents and, for the first
time, explored the effects of gait cycle and pelvis asymmetries on them. Transfemoral (TF) and
transtibial (TT) amputees were compared with a control group. A single wearable inertial sensor,
applied to the back, captured kinematic data from the body and pelvis during the 10-m walk test
and the TUG test. From these data, two categories of symmetry indexes (SI) were computed: One SI
captured the differences between the antero-posterior accelerations of the two sides during the gait
cycle, while another set of SI quantified the symmetry over the three-dimensional pelvis motions.
Moreover, the total time of the TUG test, the time of each subcomponent, and the velocity of the
turning subcomponents were measured. Only the TF amputees showed significant reductions in
each SI category when compared to the controls. During the TUG test, the TF group showed a longer
duration and velocity reduction mainly over the turning subtasks. However, for all the amputees
there were significant correlations between the level of asymmetries and the velocity during the
turning tasks. Overall, gait cycle and pelvis asymmetries had a specific detrimental effect on the
turning performance instead of on linear walking.

Keywords: sensory–motor gait disorders; limb prosthesis; spatial–temporal analysis; kinematics;
symmetry index

1. Introduction

Motor deficit due to unilateral amputation of a lower limb can lead to functional
limitations over almost all the activities of daily living. The presence of a prosthesis can
partially restore being physically autonomous, also permitting an aesthetic recovery of an
amputee’s integrity. All these factors are important in terms of personal image and quality
of life, as they facilitate the patient’s social and work integration.

Sensors 2022, 22, 95. https://doi.org/10.3390/s22010095 https://www.mdpi.com/journal/sensors
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One of the consequences related to the use of prostheses is the appearance of asym-
metries between the prosthetic and intact sides concerning kinematic and/or kinetic pa-
rameters of the gait cycle, such as the step length or velocity, or parameters related to the
mobility of body segments, such as the pelvis or the trunk [1–4]. Local body asymmetries
lead to a shift in the body’s center of gravity that can cause further detrimental effects; how-
ever, in many cases, asymmetries produce compensatory strategies that improve postural
stability [5–8].

The effects of asymmetries in amputees have typically been studied during linear
walking and, as reported by Devan et al. [9], most of the movement asymmetry studies in
lower limb amputation have focused on local gait features, such as weight transfer during
stance, generation of ground reaction forces, step time, and step length. On the contrary,
the asymmetries concerning trunk and pelvic segments have received less attention, with
the consequences of neglecting the effects of asymmetries on the mobility of daily living
motor tasks, such as standing up, sitting down, or walking along a curved path.

In the current study, we chose to use the Timed Up and Go (TUG) test to quantify
the physical mobility of a sample of subjects with lower limb amputation and evaluate
the effects of both gait cycle and pelvic asymmetries among the subcomponents that are
included in the test. In fact, the test consists of a sequence of natural actions that, starting
from the sitting position, includes the following steps: standing up from a chair, walking
3 m forward, turning around an obstacle, walking back for 3 m, turn pivoting on one
foot, and sitting down again. This test was introduced by Podsiadlo and Richardson [10]
in order to permit the evaluation of the global mobility of frail older people adopting a
simple and short duration test. In fact, the TUG test is frequently used not only for the
assessment of physical mobility in the elderly population [11], but also in pathological
contexts, such as Parkinson’s disease [12], muscular dystrophy [13], and stroke [14]. The
extensive experience gained in the use of the TUG test in subjects with motor difficulties
provides a rationale for its use to evaluate mobility also in lower limb amputees, paying
specific attention to the different motor tasks included in the test. The TUG test was
validated in people with a lower limb amputation [15,16], showing significant increase in
the total time required to travel the entire path, when compared with the times measured
in non-amputees [15–19].

Typically, the TUG test is performed using a simple stopwatch, but any errors due to
operator reaction times can increase the variability of the measurement. A big leap forward
for clinical and basic research took place when the use of wearable inertial measurement
units (IMU) measured the TUG test (iTUG). The easy use of the wearable sensors and the
capacity to provide spatiotemporal parameters make these devices suitable for capturing
timing and kinematic data from both the entire path and from each TUG subcomponent [20].
As far as we know, only Clemens et al. [21] implemented a protocol to parameterize
each subcomponent of the TUG test in people with a lower limb amputation, by using a
mobile iPad application. These authors showed significant differences among the iTUG
components, comparing transtibial (TT) with transfemoral (TF) amputees, especially for
the mid-turning task. With respect to the descriptive information from the study of these
authors, in the current work we used the TUG test, instrumented by a single wearable
sensor, to add insights into the effects of the gait and pelvis asymmetries on the physical
performance of the subcomponents of the TUG test, in TF and TT amputees.

2. Methods

2.1. Ethical Statement

This study was conducted in accordance with the Declaration of Helsinki Ethical
Principles and Good Clinical Practices and was approved by the local ethics committee of
Catania University Hospital “Policlinico Vittorio Emanuele-San Marco” (BIOART Project,
n◦ 72/2019/PO). Participation was voluntary and all participants read and signed an
informed written consent before starting the study.
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2.2. Participants

Fourteen people with unilateral lower amputation were contacted and invited by the
Physical Medicine and Rehabilitation Section of Regina Margherita Hospital (Comiso, Italy),
to participate in the study. The inclusion criteria were: ≥18 years old, community-dwelling,
unilateral leg or thigh amputation at any anatomical level, daily use of a prosthesis, and
independent walking. The exclusion criteria were: bilateral amputation, fitting problems
of the prosthesis, uncontrolled risk factors for cardiovascular disease, and presence of
cognitive disorders. Among the selected subjects, one despondent and apparently incon-
solable patient refused to participate as he did not perceive the study as relevant and 3 were
unable to attend the health center. Therefore, 10 male amputees, classified by the evaluation
practitioners at K3 or K4 level, according to the Medicare Functional Classification [22],
were enrolled in the study.

Based on the level of amputation, the participants were divided into 2 groups,
5 belonging to the transfemoral (TF) group and 5 to the transtibial (TT) group. A third
group of 5 healthy volunteers (CTRL) was recruited as the control. All the participants
included in the three groups were male, with non-significant statistical differences for age,
weight, and height (Table 1). The anthropometric and clinical data for each person with a
lower limb amputation are reported in Table 2.

Table 1. Descriptive statistics (mean ± standard deviation and range) of the anthropometric data of
all participants.

Groups t Test (p)

TT TF CTRL CTRL vs. TT CTRL vs. TF TT vs. TF

Age (yrs) 50.6 ± 9.1 (41–64) 53.6 ± 14.9 (34–71) 49.6 ± 8.5 (43–63) 0.862 0.617 0.712

W (kg) 84.8 ± 15.6
(73–110) 81.2 ± 14.8 (71–106) 78.6 ± 7.2 (72–90) 0.444 0.734 0.719

H (cm) 172.8 ± 4.9
(165–178)

171.8 ± 8.8
(165–187)

174.4 ± 6.3
(164–181) 0.664 0.605 0.829

CTRL, control group; TF, transfemoral group; TT, transtibial group; W, weight; H, height; p, level of significance.

Table 2. Anthropometric and clinical data of the persons with lower limb amputation.

Subjects Level
Age
(yrs)

W (kg) H (cm) BMI
Onset
(yrs)

Side Cause
Falls
(n)

BBS
Score

Knee Foot

#1 TF 50 106 187 30.3 3 Left T 4 43 RK3 VF-LP
#2 TF 66 74 165 27.2 4 Right V 0 52 PABHD AM
#3 TF 71 71 171 24.3 5 Right V 1 41 PABHD AM
#4 TF 47 71 167 25.4 32 Right T 2 50 P VF
#5 TF 34 84 169 29.4 4 Right T 2 52 PTK SACH
#6 TT 41 73 165 26.8 3 Left T 0 54 VF
#7 TT 55 90 172 30.4 20 Left T 0 55 PF-XC
#8 TT 48 74 174 24.6 4 Left T 3 56 VF-HS
#9 TT 45 110 178 34.7 30 Right T 0 54 PF-XL
#10 TT 64 77 175 25.1 1 Left V 0 40 1D1

TF, transfemoral; TT, transtibial; T, trauma; V, vascular; RK3, Rheo Knee 3 microprocessor; PABHD, polyfunctional
automatic brake hydraulic device; P, polycentric; PTK, polycentric total knee 1900; VF-LP, Vari-Flex-LP; AM,
articulated multi-axis: VF, Vari-Flex; VF-HS, Vari-Flex-Harmony; PF-XL, Pro-Flex XL; PF-XC, Pro-Flex XC;
1D1 = 1D1-Dynamic.

2.3. Experimental Procedures

All participants, wearing comfortable clothes in order to ensure adequate mobility,
received standardized verbal and visual instructions and explanations about the exper-
imental set-up and protocols so that equipment and rules were the same for everyone.
As the motor tasks belonged to routine activities of daily life, the training regimen before
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recording was not considered necessary. The amputees wore their prostheses during the
entire recording period of the procedures.

To assess balance ability, gait cycle, and pelvis symmetries, as well as physical mobility,
the following procedures were used:

Test 1: Balance ability and risk of falling (Italian Version of Berg Balance Scale (BBS-
it) [23]). The static and dynamic balance abilities and possible risk of falling for the amputees
were assessed using the BBS-it. This is among the most used scales for balance evaluation
in the rehabilitation field and its validity and reliability have also been well documented in
persons with lower limb amputation [24]. Participants were required to perform a series of
predetermined 14 tasks (14) of varying difficulty, scored from 0 (unable) to 4 (independent),
so that the total score ranged from 0 to 56. This procedure took approximately 25 min
to complete.

Test 2: 10-m walk test. The path was identified with a line marked with adhesive tape
at the beginning and at the end of the 10 m. All participants were instructed to walk the
path three times at a self-selected comfortable velocity. This protocol took approximately
10 min to complete, with an inter-trial rest interval of 2 min. We collected at least 24 gait
cycles for each participant. From the total number of trials, we selected those that presented
comparable measures of the walking velocity over the three groups of participants. For
this purpose, over the total trials (3 for each subject), we identified the ranges of velocity
values measured in the participant belonging to each group. The range of the TF amputees
showed the lowest velocity values over the groups (0.7–1.0 m/s), the CTRL group showed
a highest range of velocity values (0.9–1.2 m/s), while the TT amputees group exhibited
an intermediate range of velocity values (0.8–1.1 m/s). For the CTRL and TT groups,
we eliminated those trials with values out of the TF group range and verified that not
significant differences occurred between each pair of groups. To evaluate the asymmetries
of the gait cycle and pelvis, the following kinematic parameters were extrapolated for each
cycle: body acceleration when the gait cycle was executed by left or right lower limb and
pelvis angular displacements over the three planes of space.

Test 3: TUG test (Figure 1). A 3-m-long rubber mat covered the floor and a chair
without armrests was correctly placed at the beginning of the path. All participants
executed the following sequence of simple tasks: stand up from the chair (sit to stand),
walk along a straight line for 3 m (walking forward), turn 180◦ around a pin 18-cm high
(m id-turning), walk back to the chair (walking back), turn for sitting (final turning), and
sit down again (stand to sit). All participants were asked to walk at their own normal
pace. The test was repeated six times, three times walking clockwise (Figure 1A,B) and the
remaining three times counterclockwise (Figure 1C,D), to catch turning with internal and
external prosthetic limb, respectively. The median values over the three clockwise and the
three counterclockwise turns were used for the subsequent analyses. This protocol took
approximately 15 min to complete, with an inter-trial rest interval of 2 min.
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Figure 1. Top view of typical path of 3-m long for the TUG test. The test was performed in clockwise
(A,B) and counterclockwise (C,D) directions. The single subcomponents are indicated in the panels
(A,B). Four basic phases are performed to accomplish the final turning, before sitting down (B,D):
(1) the body rotated of about 90◦ around the inner limb, (2) allowing the swing of the outer limb;
(3) the body rotated of another 90◦ around the outer limb, (4) allowing the swing of the inner limb
and the completion of 180◦ body rotation.

2.4. Data Collection and Processing

For tests 2 and 3, we used a commercial wearable inertial sensor (G-Sensor, BTS Bio-
engineering, Garbagnate Milanese, Italy) with dimensions of 70 × 40 × 18 mm, applied
over the skin of the second lumbar vertebra. The sensor is composed of a triaxial accelerom-
eter 16 bit/axes (sensor range, ±2 g), a triaxial magnetometer 13 bit (±1200 μT), and a
triaxial gyroscope 16 bit/axes (sensor range, ±2000◦/s). The signals were sampled with a
frequency of 100 Hz and transmitted via Bluetooth to a laptop computer for acquisition
and processing using a dedicated software package (BTS® G-Studio, BTS Bioengineering,
Garbagnate Milanese, Italy). For test 3, the subcomponents were identified using the
criteria described by Negrini et al. [25]. Then, the following movement parameters were
considered: total time duration of the iTUG test, duration of the single subcomponents,
average velocities of mid- and final turning.

We used the 10-m walk test (test 2) to estimate gait cycle and pelvis symmetries, instead
of the TUG test, because the former test provided less variability in the waveform average
than the TUG test, which involved the alternation of short linear with curved walking.

77



Sensors 2022, 22, 95

Gait cycle symmetry estimation can be obtained by several mathematical tools on the
basis of the differences in single measures between the two body sides, such as velocity, joint
torque, or based on a more global estimation of the symmetry using correlation analysis on
data captured over the entire left and right gait cycle (for a comprehensive review see [26]).
In this study the correlation method was used to compute two symmetry measures: a
symmetry index (SI) for total gait cycle (SIgait) and a SI for pelvis movements (SIpelvis).

To estimate the SIgait, we correlated anterior–posterior (AP) body acceleration signals
detected when the gait cycle was performed by the left or right lower limb (Figure 2).
The SIgait was obtained starting from the AP acceleration signal provided by the sensor
as follows:

1. AP acceleration signal relative to the left gait cycles has been extracted from the whole
acceleration signals;

2. AP acceleration signal relative to the right gait cycles has been extracted from the
whole acceleration signals;

3. Mean normalized AP acceleration signal of the left gait cycles has been computed
(acceleration signals on the left panels in Figure 2);

4. Mean normalized AP acceleration signal of the right gait cycles has been computed
(acceleration signals on the right panels in Figure 2);

5. Compute Pearson’s correlation coefficients (r) between 3 and 4;
6. The SIgait is obtained remapping the values of r, ranging from −1 to 1, between 0 and

100 with the following formula: SIgait = (r + 1) × 100/2.

Instead, the SIpelvis was obtained from the correlation between the measures of the
pelvic angles, when the gait cycle occurred on the left and right sides (Figure 3). Pelvic
angular displacements have been computed by the software G-Studio (BTS Bioengineering,
Milano) processing the rotational angles provided by the sensor (i.e., roll, pitch, and yaw)
to obtain Cardan angles referred to a global reference system. Each SIpelvis was obtained
starting from the pelvic angle movement in the plane as follows:

1. Pelvic angle signal relative to the left gait cycles has been extracted from the whole
pelvic angle signals;

2. Pelvic angle signal relative to the right gait cycles has been extracted from the whole
pelvic angle signals;

3. Mean normalized pelvic angles signal of the left gait cycles has been computed
(changes in amplitude of pelvic angle on the left panels in Figure 3);

4. Mean normalized pelvic angle signal of the right gait cycles has been computed
(changes in amplitude of pelvic angle on the right panels in Figure 3);

5. Compute Pearson’s correlation coefficients (r) between 3 and 4
6. The SIpelvis is obtained remapping the values of r, ranging from −1 to 1, between 0

and 100 with the following formula: SIpelvis = (r + 1) × 100/2

In the case of the pelvis, a set of SIpelvis was computed for the movements in the sagittal,
frontal and transverse planes, obtaining tilt, obliquity and rotation SIpelvis, respectively.

On these bases, the larger value of symmetry index, the more similar body acceleration
during gait cycle (SIgait) or pelvis angular displacements (SIpelvis) between the two sides
will be.

78



Sensors 2022, 22, 95

 
Figure 2. Representative examples of anterior–posterior (AP) body acceleration during gait cycle
performed on the left and right sides by one control participant (CTRL), one transtibial amputee (TT),
and one transfemoral amputee (TF). The waveforms represent the means and the standard deviations
of AP accelerations from the total number of cycles during the 10-m walk test. The linear correlation
between the left and the right AP accelerations, estimated by the Pearson correlation coefficient, was
the basis for the gait cycle symmetry index (see Section 2 for details).
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Figure 3. Representative examples of pelvis angle obliquity during gait cycle performed on the left
and right sides by one control participant (CTRL), one transtibial amputee (TT) and one transfemoral
amputee (TF). The waveforms represent the means and the standard deviations of pelvis angle
obliquity from the total number of cycles during the 10-m walk test. The linear correlation between
the left and the right pelvis angle obliquity, estimated by the Pearson correlation coefficient, was the
basis for the gait cycle symmetry index. (See Section 2 for details).

2.5. Statistical Analysis

As each group included a small sample, we preliminarily analyzed data for normality
distribution using Shapiro–Wilk’s test. The assumption of normality was not met for most
of the parameters; therefore, nonparametric statistics were applied. Moreover, considering
the small and poorly distributed samples, the significance level (p value) was computed
based on the exact significance test. Finally, to determine the strength of the results, the
magnitude of the effect was evaluated by epsilon-squared (ε2), as it is considered a less
biased effect size estimator compared to others [27].

The outcomes for each group are represented as median, interquartile range and the
minimum and maximum values. The mean and the standard deviation are reported when
required. The Kruskal–Wallis H-statistic was performed to compare the three groups for
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each SI and TUG parameter, with Dunn’s test used for the post hoc analysis. To evaluate
the differences between inner vs outer walking in each amputee group, the Wilcoxon
Signed Rank test was adopted. Finally, Spearman’s test was used to explore the relationship
between SI and TUG parameters in the amputees. Separate correlations were computed
with respect to the limb prosthetic position during the TUG test. The strength of the linear
correlation was assessed by Spearman’s Rho coefficient (rs).

For all the statistical comparisons, the alpha level of significance was set at 0.05.

3. Results

3.1. Gait and Pelvis Symmetry Evaluations

The indices of gait cycle and pelvis symmetries were lower in the participants with
amputation with respect to the individuals of the CTRL group for all the evaluations
(Figure 4A–D).

Figure 4. Box and whisker plots reporting the median value (horizontal line within the box) and the
variability as interquartile range (vertical length of the box) and as the highest and the lowest values
(lines above and below the box) of symmetry indexes of gait cycle (A), pelvis tilt (B), pelvis obliquity
(C), and pelvis rotation (D), for each group. In all subplots, the horizontal lines with asterisks indicate
statistically significant differences (* p < 0.05; ** p < 0.01). Abbreviations and symbols: SI = symmetry
index; TF = transfemoral group (orange boxes); TT = transtibial group (green boxes).

Participants with TF amputations showed the lowest values of SI, compared to CTRL
and TF groups, for the SIgait (Figure 4A; median [interquartile range]: CTRL, 96.9 [2.2]; TF,
58.3 [6]; TT, 90.6 [17]), the pelvis tilt SI (Figure 4B; CTRL, 88.5 [9.7]; TF, 30.4 [29.4]; TT, 37.2
[30.8]), the pelvis obliquity SI (Figure 4C; CTRL, 98.3 [0.8]; TF, 69.9 [30.3]; TT, 92.1 [4.2]) and
pelvis rotation SI (Figure 4D; CTRL, 98.6 [1.9]; TF, 85.2 [3.3]; TT, 97.4 [11.6]).

There were significant differences across the groups for SI evaluated for gait cycle
(H2 = 12.02, p < 0.001, ε2= 0.86), pelvis tilt (H2 = 9.62, p = 0.002, ε2= 0.69), pelvis obliquity
(H2 = 12.5, p < 0.001, ε2= 0.89), and pelvis rotation (H2 = 7.74, p = 0.012, ε2= 0.55).

The post hoc comparisons showed that this is the result of a significant difference
observed only between the CTRL and TF groups for SIgait (Figure 4A; p = 0.002), pelvis
obliquity SI (Figure 4C; p = 0.002) and pelvis rotation SI (Figure 4D; p = 0.012), while in the
case of pelvis tilt SI, there were significant differences between the CTRL and TF groups
(Figure 4B; p = 0.011) and between the CTRL and TT groups (Figure 4B; p = 0.049). No
significant differences were observed between TF and TT groups for all SI evaluations.

3.2. Timed Up and Go Component Results

The TUG total time and the measures obtained in each TUG component among the
CTRL, TF, and TT groups were statistically analyzed by two sets of comparisons considering
whether the prosthetic limb was in the inner or outer position during mid-turning. Thus,
in each box plot of Figure 5, the data regarding the CTRL group (blue box), obtained with
the TUG test performed in a clockwise direction, were compared with the results from the
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TF (orange box) and TT (green box) groups with separate analysis for the inner or outer
prosthetic limb position. To facilitate a comparison between the results of the TUG test
obtained in this study and those reported by other studies, in Table 3 we provide numerical
data of the TUG test results expressed as mean and standard deviation.

 

Figure 5. Box and whisker plots reporting median and variability (as described in Figure 4) of
parameters measured during the Timed Up and Go test: Total time (A), sit to stand (B), walking
forward (C), mid-turning (D), walking back (E), final turning (F), (G) stand to sit, (H) mid-turning
velocity, (I) final turning velocity. Abbreviations as in Figure 4. Symbols: * p < 0.05; ** p < 0.01.

Table 3. Descriptive statistics (mean ± standard deviation) for temporal and velocity parameters
over the TUG subcomponents, in the persons with lower limb amputation and non-amputated.

Temporal Parameters (s) Velocity Parameters (◦/s)

Groups
Total
Time

Sit to
Stand

Walking
Forward

Mid
Turning

Walking
Back

Final
Turning

Stand to
Sit

Mid
Turning

Final
Turning

CTRL 9.4 ± 1.0 1.3 ± 0.1 2.0 ± 0.4 1.8 ± 0.2 1.9 ± 0.4 1.4 ± 0.3 1.6 ± 0.3 96.1 ± 7.7 115.0 ± 20.9
TF Inner 17.2 ± 6.8 1.4 ± 0.5 3.8 ± 2.7 3.7 ± 0.5 3.1 ± 2.6 3.1 ± 1.3 1.9 ± 0.7 47.7 ± 8.7 51.5 ± 17.8
TF Outer 17.4 ± 6.0 1.5 ± 0.3 4.6 ± 2.5 3.1 ± 0.7 3.3 ± 2.5 2.9 ± 0.6 1.5 ± 0.5 51.9 ± 7.8 62.1 ± 12.9
TT Inner 13.1 ± 1.9 1.6 ± 0.2 2.6 ± 0.5 3.1 ± 0.2 1.8 ± 0.8 2.2 ± 0.6 1.9 ± 0.3 60.0 ± 2.7 75.2 ± 15.4
TT Outer 12.9 ± 2.2 1.5 ± 0.1 2.9 ± 0.7 3.0 ± 0.8 2.3 ± 0.5 1.9 ± 0.6 1.8 ± 0.6 61.4 ± 12.7 89.8 ± 20.0

CTRL, control group; TF, transfemoral group; TT, transtibial group.

The results of the non-parametric statistical analysis for the TUG test are summarized
in Table 4. In the following paragraphs the time measures are expressed in seconds, in
cases of linear iTUG subcomponents, and the velocity measures in degree per seconds, in
cases of Mid and Final Turning.
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Table 4. Results of Kruskal–Wallis and Wilcoxon signed rank test analyses.

TUG
Components

Kruskal-Wallis
CTRL vs. TF vs. TT

Post Hoc (Dunn-Bonferroni) Wilcoxon Signed
Rank TestCTRL vs. TF CTRL vs. TT TF vs. TT

H2 p ε2 z p z p z p z p

Prosthetic limb INNER Transfemoral Inner
vs. Outer

Total time 9.57 0.002 0.68 8.5 0.008 −5.9 0.108 2.6 1 −0.272 0.938

Sit to stand 4.65 0.093 0.33 −0.271 0.875

Walking
forward 5.04 0.075 0.36 −2.023 0.063

Mid-turning
time 11.2 <0.001 0.80 9.4 0.003 −5.6 0.143 3.8 0.536 −1.483 0.188

Walking back 1.56 0.482 0.11 −0.135 1.000

Final turning
time 8.31 0.007 0.59 8.0 0.013 −5.2 0.194 2.8 0.96 −0.135 1.000

Stand to sit 2.06 0.376 0.15 −1.219 0.313

Mid-turning
velocity 11.58 <0.001 0.83 9.6 0.002 5.4 0.169 −4.2 0.413 −1.753 0.125

Final turning
velocity 10.5 <0.001 0.75 9.0 0.004 6.0 0.102 −3.0 0.867 −1.753 0.125

Prosthetic limb OUTER Transtibial Inner
vs. Outer

Total time 10.37 <0.001 0.74 9.0 0.004 5.4 0.165 3.6 0.602 −0.135 1.000

Sit to stand 3.61 0.167 0.26 −0.412 0.813

Walking
forward 9.38 0.009 0.67 8.6 0.007 5.2 0.198 3.4 0.688 −0.405 0.813

Mid-turning
time 7.35 0.016 0.53 7.0 0.04 6.2 0.085 0.8 1 −0.135 1.000

Walking back 1.72 0.448 0.12 −2.023 0.063

Final turning
time 9.59 0.002 0.68 8.7 0.006 3.6 0.607 5.1 0.213 −0.674 0.625

Stand to sit 1.83 0.433 0.13 −0.404 0.812

Mid-turning
velocity 9.98 <0.001 0.71 8.6 0.007 6.4 0.071 2.2 1 −0.134 1

Final-turning
velocity 9.26 0.003 0.66 8.6 0.007 4.0 0.472 4.6 0.312 −0.943 0.437

CTRL, control group; TF, transfemoral group; TT, transtibial group; H2, Kruskal–Wallis statistic adjusted for ties;
p, level of significance; ε2, epsilon squared effect size; z, Wilcoxon signed rank test statistic. Statistically significant
differences are marked in bold.

Statistical differences among the three groups were detected for the TUG total time
(Figure 5A) both when the prosthetic limb was in the inner position and when it was in the
outer position (see Table 4 for the results of Kruskal–Wallis test). The TF group showed
the highest value of TUG total time (Table 4 and Figure 4A; median [interquartile range]:
CTRL, 9.3 [1.35]; TF inner, 15.3 [10.1]; TT inner, 13 [3.4]; TF outer, 16.4 [9.15]; TT outer,
13 [3.5]), and the only significant difference among the post hoc pairwise comparisons was
found between the CTRL and the TF groups (inner, p = 0.008; outer, p = 0.004; see Table 4
for more details).

The values observed for the TUG total time depended mainly on the changes in time
and velocity during mid-turning (Figure 5D,H) and final turning (Figure 5F,I). In fact, as

83



Sensors 2022, 22, 95

reported in Table 4 (Kruskal–Wallis test), the pattern of statistical differences observed for
the total time, with the significant differences focused on the comparison between CTRL
and TF groups, was replicated by the measures revealed during the mid-turning time
(Figure 5D; CTRL, 1.89 [0.42]; TF inner, 3.9 [0.94]; TT inner, 2.95 [0.32]; TF outer, 3.27 [1.41];
TT outer, 2.97 [1.35]), the final turning time (Figure 5F; CTRL, 1.5 [0.6]; TF inner, 2.72 [2.51];
TT inner, 2.27 [1.12]; TF outer, 3.02 [0.76]; TT outer, 1.86 [0.86]), the mid-turning velocity
(Figure 5H; CTRL, 94.1 [14.1]; TF inner, 46.7 [16.9]; TT inner, 60.2 [5.3]; TF outer, 56 [13.9];
TT outer, 62.1 [23]) and the final turning velocity (Figure 5I; CTRL, 106 [31.15]; TF inner,
47.9 [34.35]; TT inner, 74.5 [30.75]; TF outer, 59.6 [21.85]; TT outer, 91.7 [34.35]).

No significant differences among groups, for both inner and outer prosthetic limb
positions, were observed for the other TUG components, except for walking forward
(Figure 5C), which showed significant differences for groups when the prosthetic limb was
in the outer position, with pairwise significant differences between CTRL and TF outer
(p = 0.007; see Table 4 for more details).

The comparison between inner and outer conditions as repeated measures within
TF and TT groups was conducted by the Wilcoxon signed rank test and revealed that
no statistically significant differences occurred for all the measured TUG parameters (see
details in Table 4).

For all the statistically significant results, there was a good magnitude of the effect size,
with ε2 ranging from 0.59 to 0.83 for the data related to the condition with the prosthetic
limb in the inner position, and from 0.53 to 0.74 for the data related to the condition with
the prosthetic limb in the outer position.

3.3. Correlations between Symmetry Indices and TUG Test Measures

The correlations between the changes in SI parameters and the measures of TUG
subcomponents are reported in Table 5. As can be seen from Table 5, almost all the
statistically significant correlations (p < 0.05; in bold in the Table 5) are those where the
SI of the gait cycle, pelvis obliquity, and pelvis rotation are related to the mid-turning
time and velocity when the prosthetic limb was in the inner position during mid-turning
(Figure 6A–F) and to the final turning time and velocity when the prosthetic limb was in
the outer position during mid-turning (Figure 6G–L).

Table 5. Results of Spearman’s correlation analysis.

TUG
Components

Symmetry Index
BBS-it

Gait Cycle Pelvis Tilt Pelvis Obliquity Pelvis Rotation

rs p rs p rs p rs p rs p

Prosthetic limb INNER
Total time −0.44 0.199 0.01 0.973 −0.43 0.22 −0.10 0.776 −0.59 0.074

Sit to stand 0.10 0.789 0.54 0.111 0.12 0.738 0.40 0.258 −0.18 0.624
Walking
forward −0.47 0.174 −0.25 0.489 −0.38 0.276 −0.16 0.651 −0.45 0.197

Mid-turning
time −0.64 0.044 −0.32 0.374 −0.77 0.01 −0.63 0.05 −0.59 0.071

Walking back −0.20 0.575 0.08 0.827 −0.61 0.063 −0.36 0.304 −0.75 0.013
Final turning

time −0.30 0.393 0.17 0.638 −0.16 0.65 0.28 0.434 −0.52 0.121

Stand to sit −0.14 0.7 0.27 0.455 −0.35 0.327 −0.12 0.751 −0.28 0.426
Mid-turning

velocity 0.70 0.025 0.37 0.293 0.77 0.009 0.55 0.098 0.66 0.038

Final turning
velocity 0.55 0.098 −0.12 0.751 0.43 0.214 0.02 0.96 0.68 0.03
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Table 5. Cont.

TUG
Components

Symmetry Index
BBS-it

Gait Cycle Pelvis Tilt Pelvis Obliquity Pelvis Rotation

rs p rs p rs p rs p rs p

Prosthetic limb OUTER
Total time −0.65 0.041 −0.29 0.422 −0.67 0.034 −0.33 0.353 −0.60 0.068

Sit to stand −0.13 0.724 −0.27 0.454 −0.01 0.973 0.06 0.867 0.21 0.569
Walking
forward −0.46 0.187 −0.03 0.934 −0.52 0.128 −0.21 0.556 −0.73 0.018

Mid-turning
time −0.12 0.738 0.14 0.7 −0.42 0.228 −0.28 0.434 −0.34 0.337

Walking back −0.08 0.829 −0.48 0.162 −0.01 0.987 0.21 0.556 −0.45 0.197
Final turning

time −0.77 0.009 −0.07 0.855 −0.90 <0.001 −0.71 0.022 −0.70 0.026

Stand to sit 0.33 0.353 0.32 0.362 0.16 0.662 −0.04 0.907 0.41 0.238
Mid-turning

velocity 0.36 0.31 0.24 0.511 0.58 0.082 0.18 0.627 0.67 0.034

Final turning
velocity 0.72 0.019 0.06 0.881 0.87 0.001 0.66 0.038 0.71 0.022

rs, Spearman’s Rho coefficient; p, level of significance; BBS-it, Italian Version of Berg Balance Scale. Statistically
significant values are shown in bold.

 

Figure 6. Spearman’s correlation analysis between symmetry index and mid- and final turning time
and velocity. Symmetry indexes of gait cycle, pelvis obliquity, and pelvis rotation were correlated with
mid-turning time and velocity, when the amputated limb was in inner position (A–F), and with final
turning time and velocity, when the amputated limb was in outer position (G–L). Abbreviation and
symbol: rs, Spearman’s Rho coefficient; p, level of significance; orange circles, TF; green circles, TT.
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The level of correlation, estimated by the Spearman coefficient (rs), ranged from
0.64 to 0.77 for the correlations associated with mid-turning, and from 0.66 to 0.9 for the
correlations associated with final turning.

The plots in Figure 6 show that as SI increased, the turning time decreased
(Figure 6A–C,G–I) or the turning velocity increased (Figure 6D–F,J–L), indicating that gait
cycle and pelvis asymmetries associated with amputation influenced the performance dur-
ing rotation components of the TUG test more than the performance during the execution
of linear TUG components.

Moreover, the two amputee groups tended to cluster into two separate groups, with
the TT group (green circle) fitting the linear model better than TF group (orange circle) in
the case of the correlations associated with mid-turning time or velocity (Figure 6A–F).

Finally, the BBS-it test showed significant correlations with the measures of TUG
subcomponents mainly during mid- and final turning, for both the inner and outer positions
of the prosthetic limb (last two columns on the right, in Table 5). The velocity of turning
increased as balance increased.

4. Discussion

The basic result reported here is that subjects with an amputation took more time to
complete the TUG test and showed lower levels of gait and pelvis SI than non-amputee
volunteers. However, almost all the statistical differences between amputees and healthy
people were focused on the TF group.

The TUG test duration in the case of amputees depended mainly on the slowdown
observed during mid- and final turning. Moreover, the velocity reduction during the
turning components of the TUG test was well correlated with the reduction in gait cycle
and pelvis symmetries observed in the amputees. In particular, the association between
reduction in velocity and reduction in gait cycle and pelvis symmetries occurred when
the prosthetic limb was in the inner position during mid-turning and in the outer position
during final turning.

4.1. The Turning Components of the TUG Test Represent the Most Demanding Tasks for
the Amputees

The results of the current study provide insights into the possible causes for the specific
difficulties showed by the amputees in facing the turning task, suggesting that gait cycle
and pelvis asymmetries may contribute to differentiate the level of mobility between linear
and curved walking.

To our knowledge, only Clemens et al. [21] have used the TUG test to explore the
performance over the single task components. Although the number of participants with
lower limb prostheses in the study of Clemens et al. [21] was much larger (a total of
118 participants) than the sample size used in the current work, their main result supports
our main finding as these authors indicate that, among the tasks included in the TUG
test, the turning components have the greatest impact in the level of mobility of subjects
with lower limb amputation. Although the high number of participants in the study of
Clemens at al. [21], the mean time duration and the variability observed by these authors
between TT and TF amputees, during the mid-turning, were comparable with the scores
recorded in the current study: for the TT amputees, 2.73 s ± 0.65 in Clements et al. [21],
3.05 s ± 0.5 in the current study (average between inner and outer limbs); for the TF am-
putees, 3.53 s ± 1.2 in Clements et al. [21], and 3.4 s ± 0.6 in the current study (average
between inner and outer limbs). However, the large difference in the sample size between
the two studies determined significant statistical differences between TT and TF amputees
for all the TUG subcomponents in the study of Clements et al. [21], with some subcompo-
nents, especially for walking forward, showing large duration and variability in the current
study. This reflects the different time duration in the TUG total time between the two works:
for the TT amputees, 10.04 s ± 2.3 in Clements et al. [21], 13 s ± 2.05 in the current study
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(average between inner and outer limbs); for the TF amputees, 12.77 s ± 5.04 in Clements
et al. [21], 17.3 s ± 6.4 in the current study (average between inner and outer limbs).

Several authors showed evidence that asymmetries in subjects with lower limb ampu-
tations might be the result of motor adaptations to accomplish functional compensations
such as, facilitating lower-leg trajectory [8], foot clearance during the swing phase of gait [7],
gait stability [6] and functional step length and symmetrical thigh inclinations [5]. Typically,
these adaptations are related to walking in a straight line, therefore, the appearance of
asymmetry may be functional to a linear path, but it may not be suitable for the path along
a curve, impairing the turning task.

4.2. Velocity Decrease and Asymmetry Effects When Amputees Face Turning Points:
Biomechanical and Neuronal Considerations

In an attempt to provide an explanation for the changes in the kinematics and for the
effects of gait and pelvis asymmetries on mid- and final turning, in the following section we
consider the basic biomechanics and neuronal processes underlying a successful execution
of a turning task.

4.2.1. Biomechanical Considerations

In non-amputees, the process of turning starts before the change of direction, with
forward motion deceleration followed by body rotation and the movement toward the new
direction [28,29].

The two turning components of the TUG test are performed on the basis of different
biomechanical strategies. Mid-turning can be included in the category of step turning, since
the body is stepping along an arc of 180◦, while final turning can be considered a form of
spin turning, as the step is stopped, and the body axis rotates about 180◦ [28–31]. During
step turning, the body center of mass typically moves over the mediolateral axis, shifting
in the direction of the turn, at the boundary of the base of support. As the velocity of
turning decreases, the center of mass slightly shifts between the two feet, within the base of
support [32]. This process provides a straightforward explanation for the reduced velocity
observed during mid-turning in the subjects with a lower limb amputation: the increased
risk to perturb body stability forced the amputees to reduce their velocity to place the center
of mass in a more reliable position to maintain stability during the turning trajectory.

This time compensation could be particularly effective in cases of TF amputees who
show more significant reductions in turning velocity than TT amputees when compared
with the CTRL group. However, when mid-turning was negotiated with the prosthetic
limb in the inner position, both amputee groups showed a reduction in velocity as gait
cycle and pelvis obliquity asymmetries increased. This specific influence of pelvis obliquity
asymmetry makes sense if we consider that the medial-lateral axis, along which the center
of mass moves during mid-turning, is the same axis along which the pelvis oscillates when
its obliquity changes. Moreover, the internal shift of the body center of mass produces a
greater load on the inner limb, exacerbating the negative effects of pelvis asymmetry over
the transverse plane.

Contrary to what we observed in mid- and final turning, there were no significant
differences in timing and no influences of asymmetries in the linear components of the
TUG test. The different responses observed in linear and turning walks may depend on the
intrinsic lower stability characterizing turning with respect to walking in a straight line [33].
In subjects with a lower limb amputation these differences in stability are accentuated, since
they are more sensitive to perturbations occurring along the medial-lateral axis, mainly
present during turning, than perturbations that affect the anterior-posterior axis, mainly
occurring during linear walking [34,35]. The parallel reduction in the BBS-it test and the
velocity during turning tasks, observed in our experiments, confirms the tendency of
amputees to be less stable in curved than in straight paths.

The reduction in velocity observed during mid-turning for TF amputees and the
correlations with the changes in symmetry were also observed in final turning, before
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sitting down. The large curved path of step turning (mid-turning) offers greater stability
compared to the spin turn (final turning) that requires the body to rotate around the vertical
axis [28,29,31]. Although we did not observe differences in velocity reduction between
the two types of turning, the enhanced instability attributed to final turning may explain
the greater negative influences of asymmetries observed for final turning compared to
mid-turning. In fact, the levels of correlation detected during final turning where higher
than those observed during mid-turning, with significant correlations not only for gait
cycle and pelvis obliquity asymmetries but also for the asymmetries associated with pelvis
rotation (see correlation analyses illustrated in Figure 6G–L).

Another difference that we observed between the two turning tasks was that the influ-
ence of decreased symmetries at final turning occurred when the TUG test was executed
with the prosthetic limb in the outer position. The transition from turning and stand to sit,
illustrated in Figure 1B,D, provides a possible explanation for the prevalent influence of
asymmetries when final turning is performed by the prosthetic limb in the outer position.
This transition occurs accomplishing a 180◦ body rotation through two semi-rotations:
the first semi-rotation of the body, of about 90◦, occurs around the inner limb (point 1 in
Figure 1B,D), allowing the swing of the outer limb (point 2 in the Figure 1B,D); the second
semi-rotation, of another 90◦, takes place around the outer limb (point 3 in the Figure 1B,D),
allowing the swing of the inner limb (point 4 in the Figure 1B,D), and the completion of the
180◦ rotation of the body. During the first semi-rotation, the static load on the inner limb is
reduced due to the residual energy from the dynamics of the last step before starting final
turning. Instead, the velocity reduction occurred when the step cycle stopped, producing
an increase in static load on the outer limb during the second semi-rotation. Thus, the outer
limb receives more load than the inner limb, becoming more susceptible to the effects of
pelvis asymmetries.

4.2.2. Neuronal Considerations

The best performance observed in amputees during linear compared to curved walking
could depend on a specific need to adopt a predictive feedforward strategy in the curved
walk, with respect to the straight line walk.

A critical factor for successful turning biomechanics is to plan trunk and pelvis rota-
tions in advance, during the deceleration period preceding the turning phase [28,29,32,36].
A walking direction-dependent neuronal control was shown by Bauby and Kuo [37] and
O’Connor and Kuo [38] who observed that reduced visual information destabilized more
mediolateral than anteroposterior motions during walking. Since visual sensory feedback is
essential for planning in advance the changes in walking direction, these authors concluded
that linear walking relies more on the passive mechanical properties of the limbs, while
for stabilizing mediolateral motion a significant central active control must be provided.
As discussed in the previous section, amputees show greater difficulty in stabilizing per-
turbations that act along the mediolateral axis, with respect to those that act along the
anterior-posterior axis [34,35]. Thus, a deficit in neuronal predictive control could be an
explanation for the reduced turning performance in amputees, particularly for those with a
TF amputation.

Difficulties in anticipatory strategy were observed in TT amputees when movements
of the upper limbs perturbed upright standing [39] or lateral pushes perturbed linear
walking [40]. Similar deficits were detected in older subjects who showed limitations
in facing mid- and final turning during the TUG test [20] and difficulties in anticipatory
adjustments after a later perturbation during gait initiation [41]. Similar to the condition of
amputees, it can be assumed that also physical body variations associated with aging make
predictive capacity more difficult to implement.

Planning a movement strategy in advance to face future biomechanical changes, the in-
side shift of the center of mass in the case of mid-turning, requires not only an exteroceptive
sensory feedback, but also an accurate internal representation of the relationships between
the mechanical state of the body and the contextual environment (predictive internal mod-
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els; [42]). Similarly, during final turning, for successful rotation a proactive neuronal control
in relation to the subsequent stand to sit task is necessary. Rebuilding an internal model of
the body is one of the greatest difficulties for subjects with an amputation since the missing
part and the prosthesis upset the biomechanical and temporal relationships between body
segments. This issue was recently addressed by Saimpont et al. [19] using a motor imagery
protocol applied to amputees performing 7-m walking and the TUG test. These authors
found timing and accuracy discrepancies in amputees comparing the actual execution and
the mental imagery of the TUG test or walking. It was suggested that these discrepancies
were due to dysfunctions in the internal predictive models that need to be updated. The
motor imagery of the total time of the TUG test tended to be slower than the real execution
with respect to 7-m walking. However, in the study of Saimpont et al. [19], no parameter
measurements were recorded for the TUG subcomponents.

In summary, the basic biomechanics and neuronal processes to accomplish the transi-
tion from linear to curved walking during the TUG test suggest that velocity reductions
in TF amputees and the negative influence of gait cycle and pelvis asymmetries in both
amputee groups, may be attributable, at least in part, to the difficulty of the amputees in
updating forward internal models capable of preventing the effects of perturbations acting
on the mediolateral axis of the body during turning tasks.

5. Conclusions and Practical Implications

The main message from the current study is that the idea of asymmetry occurring in
amputee motions to compensate for the differences between the two limbs is not applicable
to the various motor actions. Gait cycle and pelvis asymmetries are appropriate for bal-
ancing linear walking, but they can be detrimental for turning performance. Considering
that predictive control is a specific and critical factor for the successful transition from
linear to curved walking, we suggest reinforcing those rehabilitative protocols addressed to
stimulating the sensory feedback from the residual limb segments so as to trigger an update
of the internal body representation and the forward models. For example, considering
that amputees have no neurological injury, using the appropriate accommodations, the
use of a tool such as a balance board can be important to stimulate the proprioceptive
afferences and produce learning of new postural skills, as was demonstrated for healthy
individuals [43,44]. Moreover, recent studies have demonstrated that the use of new tools,
such as motor imagery [19,45] and virtual reality [46], can provide an important support
in training and monitoring the development and updating of internal models, in subjects
with a lower limb amputation.

Finally, as the use of a single wearable sensor contributed significantly in this study to
detecting measures from different motor contexts, similarly the use of these devices can
improve the quality of rehabilitation protocols, making the measurements of demanding
motor tasks easier and more reliable [47,48].

6. Limitations

The reduced sample size, made up of male participants, may represent only a portion
of the population. This is a limitation to consider for the interpretation of the results
reported in the current study. In addition, some characteristics, such as the type of prothesis
or the time elapsed since amputation, are not homogenous over the amputees. However,
we tried to adopt the most suitable statistical procedures to partially compensate for these
limitations. We believe that the level of significance and the magnitude of the effect size
should guarantee the reliability of the main results. Further studies including a larger
sample of people with a lower limb amputation could reinforce the general character of
these results.
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Abstract: Motor fluctuations in Parkinson’s disease are characterized by unpredictability in the
timing and duration of dopaminergic therapeutic benefits on symptoms, including bradykinesia
and rigidity. These fluctuations significantly impair the quality of life of many Parkinson’s patients.
However, current clinical evaluation tools are not designed for the continuous, naturalistic (real-
world) symptom monitoring needed to optimize clinical therapy to treat fluctuations. Although
commercially available wearable motor monitoring, used over multiple days, can augment neu-
rological decision making, the feasibility of rapid and dynamic detection of motor fluctuations is
unclear. So far, applied wearable monitoring algorithms are trained on group data. In this study,
we investigated the influence of individual model training on short timescale classification of nat-
uralistic bradykinesia fluctuations in Parkinson’s patients using a single-wrist accelerometer. As
part of the Parkinson@Home study protocol, 20 Parkinson patients were recorded with bilateral
wrist accelerometers for a one hour OFF medication session and a one hour ON medication session
during unconstrained activities in their own homes. Kinematic metrics were extracted from the
accelerometer data from the bodyside with the largest unilateral bradykinesia fluctuations across
medication states. The kinematic accelerometer features were compared over the 1 h duration of
recording, and medication-state classification analyses were performed on 1 min segments of data.
Then, we analyzed the influence of individual versus group model training, data window length,
and total number of training patients included in group model training, on classification. Statistically
significant areas under the curves (AUCs) for medication induced bradykinesia fluctuation classi-
fication were seen in 85% of the Parkinson patients at the single minute timescale using the group
models. Individually trained models performed at the same level as the group trained models (mean
AUC both 0.70, standard deviation respectively 0.18 and 0.10) despite the small individual training
dataset. AUCs of the group models improved as the length of the feature windows was increased to
300 s, and with additional training patient datasets. We were able to show that medication-induced
fluctuations in bradykinesia can be classified using wrist-worn accelerometry at the time scale of a
single minute. Rapid, naturalistic Parkinson motor monitoring has the clinical potential to evaluate
dynamic symptomatic and therapeutic fluctuations and help tailor treatments on a fast timescale.

Keywords: Parkinson’s disease; bradykinesia; real-life; naturalistic monitoring; wearable sensors;
accelerometer; motor fluctuation
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1. Introduction

Parkinson’s disease (PD) is a disabling neurodegenerative disorder characterized by
motor and non-motor symptoms that affect patients’ motor performance and quality of life
(QoL) [1–3]. Symptomatic PD management often initially focuses on dopamine replacement
therapies [4]. However, half of PD patients develop wearing-off motor fluctuations during
the first decade after diagnosis [5,6]. Wearing-off motor fluctuations are defined as incon-
sistent therapeutic benefits on symptoms such as bradykinesia and rigidity, despite regular
dopaminergic delivery [6]. These motor fluctuations and other dopaminergic-related side
effects can markedly impair patients’ QoL [7]. Motor fluctuations are therefore a primary
indication for consideration of deep brain stimulation (DBS) [1,8]. Adequate monitoring of
motor fluctuations is essential for treatment evaluation, both in the presence and absence
of DBS, and wearable motion sensing represents an appealing approach to support this
quantification [9,10], although several challenges remain to be addressed [11,12].

Ideally, objective motor fluctuation monitoring should accurately measure and decode
movement, during real world (naturalistic) activities, and be simple to implement for pa-
tients [10,13]. Currently used Parkinson’s evaluation tools, such as the Movement Disorders
Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) and the Parkinson Disease
QoL questionnaire (PDQ-39), are not designed for chronic dynamic naturalistic symptom
monitoring [14,15]. They contain questionnaires which capture subjective estimates of
retrospective symptoms over a week (MDS-UPDRS II and IV) or a month (PDQ-39). They
are also dependent on patient recall, which is often imperfect, particularly in patients with
cognitive dysfunction. Observing and scoring motor fluctuations requires trained health
providers to perform single time point evaluations (MDS-UPDRS III). Motor diaries, often
used as the gold standard for 24-h naturalistic monitoring, require self-reporting every
30 min [16]. This burden causes recall bias and diary fatigue over long-term use [17].

The strong clinical need for continuous symptom tracking, together with the wide
availability and presence of affordable accelerometer-based sensors, has led to several aca-
demic and commercially available wearable sensor PD monitoring systems [18–22]. Motor
fluctuation monitoring with commercially available devices is currently based primarily
on summary metrics derived from multiple days of sensor data. Incorporation of these
metrics during neurological consultation has led to promising augmentation of clinical
decision making [21,23–26]. However, these sensor monitoring systems have thus far been
found to be better correlated with PD clinical metrics on a time scale of days rather than
hours [21,27], which is a notably longer time window than used in the original develop-
ment studies [19,21,28–30]. Successful motor fluctuation classification over shorter time
periods (minutes or hours) would enable dynamic therapeutic motor response monitoring.
Thus, we have suggested individual model training as a methodological improvement
to pursue this. To date, motor monitoring algorithms have typically been trained on
group data; individual model training is suggested due to inter-subject heterogeneity of
PD symptomatology [11,18,20,31]. This hypothesis is strengthened by a recent successful
algorithm innovation combining short- and long-time epochs in a deep learning model
correlating wrist and ankle-worn accelerometer metrics with total UPDRS III scores on
5 min epochs [32].

In the present work, we investigated the performance of machine learning classifi-
cation models identifying rapid (single minute resolution), medication-induced motor
fluctuations in PD patients. The classification models were trained on unconstrained
naturalistic (at home) motion data derived from a unilateral wrist-worn accelerometer.
Classification models based on individual data were compared with models based on
group data. Further, we analyzed the influence of the number of individuals included in
the group model training data, and the length of analyzed accelerometer data epochs (time
window lengths), on classification results. We focused symptom decoding on bradykinesia
since this cardinal feature of PD has been found to be more challenging to detect with
motion sensors than tremor or dyskinesia [1,33]. This is likely due to higher distribu-
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tional kinematic overlap of bradykinesia fluctuations with normal movements and normal
periods of rest [18,34–36].

We hypothesized that single-minute bradykinesia classification would be achievable
using machine learning and that individualized motion classification models in PD would
demonstrate more reliable short-term classification of naturalistic bradykinesia fluctuations
compared to group models.

2. Material and Methods

2.1. Study Sample

For our analysis, we used data from 20 participants of the Parkinson@Home validation
study [37]. Detailed descriptions of the study’s protocol and feasibility have been described
previously [38,39]. In brief, the Parkinson@Home study recruited 25 patients diagnosed
with PD by a movement disorders neurologist. All patients underwent dopaminergic
replacement treatment with oral levodopa therapy, experienced wearing-off periods (MDS-
UPDRS part IV item 4.3 ≥ 1) and had at least slight Parkinson-related gait impairments
(MDS-UPDRS part II item 2.12 ≥ 1 and/or item 2.13 ≥ 1). Participants who were treated
with advanced therapies (DBS or infusion therapies) or who suffered significant psychiatric
or cognitive impairments which hindered completion of the study protocol were excluded.

For the current subset of PD patients, we included 20 patients who showed a levodopa-
induced improvement in unilateral upper extremity bradykinesia at least at one side (equal
or less than zero points). Unilateral upper extremity bradykinesia was defined as the sum
of MDS-UPDRS part III items 3c, 4b, 5b, and 6b for the left side, and items 3b, 4a, 5a, and 6a
for the right side. Sum scores from medication on-states were compared with sum scores
from medication off-states. For each included participant, only data from the side with the
largest clinical change in upper extremity bradykinesia sub items were included. Patients’
activities were recorded on video and annotated as described in the validation study [37].

For our current analysis, only unilateral wrist tri-axial accelerometer data from the
side with the largest fluctuation in unilateral upper extremity bradykinesia were included
(Gait Up Physilog 4, Gait Up SA, CH). Recordings consisted of two sessions which took
place on the same day. First, the pre-medication recording was performed in the morning
after overnight withdrawal of dopaminergic medication. Second, the post-medication
recording was performed when the participants experienced the full clinical effect after
intake of their regular dopaminergic medication. During both recordings, participants
performed an hour of unconstrained activities within and around their houses. At the start
of both recordings, a formal MDS-UPDRS III and Abnormal Involuntary Movement Scale
(AIMS) was conducted by a trained clinician.

2.2. Data Pre-Processing and Feature Extraction

Accelerometer data were sampled at 200 Hz and downsampled to a uniform sampling
rate of 120 Hertz (Hz) using piecewise cubic interpolation. The effect of gravity was
removed from each of the three time series (x-, y-, and z-axes) separately, by applying
an l1-trend filter designed to analyze time series with an underlying piecewise linear
trend [40]. Time series were low-pass filtered at 3.5 Hz to attenuate frequencies typically
associated with Parkinsonian tremor in accelerometer time series [41]. In addition to the
three individual accelerometer time series, we computed a composite time series containing
the vector magnitude of the three individual accelerometer axes (x2 + y2 + z2).

Multiple features previously shown to correlate with bradykinesia were extracted
from the four time series (in total 103 features from four time series: x, y, z, and vector
magnitude) (see extensive overview including references in Table S1). The features included
characteristics from the temporal domain (such as extreme values, variances, jerkiness,
number of peaks, and root mean squares), the spectral domain (such as spectral power
in specific frequency ranges), and dominant frequencies. The standard window length of
analysis for each extracted feature was set at 60 s, meaning one mean value per feature
was extracted per time series over every 60 s of data. To explore the influence of varying
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window lengths (3, 10, 30, 90, 120, 150, and 300 s), separate feature sets were extracted
for each sub analysis. All individual feature sets were balanced for medication-status by
discarding the surplus of available data in the longest recording (pre- or post-medication).
Features were standardized by calculating individual z-scores per feature. To not average
out pre- and post-medication differences, the mean of only the pre-medication recordings
was extracted from a value, and the result was divided by the standard deviation of only
the pre-medication recordings [42]. To test the influence of an activity filter, data windows
without motion activity were identified. For this, different methodologies of activity
filtering are described in PD monitoring literature [9,43,44]. We applied an activity filter
which classified every 60 s window with a coefficient of variation of the vector magnitude
less than 0.3 as no activity and discarded them from the analysis. The choice of selected
feature was based on previous work [43], and the threshold was chosen pragmatically by
group-level observations of video-annotated sections identified as non-active [37]. The
activity-filtered data sets were individually balanced for medication-states. For example,
if a participant’s data set resulted in 50 active minutes of pre-medication data, and only
45 active minutes of post-medication data, the surplus of features from 5 active minutes of
pre-medication data was discarded at the end of the data set.

2.3. Descriptive Statistics and Analysis of Variance

The demographic and disease characteristics of the included participants are described
in Table 1. Unilateral scores are provided only for the side on which accelerometer data
was analyzed.

Table 1. Demographic and disease specific characteristics of patient population. AIMS: Abnormal
Involuntary Movement Scale. MDS-UPDRS: Movement Disorders Society Unified Parkinson Disease
Rating Scale. Sd: standard deviation.

Characteristics

Total number (% female) 20 (60%)
Age (years, mean (sd)) 63.4 (6.4)

Accelerometer data per medication state (minutes, mean (sd)) 59.5 (14.3)
Accelerometer data per medication state, after activity filtering

(minutes, mean (sd)) 44.5 (13.9)

PD duration (years, mean (sd)) 8.1 (3.5)
Levodopa equivalent daily dosage (milligrams, mean (sd)) 959 (314)

MDS-UPDRS III pre-medication 43.8 (11.6)
MDS-UPDRS III post-medication 27.1 (9.6)

AIMS pre-medication 0.5 (1.8)
AIMS post-medication 3.7 (4.2)

To test the statistical distinguishability of the pre- and post-medication recordings
at the group level before using the entire dataset as an input, four main accelerometer
features were chosen a priori. These four features covered the most often used domains of
motion metrics applied for naturalistic bradykinesia monitoring (maximum acceleration,
coefficient of variation of acceleration over time, root mean square of acceleration over
time, and the total spectral power below 4 Hz) [18,43] and were extracted from the vector
magnitude time series. Individual averages of each of the four features over the entire
dataset (~60 min per condition) were analyzed for statistically significant differences
between the medication states with a multivariate analysis of variance (M-ANOVA). Post-
hoc repeated measures ANOVA were performed to explore which feature(s) contributed
to the pre- versus post-medication difference. An alpha-level of 0.05 was implemented
and multiple comparison correction was performed using the false discovery rate (FDR)
method described by Benjamini and Hochberg [45].
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2.4. Classification of Medication States
2.4.1. Individually Trained and Group Trained Models

Supervised classification analyses were performed to test whether differentiation
between short-term pre- and post-medication was feasible, based on 60 s accelerometer
features (Figure 1). First, this was tested using the four previously mentioned features
extracted from the vector magnitude signal. Afterward, the feature set was expanded
to include all described features, as well as the x, y, z time series (Table S1). Analyses
were performed using a support vector machine (SV) and a random forest (RF) classifier.
Classification models trained on individual data and models trained on group data were
then compared (Figure 1B).

For individually trained models, 80% of a participant’s total balanced data was used
as training data, and 20% as test data (Figure S1). Small blocks (2%) of training data which
neighbored the test data were discarded (Figure S1) to decrease the temporal dependence
between training and test data. To prevent bias caused by the selected block of test data,
a 41-fold cross-validation was performed. Each fold (out of 41) included two continual
blocks of 10% of total data, one block from the pre- and one block from the post-medication
recording as test data (percentiles 0 to 10 and 50–60, percentiles 1 to 11 and 51 to 61, . . . ,
and percentiles 40 to 50 and 90 to 100, see visualization in Figure S2).

For group-trained models, a leave one out cross-validation was performed. For every
participant, a model was trained based on all data (balanced for medication status) from
the remaining 19 participants and tested on all data (balanced for medication status) of the
specific participant (Figure 1B). To assess all models, the area under the receiver operator
curve (AUC) and the classification accuracy were calculated as predictive metrics. For the
individual models, individual classification outcomes were averaged over the 41 folds. All
parameters and details related to the implemented classifiers are available through the
GitHub codebase [46].

To test the statistical significance of each individual and group model performance,
5000 permutation tests were performed in which medication state labels were shuffled. The
95th percentile of permutation scores was taken as significance threshold (alpha = 0.05),
and FDR multiple comparison corrections were performed [45].

2.4.2. The Influence of Training Data Size, and Feature Window Lengths

To test the impact of the size of the training set on the group models, the training
phases were repeated with varying numbers of participants included in the training data.
As in the original group model analysis, the test data consisted of all data from one
participant. The number of training data participants varied between 1 and 19. To prevent
selection bias in the selection of the training participants, the analyses were repeated five
times per number of included training participants, with different random selections of
training participants. Individual classification models were excluded from this analysis by
definition.

To analyze the influence of feature window lengths, we repeated the group model
analysis with features extracted from data windows of 3, 10, 30, 90, 120, 150, and 300 s
duration. For every analysis, one participant was selected as a test participant, and the
other 19 were training participants. This was repeated for all participants and the averages
over 20 test participants were reported. This was performed at the group level modelling
only, as individual models were limited by total available data size.

2.4.3. Comparing Two Models’ Predictive Performance

Equality plots were drawn to compare the AUC scores and accuracies between two
models, for example a model using 4 features versus 103 features, a model using an SV
classifier versus an RF classifier, a model with versus without activity filtering (Figure S3).
All comparisons were performed separately for the individual and group models. For
example, model A led to a higher AUC score than model B in 14 out of 20 participants
(14 dots above the equality line). Permutation tests plotted 20 random dots on an equality
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plot and tested whether the permuted distribution generated 14 or more dots (out of
20) above the equality line. This was repeated 5000 times, and the probability that the
distribution 14 out of 20 was the result of chance was determined.

Figure 1. Accelerometer-based Parkinsonian motor fluctuation detection workflows. (A) Left: A
wrist-worn motion sensor (Physilog 4, Gait Up SA, CH; green circled) is used to collect unilateral
tri-axial accelerometer data. X, Y, and Z represent acceleration (meters/second per second) in three
axes over time (seconds). Temporal windows are determined for data analysis and are indicated
in different colors over time (win1, win2, . . . ). Center: Signal preprocessing and feature extraction
convert the raw tri-axial signal into a dataset containing M features (Table S1), calculated for every
temporal window (in total M columns and N rows). For the training phase of the machine learning
classification models, the true labels representing medication states (*) are used. Right: In the testing
phase, inserting the feature set (M × N) in the trained classification model leads to N medication
state predictions. (B) Workflow to train and test individual and group models. Identical features
are extracted from the raw accelerometer data of the twenty included participants (grey symbols).
For the individually trained models (blue), the features from 80% of a participant’s epochs are used
in the training phase (y-axis). The trained individual model is tested with the remaining, unused,
20% of epochs during the test phase. The arrows (*) from test phase to training phase represent the
multiple cross-validation folds applied to train and test the individual models on different selections
of training and test data. For the group models (yellow), each participant is tested in turn, with data
from the other 19 participants used in the training phase.
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2.4.4. Predictive Performance and Clinical Assessed Symptom Fluctuations

The influence of clinical bradykinesia, tremor, and abnormal involuntary movement
fluctuations on predictive performance was tested at a group level by Spearman R cor-
relations between the fluctuation in individual bradykinesia and tremor sub scores and
AIMS scores, and the predictive performance (Table S3). Individual participants were
visualized according to descending tremor and AIMS fluctuation ratings to enable visual
comparison of predictive performance with and without co-occurring tremor and abnormal
involuntary movement fluctuation (respectively Figure S4A,B). The tremor scores consisted
of the MDS-UPDRS III items representing unilateral upper extremity tremor (items 15b,
16b, and 17b for the left side, and items 15a, 16a, and 17a for the right side).

2.4.5. Software

Raw acceleration time series were down sampled and filtered (for gravity effects)
in Matlab. All further preprocessing, feature extraction, and analysis was performed in
Jupyter Notebook (Python 3.7). The code used to extract features and analyze data is made
publically available [46].

2.4.6. Code and Data Availability

The code used to extract features and analyze data is publicly available [46]. The
de-identified open source dataset will be made available to the scientific community by the
Michael J. Fox Foundation.

3. Results

3.1. Study Population and Recorded Data

Twenty PD patients from the Parkinson@Home data repository [37] were included
in this study. We excluded three participants who did not show a levodopa-induced
improvement in unilateral upper extremity bradykinesia and two participants were further
excluded because there was less than 40 min of accelerometer data available from their pre-
or post-medication recording, resulting in a dataset of 20 patients.

Demographic and disease-specific characteristics are presented in Table 1. In total,
3138 min of accelerometer data were recorded in the 20 included patients. After balancing
the data sets for medication status, 2380 min of accelerometer data were included. On
average, 59.5 (±14.3) min of accelerometer data from both pre- and post-medication record-
ings were included per participant. On average, 44.5 min (±13.9 min) of features were
included after applying the activity filter and balancing the individual data to include
equal individual features per medication state.

We extracted multiple features which are described in the current literature to index
naturalistic bradykinesia with a wrist accelerometer (see Table S1 for details and references).
In total, 103 motion accelerometer features were extracted for every feature window,
including both time domain and spectral features from the accelerometer.

3.2. Group Level Statistical Analysis of Cardinal Motion Features across Medication States

At the group level, the pre- and post-medication recordings differed significantly
regarding the individual means of the four main motion features (maximum accelera-
tion magnitude, coefficient of variation of acceleration magnitude, root mean square of
acceleration, and spectral power (below 4 Hz) [18,43]) (MANOVA, Wilk’s lamba = 0.389,
F-value = 14.2, p < 0.001). Post-hoc repeated measures ANOVAs demonstrated that only
the individual coefficient of variation averages significantly differed between pre- and
post-medication states (p = 0.0042) (Figure 2).
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Figure 2. Distributions of individual means for four main movement features. Colored dots repre-
sent the mean feature values during the whole post-medication recording per participant (n = 20).
Individual post-medication mean values are standardized as z-scores (individual pre-medication
recordings are used as references, and therefore the pre-medication mean values equal 0). The red
asterisk indicates a significant difference on group level between mean coefficient of variations of pre-
and post-medication means (alpha = 0.05, MANOVA and post-hoc analysis, FDR corrected). † = one
positive outlier (1.7) not visualized.

3.3. Machine Learning Classification of Short Window Data Epochs

Next, the classification performance over short time windows (one-minute resolution)
was tested using support vector (SV) and random forest (RF) machine learning models.
All medication state classifications using the four previously selected motion features led
to low AUC scores (means per model ranged between 0.49 and 0.64) and low accuracies
(means per model ranged between 49% and 60%) (see Table S2 for detailed results).

We therefore repeated the classification analysis, using an expanded kinematic feature
set (103 features). With the full feature set, notably higher AUC scores and classification
accuracies were seen for all individual and group (SV and RF) models (Table S2 and
Figures S3A,B). Mean AUC scores per model ranged between 0.65 and 0.70, and mean
accuracies per model ranged between 60% and 65% (Table S2). Most participants yielded
AUC scores and accuracies significantly better than chance level (17 out of 20 participants
per model), tested through random surrogate dataset generation.

In 90% of participants (18 out of 20), either the best individual or group model classified
medication states per 60 s significantly better than chance level based on our surrogate
datasets (Figure 3 and Table S2). Group trained models resulted in AUC scores statistically
significantly higher than random classification in 17 participants. Individually trained
models resulted in AUC scores statistically significantly higher than random classification
in 13 participants. Both individual and group models resulted in mean AUC scores of 0.70
(±respectively 0.18 and 0.10), and mean accuracies of respectively 65% (±0.14) and 64%
(±0.08) over all 20 participants (Figure 3, Table S2). Notably, the individual models resulted
in a larger standard deviation of AUC scores, including several AUC scores higher than 0.9
as well as below chance level (Figure 3).

Overall, these findings confirmed the feasibility of rapid naturalistic bradykinesia clas-
sification based on wrist-worn accelerometer metrics. Individual model training resulted in
a similar mean AUC with a wider standard deviation compared to group model training.
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Figure 3. Classification of medication induced motor fluctuations on short accelerometer time
windows in individual participants. The first pair of bars represents the mean area under the curve
(AUC) score over the twenty participants. Each subsequent pair of bars (002 to 090) represents
the AUC scores from one participant. The blue bars represent the AUC score for the individual
model, and the yellow bars represent the group model. Note that for the individual models, AUC
scores are the averages over the multiple cross-validation folds within a participant (Figure 1B). The
asterisks indicate whether the corresponding AUC score was significantly better than chance level
(5000-repetitions permutation test). Both models have equal mean AUC scores. It is notable that
the majority (18 out of 20 of participants) has at least one significant score. Half of the participants
yielded a higher AUC score with the individual model than with the group model.

3.4. Classification of Bradykinesia-Centred Motor Fluctuations Versus Co-Occurring Symptoms

We found no significant correlations between the individual classification performance
and the individual clinically scored fluctuations in bradykinesia, tremor, and AIMS (see
Table S3, all p-values larger than 0.1). At an individual level, we found significant AUC
scores in participants with (13, 24, and 79) and without (39, 51, and 58) tremor fluctuations
(Figure S4A). Similarly, we found significant AUC scores in participants with (2, 15, 51, and
79) and without (39, 18, 24, and 90) AIMS fluctuations (Figure S4B).

Individual predictive performance was found not to be proportional to the size of
tremor or AIMS fluctuations, suggesting the feasibility of using the applied metrics for
PD patients with and without tremor and abnormal involuntary movements. Meanwhile,
the severity of bradykinesia did not influence the classification performance, suggesting
feasibility of the metrics for patients with even mild-to-moderate bradykinesia fluctuations.

3.5. Influence of Training Data Size and Feature Window Length

We found an increase in the predictive performance (AUC) of the group models as the
number of patient datasets used during model training was increased (Figure 4A). Above
15 participants, the increase in mean AUC levelled off toward the 19 included participants.

Next, we wanted to investigate the impact of the accelerometer data feature window
length on the predictive performance of the group models. Increasing the length of the
feature windows up to 300 s improved the mean AUC (Figure 4B). Due to data size
limitations, the feature windows were not expanded further than 300 s. These analyses
could not be reproduced for the individual models due to data size limitations.
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Figure 4. Increasing number of training patients and length of data window duration improves
classification performance. (A): Group models are trained for every patient with a varying number
of included training data, (x-axis). On the y-axis, the AUC is shown for both SV and RF models
(both included activity filtering). An increase in AUC is seen for SV and RF models parallel to an
increase in included training patients. (B): Group models are trained for every patient with various
feature window lengths (x-axis). On the y-axis, the AUC of the SV and RF models are visualized.
Due to the longer feature window lengths, the activity filter in this sub-analysis is not applied to
data size limitations. Larger window lengths up to 300 s increase classification performance, while
smaller window lengths decrease classification performance. AUC: area under the receiver operator
characteristic; SV: support vector classifier; RF: random forest classifier.

4. Discussion

Our results demonstrated successful classification of naturalistic bradykinesia fluctua-
tions using wrist accelerometer data on different timescales using conventional statistical
approaches (over one-hour epochs) and machine learning classification (over one-minute
epochs). We found that the coefficient of variation of the accelerometer amplitude was
significantly increased following dopaminergic medication when a full 60 min of data was
analyzed per medication condition. At shorter timescales (60 s), this feature (complemented
with 3 other accelerometer metrics) was not strongly predictive of medication state using
machine learning. However, using a larger number of motion metrics (103), statistically
significant classification of medication states could be achieved in 90% of participants (18
out of 20) using either group- or individually-trained models (Figure 3). Individual and
group models both resulted in a mean AUC of 0.70 on the 60 s epochs, where the individual
models’ AUC scores had a larger standard deviation (Figure 3, Table S2). Expansion of
the data epoch length (from 60 to 300 s), as well as inclusion of more training participants,
improved AUC scores in the group models. Limited individual data sizes withheld us
from testing individual models with expanded data epochs and may explain the larger
standard deviation for individual model AUCs (Figures 1B and S1).

These results represent the first demonstration of classification of Parkinsonian bradyki-
nesia fluctuations using individually-trained models for single-wrist accelerometer data on
a rapid timescale. Although we showed statistically significant classification over short
time windows, we did not find added value yielded by individual model training based
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on our current results. Reproduction with longer accelerometer recordings for individuals
is, however, likely to improve classification results further.

The significant difference of only the mean individual coefficient of variance between
pre- and post-medication recordings (Figure 2) may be explained by a suggested larger
discriminative potential of naturalistic sensor features describing a distribution rather than
describing extreme values or sum scores [11].

In general, the presented classification models were notable due to the unconstrained
naturalistic (real-world) data collection environment and short time scale of classification.
Operating at this shorter timescale, the models showed good classification performance
compared with benchmark naturalistic medication-state detection models (Figure 3) [34–36].
Although better classification performances have previously been described with models
using data over longer timescales or from more constrained recording scenarios, these
methodologies improved classification results at the cost of less naturalistic generalizabil-
ity [18,22,27,28,43]. Adding a second motion sensor would likely increase performance at
the cost of user-friendliness and feasibility [32]. Systems using wrist, ankle and/or axial
motion sensors have the theoretical advantage of being more sensitive for arm versus leg-
and gait-centered symptomatology.

4.1. Clinical Relevance and Methodological Challenges of Naturalistic and Rapid PD
Motor Monitoring

Wearable accelerometer-based PD monitoring systems have been developed to aug-
ment therapeutic decision making, [20,21,23] and to augment clinical assessments in phar-
macological trials [11,47]. Previous systems have been validated over the course of days.
However, other suggested clinical state tracking applications would require short time
scale feedback [22], including fine-grained cycle-by-cycle medication adjustments and con-
ventional [48,49] or adaptive [50–53] deep brain stimulation programming. Moreover, the
significant predictive performance in patients with and without both tremor and dyskinesia
(AIMS) fluctuations underlines the potential of dynamic naturalistic monitoring for a wide
spectrum of PD patients (Figure S4A,B). The latter was important to investigate despite the
filtering out of typical tremor bandwidths, since solely band pass filtering cannot rule out
any influence of tremor dynamics.

Notably, we observed marked differences in classification accuracy using either 4 ac-
celerometer features or 103 features (Figures 3 and S3). This suggests that bradykinesia
classification on shorter timescales, requires rich feature sets. The significance testing
with surrogate datasets aimed to rule out any resulting overfitting. However, a thorough
comparison of feature sets is often complicated by proprietary algorithms or the lack of
open-source code [12]. This underlines the importance of transparent, open source, and
reproducible movement metric feature sets for naturalistic PD monitoring [54,55].

Another methodological challenge for rapid, objective, naturalistic short-term PD
monitoring is the lack of a high-quality labelling of data on the same time scale. PD clinical
assessment tools, currently applied as gold standards, are limited in their applicability for
rapid time scales. Multiple longitudinal time windows of the dynamic accelerometer time
series are labelled with a single clinical score, which weakens model training and evaluation.
In effect, sensor-based outcomes are often aggregated to match clinical evaluation metrics
and time scales, which might account for the current upper limit in wearable classification
performance [21,24,29]. PD-specific eDiaries [56–59] labelled video-recordings on fine time
scales [60], and other virtual telemedicine concepts [61] may contribute to this challenge.

4.2. Future Scientific Opportunities to Improve Naturalistic PD Monitoring Development

We predict that the coming expansion of real-world motion data sets, containing
long-term data over weeks to years in patients with PD, will support optimization of
individually-trained models [62]. These larger datasets will also allow the exploration of
alternative, more data-dependent, computational analyses, such as deep neural network
classification and learning [35,63]. Moreover, unsupervised machine learning models could
also be explored to overcome the issues of lacking temporally matching gold standard
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for model training and evaluation by surpassing the need for long-term, repetitive, true
labels [11,64]. The observed discriminative potential of the coefficient of variation (Figure 2)
might be of value in post hoc differentiation of clusters in unsupervised machine learning
models.

Additionally, open-source research initiatives should catalyze the development of nat-
uralistic PD monitor models which are not dependent on proprietary software [10,43]. The
Mobilize-D consortium, for example, introduced a roadmap to standardize and structure
naturalistic PD monitoring by creating specific “unified digital mobility outcomes” [54,55].
During the development of these outcomes, features describing distribution ranges and
extreme values—rather than means or medians—should be considered [11]. Parallel to
open-source initiatives, other creative collaborations between industry and academia, such
as data challenges, might offer valuable (interdisciplinary) cross-fertilization [65]. Further-
more, adding more limb sensors to improve naturalistic PD monitoring is controversial.
Although there is evidence supporting the combined use of wrist, ankle [32,66], or in-
soles [67] sensory tracking, other reports have not shown improved performance and
instead described additional burden to the patient [35,68,69].

4.3. Limitations

Our study was limited by the individual data set sizes, which restricted inferences that
could be made regarding models trained with individual versus group data. Additionally,
the unconstrained character of the pre- and post-medication recordings led to an imbalance
in terms of captured activities during the two medication states. The applied activity-filter
addressed this limitation partly but does not rule out imbalance in exact activities. This
imbalance compromises pattern recognition based data analysis [35], but is also inherent
to naturalistic PD monitoring [18]. Exploring the boundaries of this limitation is essential
for future PD monitor applications. Replication of our methodologies in larger data sets,
and inclusion of validated activity classifiers may contribute to overcoming this limitation.
Future studies should also aim to detect symptom states beyond a binary differentiation
between on- versus off-medication.

5. Conclusions

We demonstrated that classification of naturalistic bradykinesia fluctuations at the
single-minute time scale was feasible with machine learning models trained on both
individual and group data in PD patients using a single wrist-worn accelerometer. At longer
timescales (i.e., an hour), a single accelerometer feature, the coefficient of variation, was
predictive of bradykinesia at the group level. Extension of short accelerometer time epochs
and an increased number of training patients improved classification of group-trained
models. Rapid, dynamic monitoring has the potential to support personalized and precise
therapeutic optimization with medication and stimulation therapies in Parkinson’s patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21237876/s1, Table S1: Overview of extracted features. Figure S1: Schematic visualization of
data splitting method for individual models. Figure S2: Visualization of activity filter performance
versus the parallel raw signal vector magnitude. Table S2: Predictive metrics for all models and
approaches. Figure S3: Comparison of different model approaches for short window medication
states classification. Figure S4: Classification performance in patients with and without tremor and
abnormal involuntary movements. Table S3: Spearman R correlations between symptom fluctuation
and predictive performance at an individual level.
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Abstract: The main purpose of this study is to characterize lower limb joint kinematics during gait
in obese individuals by analyzing inter-limb symmetry and angular trends of lower limb joints
during walking. To this purpose, 26 obese individuals (mean age 28.5 years) and 26 normal-weight
age- and sex-matched were tested using 3D gait analysis. Raw kinematic data were processed to
derive joint-specific angle trends and angle-angle diagrams (synchronized cyclograms) which were
characterized in terms of area, orientation and trend symmetry parameters. The results show that
obese individuals exhibit a kinematic pattern which significantly differs from those of normal weight
especially in the stance phase. In terms of inter-limb symmetry, higher values were found in obese
individuals for all the considered parameters, even though the statistical significance was detected
only in the case of trend symmetry index at ankle joint. The described alterations of gait kinematics
in the obese individuals and especially the results on gait asymmetry are important, because the
cyclic uneven movement repeated for hours daily can involve asymmetrical spine loading and cause
lumbar pain and could be dangerous for overweight individuals.

Keywords: angle-angle diagrams; cyclograms; gait; kinematics; obesity; symmetry

1. Introduction

Obesity is a pathological condition that has a profound effect on disability and quality
of life [1]. The abnormal amount of fat, which modifies the body geometry by adding pas-
sive mass to different regions, causes relevant alterations in skeletal statics and dynamics.
In particular, the mass excess has been recognized to influence the biomechanics of several
movements and activities of daily living, such as walking, standing up, and bending [2–5],
causing functional limitations, and possibly predisposing individuals to injuries [6]. Inves-
tigating these capacities quantitatively appears necessary to define the functional profile in
the obese population and then plan appropriate rehabilitation interventions.

As locomotion is one of the most important and frequent tasks in daily life, it is
not surprising that the features of gait in obese individuals have been extensively inves-
tigated. Indeed, the quantification of the way obesity affects the biomechanics of gait
provides important insights about the relationship between metabolic and mechanical
energetics, mechanical loading (in particular at lower limb joints), and the associated
risk of musculoskeletal injuries and/or pathologies. Our understanding of how obesity
affects gait biomechanics is increasing, and currently a rich body of literature and sev-
eral reviews [7–10] are available. However, it is noteworthy that the findings related to
the effects of obesity on the kinematics and kinetics of walking are mixed. While some
studies reported that obesity induces slower velocity [5,8,11,12], lower cadence [5,11,12],
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reduced stride length [4,5,8,12] and swing time [12,13], increased stance time [8,12,13],
decreased single support time [4,8], and increased double support time [8,14], other stud-
ies failed in detecting significant changes in velocity [4,13–16], cadence [13,14,17], step
length [11,14,16], stride length [17], stance time [13], single and double leg support time
and swing phase duration [11]. However, the literature is consistent as regards the increased
step width [4,5,14,16,17]. In addition, increased peak hip joint flexion [18], extension [12],
sagittal plane range of motion (ROM) [19], and increased ankle eversion from mid-stance
to pre-swing [8] have been described. Conversely, no changes in hip joint sagittal plane
ROM, ankle joint peak, and ROM of eversion [18] have been found. Finally, in some
cases increased hip adduction during terminal stance and pre-swing and increased knee
adduction in stance and swing [8,18] have been observed as well as increased ankle plantar
flexion and reduced knee flexion [12].

In summary, although the main alterations of gait pattern in obese individuals have
been extensively investigated, there are some aspects which remain mostly unexplored.
First, previous researches were typically conducted using discrete parameters obtained
by gait analysis (angle values at specific instants of the gait cycle, range of motion, . . . )
while no comparisons between the angle variations of hip, knee, and ankle joints in
obese and normal weight individuals have been ever performed on a point-by-point
basis. Comprehensive analysis of the whole angular trends during the gait cycle may
provide a broader view of the gait alterations, thus representing a sound basis to plan
suitable training and rehabilitative programs. Second, no data are available as regards
inter-limb symmetry of obese individuals at hip, knee, and ankle joints during walking.
The concept of symmetry in movement is quite controversial, as some researchers consider
the human nature intrinsically asymmetrical and, as such, perfect symmetry does not exist
in humans [20,21]. Nonetheless, it is commonly assumed that when a certain threshold of
asymmetry is exceeded, its existence is indicative of gait alterations, which can originate
from impaired motor control or from structural damage in the musculoskeletal system.

So far, different approaches have been proposed to quantify lower limb asymmetry
during gait. Among discrete methods, that is those which consider single values of selected
gait cycle parameters (i.e., spatio-temporal parameters or ground reaction force data [22]),
the symmetry index (SI) [23–26] is one of the most commonly used. To the best of our
knowledge, only one study exists about the application of SI in overweight individuals [20];
in this case, the SI was used to describe the difference between the left and right loadings
considering the vertical components of the ground reaction force. It was demonstrated
that a significant and high correlation is present between the SI and BMI of overweight
subjects, thus suggesting that higher asymmetry of lower limb loading is associated with
overweight, which implies greater risk to health of those people.

More recently, the techniques which make use of the entire angular waveforms have
become widespread. In this case, inter-limb asymmetry is computed starting from contin-
uous joint angle using bilateral cyclograms, [27–30], representing mutual dependencies
between contralateral joint during the entire gait cycle [31]. Since asymmetry is usually
associated with several pathologies, some studies have been conducted on this topic, in
musculoskeletal, orthopaedic, and neurological diseases [27,28,32–34]. However, to the
author’s knowledge, this approach has never been employed to obese individuals. In
literature, Stodolka and Sobera [20] demonstrated that the higher postural asymmetry of
the lower limb loading is associated with overweight, leading to greater risk to health of
those people. Repeated asymmetry of loading both legs for hours every day can involve
asymmetrical spine loading and lumbar pain [35]; this effect could be more dangerous for
health in the case of overweight or obese people. A better understanding of abnormalities
in gait functionality of obese individuals may result in a more detailed understanding of
biomechanical factors that influence their kinematics and could give suggestions for a more
appropriate and effective rehabilitation and exercise prescription. Thus, the primary goal
of the present study was to investigate the existence of possible alterations in lower limb
joint kinematics in obese individuals during gait using two approaches: (1) assessment of
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inter-limb symmetry on the basis of the angular trend of each joint calculated for the whole
gait cycle and (2) assessment of the existence of possible differences, in terms of lower limb
joint kinematics, with respect to normal weight individuals by means of a point-by-point
comparison of the angular trends acquired during the gait cycle.

2. Methods

2.1. Participants

A convenience sample of 26 obese individuals (OW, 11 male, 15 female, mean age
28.5 years, BMI > 30 kg/m2, median 39.0 kg/m2, range 34.9–51.6 kg/m2) admitted for
an integrated bodyweight reduction and rehabilitation program at the Istituto Auxologico
Italiano, Piancavallo (VB, Italy), were recruited for the study on a voluntary basis. At
the time of the experimental tests, all of them were free from any acute musculoskeletal,
neuromuscular, psychological, and/or cardiopulmonary conditions able to significantly
affect their walking abilities and postural control. Gait analysis data were taken from
retrospective studies performed at Istituto Auxologico Italiano, Piancavallo (VB, Italy).
An equal size number of normal weight individuals (BMI median 21.4 kg/m2, range
17.0–26.5 kg/m2) recruited among the hospital and University of Cagliari staff matched for
age, sex, and height served as control group (NW). All participants (whose anthropometric
and clinical features are reported in Table 1) were required to sign a written informed
consent form, in which the details of the experimental tests were reported. The study was
carried out in compliance with the World Medical Association Declaration of Helsinki and
its later amendments.

Table 1. Anthropometric and clinical features of participants. Values are expressed as mean (SD).

Normal Weight (NW) Obese (OW)

Participants (M, F) 26 (11M, 15F) 26 (11M, 15F)
Age (years) 28.5 (7.8) 28.7 (7.6)

Body mass (kg) 60.2 (11.9) 109.8 (15.8)
Height (cm) 165.6 (8.3) 165.5 (9.0)

Body Mass Index (kg m−2) 21.8 (2.8) 40.4 (0.8)

2.2. Spatio-Temporal and Kinematic Data Collection and Processing

Spatio-temporal and kinematic parameters of gait were acquired by means of a 6-camera
motion-capture system (VICON, Oxford Metrics Ltd., Oxford, UK) with a sampling rate
of 100 Hz, and two force platforms (Kistler, CH). Prior to the experimental tests, the
following anthropometric data were collected: height, body mass, anterior superior iliac
spine distance, pelvis thickness, knee and ankle width, and leg length. Then, 22 spherical
retro-reflective passive markers were placed on the individual’ skin at specific landmarks
according to the protocol proposed by Davis et al. [36]. Once this preparation phase was
completed, participants were requested to walk along a 10 m long walkway at their self-
selected speed in the most natural manner. A trial was considered valid, and subsequently
processed, if the marker trajectories were not lost during the subject’s gait and included
at least one cycle per limb. At least six trials were acquired for each participant in order
to guarantee reproducibility of the results. The raw 3D markers’ trajectories were thus
processed using the dedicated software (Polygon Application, version 2.4, VICON, Oxford
Metrics Ltd., Oxford, UK), to obtain the following variables:

• spatiotemporal parameters of gait (i.e., speed, stride length, cadence, stance, swing,
and double support phase duration);

• dynamic range of motion (ROM) of hip, knee and ankle joints, calculated as difference
between the minimum and the maximum angle of flexion-extension (hip and knee)
and dorsi-plantarflexion (ankle) observed during the gait cycle;

• angular trends of hip, knee, and ankle joints on the sagittal plane across the gait cycle.
Such curves will be subsequently used to calculate the indexes of interlimb symmetry
as described later in detail.
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2.3. Gait Symmetry Quantification by Means of Cyclograms

Synchronized bilateral cyclograms were obtained from the sagittal kinematics properly
processed with a custom routine developed under Matlab environment following the
procedure proposed by Goswami et al. [37]. Briefly, using right and left limb angle values
acquired during the gait cycle, angle-angle diagrams for hip, knee, and ankle joints were
built and, on their basis, the following symmetry parameters were extracted:

• Cyclogram area (degrees2): the area enclosed by the curve obtained from each angle-
angle diagram [38]. In the ideal case of perfectly symmetrical gait, the cyclogram area
is null, as left and right joint angles assume the same value for each time period of
the gait cycle and thus all cyclogram points lie on a 45◦ line. Increasing values of area
indicate larger interlimb asymmetry.

• Cyclogram orientation (degrees): the absolute value of the angle φ formed by the
45◦ line (i.e., perfect interlimb symmetry) and the principal axis of inertia of the
cyclogram [37]. A zero value indicates perfect symmetry, while increasing values of φ
denote higher interlimb asymmetry.

• Trend symmetry: this dimensionless parameter, calculated according to the procedure
described by Crenshaw and Richards [39] is obtained by eigenvector analysis on
time-normalized right and left limb gait cycles. Even in this case a null value indicates
perfect symmetry, while increasing interlimb asymmetry corresponds to higher trend
symmetry values.

2.4. Statistical Analysis

We preliminarily checked all data separately acquired for left and right limb to verify
the presence of statistically significant differences between them. As they were not found,
in the subsequent analysis for each participant we considered the mean value of left and
right joint/limb.

The existence of differences between OW and NW groups was assessed using three
different statistical approaches. In particular, one-way multivariate analysis of variance
(MANOVA) was carried out to investigate the possible differences introduced by obesity
in spatio-temporal parameters of gait and dynamic ROM, while one-way multivariate
analysis of covariance (MANCOVA) was used in case of interlimb symmetry parameters,
including gait speed as a covariate. This design allows observers to take into account
in the analysis any possible differences of speed between groups which might affect, to
some extent, the lower limb kinematics. In both analyses group (OW/NW) was set as the
independent variable, while the dependent variables were respectively the six previously
listed spatio-temporal parameters, the 3 dynamic ROM at hip, knee and ankle joints and
the 3 symmetry parameters calculated for each joint. The level of significance was set at
p = 0.05 and the effect sizes were assessed using the eta-squared (η2) coefficient. Univariate
analysis of variance (ANOVA) was carried out as a post-hoc test by reducing the level of
significance according to the Bonferroni correction.

Instead, the differences associated with the presence of obesity in joint kinematic
data were assessed by comparing the “angle vs. time” curves of both groups, for each
of the 3 joints of interest, on a point-by-point basis using a one-way ANOVA, using
an approach previously proposed in the literature to characterize sex-related differ-
ences in kinematic patterns among population of unaffected adults (i.e., men vs. women,
Bruening et al. [40]) or between healthy individuals and those affected by neurologic and
orthopedic conditions [27,41,42]. In this way it was possible to define the time intervals of
the gait cycle characterized by significant differences associated with obesity.

We also explored the existence of possible relationships between BMI and interlimb
symmetry parameters, while controlling for gait speed, by calculating partial correlation
coefficients. All statistical analyses were performed using the SPSS version 20b software
(IBM SPSS Statistics, Armonk, NY, USA).
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3. Results

The results of the comparison between obese and normal weight individuals with
regard to spatio-temporal gait parameters, dynamic ROM and interlimb symmetry are
summarized in Tables 2–4; an example of cyclograms calculated for obese and normal
weight participants are reported in Figure 1, and the angle variations in the sagittal plane
during the gait cycle for hip, knee, and ankle joints are shown in Figure 2.

The statistical analysis revealed a significant effect of obesity on spatio-temporal
parameters. [F(6,45) = 17.87, p < 0.001, Wilks λ = 0.30, η2 = 0.704 95% CI [0.525–0.751]]. In
particular, the follow-up ANOVA showed that obese individuals were characterized by
significant lower gait speed, stride length and swing phase duration and increased stance
and double support phases duration.

Similarly, in case of dynamic ROM a main effect of group was detected [F(3,48) = 5.49,
p = 0.003, Wilks λ = 0.74, η2 = 0.255 95% CI [0.063–0.377]]. The subsequent follow-up
ANOVA revealed that obese individuals exhibited significantly reduced dynamic ankle
and knee (but not hip) ROM with respect to normal weight individuals.

Finally, even in the case of symmetry parameters, after controlling for gait speed,
a significant effect associated with obesity was found at knee and ankle joints (knee
F(3,47) = 3.23, p = 0.031, Wilks λ = 0.83, η2 = 0.171 95% CI [0.009–0.290], ankle F(3,47) = 2.96,
p = 0.042, Wilks λ = 0.84, η2 = 0.159 95% CI [0.003–0.276]). The post-hoc analysis revealed
that both trend symmetry parameter for the ankle joint and cyclogram orientation at knee
joint were significantly higher in the OW groups thus indicating the presence of relevant
interlimb asymmetry.

The results of the correlation analysis between BMI and symmetry parameters, which
are reported in Table 5, showed the existence of significant moderate positive relationship
between BMI and trend symmetry at ankle joint and cyclogram orientation at knee joint.

Point-by-Point Analysis of Kinematic Curves

The results of the analysis of hip, knee, and ankle kinematics in the sagittal plane,
performed (Figure 2) on a point-by-point basis, show that significant differences between
obese and normal weight individuals exist at all the three considered joints. In particular,
obese individuals exhibited

• significantly increased hip flexion through all the stance phase (0 to 59% of the gait
cycle) and at the end of the swing phase (90 to 100%);

• significantly reduced knee flexion through all the gait cycle;
• significantly reduced ankle dorsi-flexion for initial and mid-stance (3 to 41% of the

gait cycle) and increased dorsi-flexion at the terminal stance and initial swing (48 to
64% of the gait cycle).

Table 2. Comparison between the spatio-temporal gait parameters of normal weight and obese
individuals. Values are expressed as mean (SD).

Normal Weight Obese

Gait speed (m s−1) 1.30 (0.20) 1.16 (0.13) *
Stride length (m) 1.38 (0.13) 1.23 (0.10) *

Cadence (steps min−1) 114.54 (10.78) 112.65 (7.51)
Stance phase (% of the gait cycle) 59.15 (1.56) 61.87 (1.32) *
Swing phase (% of the gait cycle) 40.85 (1.56) 38.13 (1.35) *

Double support (% of the gait cycle) 18.44 (2.86) 47.40 (5.24) *
The symbol * denotes statistically significant difference vs. normal weight after Bonferroni correction (p < 0.008).
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Table 3. Comparison between dynamic ROM of normal weight and obese individuals. Values are
expressed as mean (SD).

Normal Weight Obese

Ankle ROM (◦) 32.4 (5.7) 28.5 (5.4) *
Knee ROM (◦) 61.9 (4.5) 56.0 (6.0) *
Hip ROM (◦) 46.7 (5.2) 43.7 (5.3)

The symbol * denotes statistically significant difference vs. normal weight after Bonferroni correction (p < 0.016).

Table 4. Comparison between interlimb symmetry parameters of gait of normal weight and obese
individuals. Values are expressed as mean (SD).

Parameter Joint Normal Weight Obese

Cyclogram area (◦2)
Ankle

77.68 (59.59) 103.84 (63.05)
Cyclogram orientation φ (◦) 2.63 (2.04) 3.94 (4.83)

Trend Symmetry 1.34 (1.08) 2.51 (1.63) *

Cyclogram area (◦2)
Knee

228.50 (178.97) 312.71 (221.37)
Cyclogram orientation φ (◦) 1.09 (0.81) 2.02 (1.98) *

Trend Symmetry 0.39 (0.30) 0.70 (0.62)

Cyclogram area (◦2)
Hip

97.22 (87.41) 124.43 (72.95)
Cyclogram orientation φ (◦) 1.74 (1.22) 1.94 (20.6)

Trend Symmetry 0.20 (0.17) 0.68 (1.16)
The symbol * denotes a significant difference with respect to the normal weight group.

Figure 1. Comparison between cyclograms of obese and normal weight individuals. The diagram
refers to the knee joint.
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Figure 2. Gait kinematics in the sagittal plane for normal weight and obese individuals. From top to
bottom: ankle dorsi-plantar-flexion, knee flexion-extension, and hip flexion-extension angles during
gait cycle. Grey-shaded areas denote the periods of the gait cycle in which a significant difference
between groups was detected (p < 0.05).

115



Sensors 2021, 21, 5980

Table 5. Partial correlation coefficients between BMI and interlimb symmetry parameters.

Joint Symmetry Parameter BMI p

Ankle
Cyclogram area (◦2) 0.242 N.S.

Cyclogram orientation φ (◦) 0.252 N.S.
Trend Symmetry 0.441 0.001

Knee
Cyclogram area (◦2) 0.163 N.S.

Cyclogram orientation φ (◦) 0.320 0.022
Trend Symmetry 0.245 N.S.

Hip
Cyclogram area (◦2) 0.194 N.S.

Cyclogram orientation φ (◦) −0.053 N.S.
Trend Symmetry 0.093 N.S.

N.S. = Not Significant.

4. Discussion

The aim of the present study was to characterize the main alterations in gait kinematics
in obese individuals, with special focus on interlimb asymmetry and detailed point-by-
point comparison of the angular trends of hip, knee, and ankle joints between obese and
normal weight individuals.

Our data indicated that most of the spatio-temporal parameters differ significantly
among obese participants and controls, particularly in terms of gait speed, stride length,
stance and swing phase and double support duration. Overall, such results are consistent
with previous studies focused on characterizing gait patterns in obesity [4,5,8,11–14]. Taken
together, the observed changes suggest the existence of a strategy specifically aimed to
improve stabilization and balance control, which are threatened by the biomechanical
alterations associated with mass excess. The longer duration of double support and stance
phase are probably the result of a strategy aimed to allow a safer locomotion through
a better optimized balanced distribution of the weight on both limbs and thus reduce the
risk of instability and falls [4,43].

The kinematic pattern on the sagittal plane, as defined by the point-by-point analysis,
indicates that obesity mainly affects the stance phase of gait, as most significant differences
with respect to normal weight individuals were observed during that part of the gait cycle.
In particular the results show that obese individuals exhibit reduced hip extension, knee
flexion and ankle plantarflexion [17,44], which overall lead to a significant reduction of
ankle and knee dynamic ROMs. Such alterations, which were reported (individually or in
combination) in previous studies on adults and adolescents [12,45–47], might represent, to-
gether with reduced walking speed and longer stance phase duration, a strategy to reduce
the articular stress and to compensate for the reduced muscular strength and the altered
joint proprioception. Walking speed certainly plays a crucial role in defining the sagittal
kinematics of gait in obese individuals and can be considered the main cause for the combi-
nation of increased knee flexion and increased plantarflexion at toe off [12]. At the same
time, some researchers pointed out that walking at slower speeds may also represent the
expression of a compensatory strategy aimed to limit the magnitude of the forces acting on
lower extremity joints [45] and thus to reduce the risk of musculoskeletal diseases [12,17].

The significantly reduced dynamic ROMs that we detected, in particular at knee and
ankle joints, may also be connected to the continuous search for stability typical of obese
individuals. As they need to keep both limbs in contact with the ground, this condition
increases the amount of time spent in a closed lower-limb kinematic chain condition. In
this situation, the degrees of freedom of the rigid lower body system are reduced and the
constraint, especially on the knee joint, increases. At last, we observe that another factor
involved in the ROM reduction at knee joint might be due to the excess fat on the thigh
and shank, which mechanically encumbers intersegmental rotation and counteracts the
antigravity action exerted by the knee flexors [48]. As for the ankle joint, the deficits in
plantar- and dorsiflexion might be due to a reduced strength of the ankle muscles, which
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were already reported by previous studies [49]. In this context, it is noteworthy that such
effect could be reduced through suitable physical and rehabilitative intervention [50,51].

The results of the inter-limb symmetry analysis show a well-defined trend charac-
terized by higher values of all considered parameters in obese individuals even though
the statistical significance was achieved only in case of trend symmetry at ankle joint. To
tour knowledge, no previous studies investigated inter-limb symmetry of lower limb joint
kinematics in obese individuals, and thus there are no available data for direct comparison.
However, it is noticeable that few previous studies reported the existence of significant
asymmetries in spatio-temporal parameters of gait, such as step length [52] and stance
phase duration [53]. Moreover, Stodolka et al. [20] calculated the symmetry index (SI) in
a group of overweight individuals to quantitatively characterize the existence of possi-
ble differences between the left and right limb loading during quiet stance by analyzing
the vertical components of the ground reaction force. They found that asymmetry was
strongly correlated with body mass index and suggested that increased body weight may
be a disadvantageous determinant of dynamic stability.

The presence of asymmetry during gait is a well-known phenomenon in neurologic
conditions (i.e., multiple sclerosis, stroke [28,54] as well as in musculoskeletal disorders
with a marked unilateral presentation [27]. However, in all these cases there are clear
factors (e.g., either damage in a specific location of the central nervous system or injury of
one limb) that justify the lack of symmetry. In case of obesity, neither of these two factors
is present, and thus the reasons of the observed asymmetry should be found elsewhere.
Several recent studies reported that obese individuals are characterized by uneven fat
distribution in the left and right side of the body [55] and, among a group of adolescents,
a larger proportion of individuals characterized by asymmetric lower limb force/power
was found among obese with respect to normal weight peers [56]. At last, Bell et al. [57]
suggested that lean mass asymmetries represent a co-factor in force/power asymmetry
during jumping. Although we don’t have any direct evidence regarding the existence of
fat/lean mass or muscular strength among left and right limb in our sample, it appears
reasonable to hypothesize that asymmetry of lower limb kinematics is due to “mechanical”
factors associated with differences in body composition and muscular performance of the
two legs.

The described alterations of gait in our sample of obese individuals could be informa-
tive from a clinical and rehabilitative point of view. It is known that walking at a constant
intensity for a prolonged time is a useful and frequently employed strategy to achieve body
mass reduction in obese individuals because it is a convenient type of physical activity
which involves a significant amount of metabolic energy expenditure [14]. Therefore,
walking abnormalities should be carefully assessed and considered to avoid overload and
possible musculoskeletal problems which would prolong the rehabilitation phase and
possibly introduce negative effects. In particular, the investigation on gait asymmetry
seems to be important, because the cyclic uneven movement daily repeated for hours can
involve asymmetrical spine loading and cause lumbar pain [35] and this effect could be
certainly more dangerous in case of individuals overweight. Even a relatively low degree
of asymmetry of weight-bearing repeated every day for years could represent a co-factor
for the onset of either low back pain or hip joints issues [20]. Thus, an appropriate and
effective rehabilitation and exercise prescription parallel to weight loss could be tailored to
recover gait pattern and reduce its asymmetry.

This study has several limitations. Firstly, the tested sample was composed of young
adults. Previous research carried out on older adults obese reported that they often exhibit
articular problems (such as osteoarthritis) and severe gait alterations [58,59] that could
be due to the progressive/cumulative effect of excessive joint loads over the years. Our
results, which refer to young adults, could have been influenced by age-factor both in terms
of gait pattern and of asymmetry which revealed a moderate severity of gait modifications
with respect to controls, confirming that obesity does not determine major and immediate
changes in the learned motor strategy in young adult patients. In other words, the effect
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of obesity on joint biomechanics seems to be not immediate, but progressive [4]. Another
limitation is due to the heterogeneity of the participants in terms of severity of obesity,
which makes more difficult the comparison with existing data on the literature. Finally, it
is important to highlight that in this study the gait pattern was quantified using a standard
marker set [36] which, in case of obese individuals, might suffer from reduced accuracy
in terms of marker placement and soft tissue artefact [60,61]. Of particular concern is
the marker positioning on anterior superior iliac spine (ASIS) and/or greater trochanter
markers to establish the pelvis and hip joint centers. This might lead to inaccurate estimates
of joint centers and, consequently, errors of the resultant kinematic/kinetic parameters,
particularly as regards hip and knee [62]. However, it is also known that parameters like
dynamic ROMs during gait are only slightly affected by these issues [63] and thus, even in
obese, their values can be considered reliable. Future studies are needed to clearly identify
the optimal marker placement as well as suitable skeletal model development procedures,
to properly remove (or at very least greatly reduce) the errors possibly associated with
marker placement. In this context, it is noteworthy that a combination of dual-energy X-ray
absorptiometry images (to exactly assess the inter-ASIS distance and estimating segment
inertial parameters [64]) with a sacral marker cluster and digitized pelvic anatomical
landmarks [65] have been suggested to improve the accuracy of marker-based motion
capture. Future studies should also be directed towards the investigation of specific classes
of obesity to better understand its effects on gait, as the previously mentioned negative
issues might be either dependent or independent by the magnitude of the mass excess.
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Abstract: Gait analysis has historically been implemented in laboratory settings only with expensive
instruments; yet, recently, efforts to develop and integrate wearable sensors into clinical applications
have been made. A limited number of previous studies have been conducted to validate inertial
measurement units (IMUs) for measuring ankle joint kinematics, especially with small movement
ranges. Therefore, the purpose of this study was to validate the ability of available IMUs to accurately
measure the ankle joint angles by comparing the ankle joint angles measured using a wearable device
with those obtained using a motion capture system during running. Ten healthy subjects participated
in the study. The intraclass correlation coefficient (ICC) and standard error of measurement were
calculated for reliability, whereas the Pearson coefficient correlation was performed for validity. The
results showed that the day-to-day reliability was excellent (0.974 and 0.900 for sagittal and frontal
plane, respectively), and the validity was good in both sagittal (r = 0.821, p < 0.001) and frontal
(r = 0.835, p < 0.001) planes for ankle joints. In conclusion, we suggest that the developed device could
be used as an alternative tool for the 3D motion capture system for assessing ankle joint kinematics.

Keywords: validation; kinematic; inertial measurement units; motion analysis; gait

1. Introduction

The ankle joint is the most frequently involved in human lower body movements, and
it plays a vital role in supporting body weight by distributing gravitational and inertial
loads. Once injuries, such as strain or sprain, by an external force occur in the ankle
joint, they cause deformities in its structure. Impairments of the ankle joint can result in
chronic ankle instability; therefore, irregular loading on one side could provoke pain on
the ankle. Ankle sprains are common injuries in the general population, as well as among
professional athletes [1–3]. The characteristics range from structural deficits such as joint
laxity to functional impairments in gait [4]. In terms of rehabilitation, measuring the ankle
joint movement pattern during ambulating or running can help clinicians determine the
optimal care level a patient should receive.

Many clinical settings for gait training and rehabilitation in patients with motor
impairments use a three-dimensional (3D) motion capture system considered the gold
standard measurement of joint kinematics [5,6]. The 3D motion capture system is one
of the measurement tools with high accuracy, e.g., mean absolute marker-tracking errors
of 0.15 mm during static trials [6] and 0.2 mm (with corresponding angle errors of 0.3)
during dynamic trials [7]. A VICON system, showing high validity and reliability in
measuring joint kinematics, has been used as a suitable comparison tool to examine
whether alternative systems, e.g., inertial measurement unit (IMU)-based systems, provide
a sufficiently accurate method for motion analysis [8,9]. Although this sophisticated
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system allows the assessment of kinetic and kinematic data from complicated human
movements, it has several limitations. The fact that the 3D motion capture system is a
marker-based system requiring many cameras is considered the primary limitation. The
high cost of the instrument makes it impractical to use in various settings, such as a clinic,
the field, or patients’ homes. Furthermore, the system cannot be used to measure and track
movements simultaneously.

To overcome the limitations of the 3D motion capture system, many efforts to develop a
device that can be simply conducted with a concise process have been made by researchers.
Recently, IMUs—a markerless motion capture technology—have been developed as an
alternative measurement tool to 3D motion capture devices. An IMU is a wearable-designed
device that allows motion measurement data to be sent to a computer in real time and
immediate feedback (5) to be received. It collects 3D data (x, y, and z) using a combination
of accelerometers, gyroscopes, and magnetometers; it is lighter, smaller, and easier to
use than the 3D motion capture system. Collecting and combing raw data from multiple
individual sensors are enabled by sensor fusion algorithms, and thus, the estimation of 3D
spherical coordinates and Euler angles in a global reference domain can be made [10].

IMUs have been evaluated and shown to be promising in estimating the angular
kinematics of lower limb joints, including the hip, knee, and ankle [11–13], as well as
upper body posture [14]. However, as IMUs are not easily available to all professionals,
due to movement complexity, sensor placement, biomechanical model, and calibration
procedure that could increase the risk of error of the measurement, most researchers have
tried analyzing the movements of joints conducted in the sagittal plane, such as flexion,
extension, and hyperextension movements.

Especially, the errors of measurement values for the ankle in the transverse and frontal
planes for gait analysis were large, which might be due to the small range of motion in these
planes or the differences in the anatomical or biomechanical definitions between the two
systems [15]. However, to the best of our knowledge, the number of previous studies that
have investigated the angular kinematics of the ankle joint are limited, and it is necessary to
establish validity as a clinical tool to aid in the diagnosis of gait impairment and treatment.
Therefore, the purpose of this study was to verify whether the newly developed device can
be simply operated with a high accuracy and concise calibration process.

2. Materials and Methods

2.1. Participants and Data Collection

Ten healthy male participants of 30.2 ± 5.3 years, 171 ± 15.3 cm, and 73.6 ± 12.4 kg
body mass were recruited in this study. Exclusion criteria for the study were as follows:
individuals who had ankle surgery or nervous system damage or disorder and those
with any injuries to the lower limbs within the past three months that could affect the
neuromuscular function. The study protocol was approved by the Office of Research Ethics
at Yonsei University (IRB No. 7001988-202101-HR-1076-03) and all subjects provided an
informed consent, which were compliant with the Declaration of Helsinki.

2.2. IMU System and Sensor Placements

A Raspberry Pi 3 Model B+ computer and two Adafruit BNO055 IMU sensors were
used (Adafruit, New York, NY, USA) for data collection. Sensor data were collected at a
constant frequency of 100 Hz. One IMU sensor was placed on top of the instep of the right
foot (Sensor 1), and the second IMU sensor was tightly fixed on the right shin (Sensor 2)
using a specially designed holder. The part of holder meeting the right shin has a round
shape so it does not move horizontally. The sensors were required to be perfectly parallel
to each other, as well as the ground, for accurate calculations. Thus, we designed a shoe
mount for Sensor 1 and a sensor holder with a strap for Sensor 2. Both parts comprised a set
of an acrylic sensor slide plate and acrylic holder for easy detachment during the calibration
process. In addition, we mounted four-corner leveling systems on both holders for leveling.
Sensor 2 was fixed as reference coordinates by built-in coordinates (ref-coordinates) of the
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BNO055 IMU sensor. Each sensor was directly wired to the single board computer using
3,4 buses for I2C communication. This whole setup was powered by a portable lithium
battery with a capacity of 5000 mAh, lasting more than 3 h, which is sufficient for most
IMU-based trainings. Eulerian displacements were calculated by subtracting Sensor 1
coordinate data (test-coordinate) from ref-coordinate values. Displacement values of each
axis were referred to the yaw, pitch, and roll status.

2.3. Vicon System and Marker Placement

The kinematic data were collected at 100 Hz and their positions targeted the capture
volume. The calibration of the Vicon system was conducted before each data collection.
The Plug-in-Gait (PiG) lower body model was used to analyze movement at the ankle
joints. A total of 16 reflective markers were placed on the participants before testing, and
a static calibration trial was initially collected to form a musculoskeletal model based on
(Figure 1) an 8-camera motion analysis system (VICON, Oxford, UK). The place of markers
was attached to the following landmarks: ASIS, PSIS, mid-lateral thigh, lateral knee joint line,
lateral mid-shank, lateral malleoli, calcaneal tuberosity, and head of the second metatarsal.

Figure 1. Participants’ setup.

The participants’ specific information of weight, height, ankle width, knee width, and
leg length were measured in the lower body model. Figure 1 shows the participants’ setup
of the anterior, lateral, and posterior views with the markers in place. The PiG model
of Vicon was used to evaluate all parameters. The lower body was modeled as seven
segments (one pelvis, two thighs, two shanks, and two feet). A normal gait cycle was
defined from the initial heel-to-heel contact with the same limb.

2.4. IMU Joint Angle Calculations

The proposed IMU sensor includes internal algorithms to calibrate the gyroscope,
accelerometer, and magnetometer inside the device. The calibrations of gyroscope, ac-
celerometer, and magnetometer were conducted at the same time the investigator held the
device with their hand and shook it in the shape of 8. However, the IMU sensor did not
contain any internal electrically erasable programmable read-only memory, so we had to
perform the formal calibration process every time the device started up.

After the calibration, raw sensor orientation data were received as types of quaternions.
These quaternions needed to be converted to a Euler angle, commonly used units, for
easy comprehension. Euler angles were obtained from the quaternions via the following
equations [16]:

⎡
⎣ ϕ

θ
ψ

⎤
⎦ =

⎡
⎢⎢⎣

arctan 2(q0q1+q2q3)
1−2(q1

2+q2
2)

arcsin(2(q0q2 − q3q1))

arctan 2(q0q3+q1q2)
1−2(q2

2+q3
2)

⎤
⎥⎥⎦,

q0 = qw = cos(α/2)
q1 = qx = sin(α/2) cos(βx)
q2 = qy = sin(α/2) cos

(
βy

)
q3 = qz = sin(α/2) cos(βz)
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where ϕ, θ, and ψ are Euler angles and q0, q1, q2, and q3 are quaternions. α is a sim-
ple rotation angle and cos(βx), cos

(
βy

)
, and cos(βz) are the direction cosines (Euler’s

rotation theorem).
Sensor 1 Euler angle
S1 = [ϕ1, θ1 , ψ1]
Sensor 2 Euler angle
S2 = [ϕ2, θ2 , ψ2]
Static Euler angle
Sst = [ϕst, θst , ψst]
Ankle joint angle
= [ϕ1 − ϕ2 + ϕst, θ1 − θ2+θst, ψ1 − ψ3 +ψst]

The coordinate system of the IMU sensor was aligned parallel to the floor, and the
angle started at 0◦ based on that state. As the sensors and ground were started parallelly
(Figure 2), ankle motion was generated by simply subtracting Sensor 1 (ref-coordinate) and
Sensor 2 (test-coordinate) angles. The static angle value was added to the subtracted value
of the IMU sensor.

(A) (B) (C)

Figure 2. Sensor placement: (A) Sensor 1, (B) Sensor 2, and (C) Sensor 2 holder with strap and leveling.

Description of the location of each IMU sensor (red), Raspberry Pi (yellow), and PiG
body model marker location for the: (left) anterior view; (middle) lateral view; and (right)
posterior view.

2.5. Vicon Joint Angle Calculations

Kinematics of the ankle joint were measured using the Vicon PiG model. Sagittal
plane motion of the ankle was taken between the shank anterior to posterior axis and the
projection of the axis formed by the heel and toe markers into the sagittal plane of the foot.

Furthermore, frontal plane motion of the ankle was taken between the ankle medial to
lateral axis, and the projection of the axis formed both malleoli.

Additional information of the PiG angle calculations can be found on Vicon’s website.

2.6. Experiment Protocol

To evaluate the validity between VICON and IMUs for ankle movements, a functional
movement protocol was generated. Along with the reflective markers, two wearable
IMU sensors were attached to participants. Participants were asked to perform a running
task. Initially, they were instructed to naturally walk to synchronize the position of the
markers and sensors as the zero spots and then to try running. The peak point (maximum
dorsiflexion (Max DF) to Max DF) of this movement was detected to synchronize the two
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systems. Participants performed the running task. The data recording protocol consisted
of five trials of running (2.68 m/s). Prior to the test, all participants were given time for a
10 min warm up and familiarization session, and they were asked to have a rest of 2 min
between each trial.

2.7. Data Processing and Statistical Analysis

The motion capture data were considered the gold standard reference for kinematic
data for this study. Data from the IMUs and VICON were synchronized by matching them
based on the positive peak of the measure by each system [17]. The marker trajectories
were imported to Matlab, and joint angles were computed and filtered with Matlab. The
five cycles from Vicon and IMUs were synchronized using the positive peak value in the
sagittal and frontal planes. The raw data were filtered by a fourth-order Butterworth
low-pass filter with a cut-off frequency of 6 Hz, following the recommendation of previous
studies [18], to attenuate unwanted noise. Data analysis was performed in Matlab software
for running for both sagittal and frontal planes of movement. All data were calculated
as averages of all repetitions before being averaged across all participants. All statistical
analyses were conducted using SPSS ver. 25.0 (IBM, Armonk, NY, USA). For the test–retest,
the intraclass correlation coefficient (ICC) was calculated for each plane of the ankle joint
during running for each of the two systems [19]. Pearson‘s coefficient correlation was
performed to verify the relationship of the ankle angle between IMUs and VICON in the
sagittal and frontal planes.

3. Results

3.1. Demographics and Description

Ten male participants (mean ± standard deviation age: 30.2 ± 5.3 years; height:
171 ± 15.3 cm; body mass: 73.6 ± 12.4 kg) were enrolled in the study. Confirmed consent
forms were given from all the participants. A total of 50 trials (running task; five trials per
subject) were conducted and analyzed.

3.2. Reliability (Test–Retest)

The test–retest reliability of the IMUs in measuring the sagittal and frontal planes
with ICC, and its standard error of measurement (SEM), is described in Table 1. A high
correlation with ICC (2, 1) values of 0.974 and 0.9 for the sagittal and frontal planes were
observed, respectively.

Table 1. Intraclass correlation coefficient and SEM of VICON and IMUs for each plane.

Static Measurement Sagittal Plane (ICC) Frontal Plane (ICC) SEM

VICON 0.978 0.969 0.39
IMUs 0.974 0.9 4.89

ICC: intraclass correlation coefficient; SEM: standard error of measurement.

3.3. Validity (Pearson’s Coefficient Correlation)

The validity test for ankle dorsiflexion/plantarflexion and eversion/inversion is
shown in Table 2. Figures 3 and 4 present the sagittal and frontal angles obtained from
VICON and IMU systems during the running task, respectively. All planes showed high
validity between the pattern of sagittal (r = 0.821, p < 0.001) and frontal (r = 0.835, p < 0.001)
angles provided by the two systems.

Table 2. Pearson’s coefficient correlation of sagittal and frontal planes (IMU-based system).

Measurement Sagittal Plane Frontal Plane

VICON vs. IMUs 0.821 ** 0.835 **
** p < 0.001.
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Figure 3. Comparison of ankle angle between VICON and IMUs in the sagittal plane.

Figure 4. Comparison of ankle angle between VICON and IMUs in the frontal plane.

4. Discussion

The primary aim of this study was to validate IMU measurement in the sagittal
and frontal plane joint kinematics with the VICON system during running. The newly
developed IMUs showed excellent reliability between the test and re-test measurements
(ICC = X; 0.974, Y; 0.9). The ICC values for kinematic parameters were generally higher or
equal to those in other studies, which only assessed the reliability during simple planar
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movements, such as the sagittal plane [12,15,20–22]. In addition, the validity described as
a correlation of the joint angles measured by the two systems was significantly high in the
sagittal plane (r = 0.821, p < 0.01) and frontal plane (r = 0.835, p < 0.01) during running.

Previous studies have reported a moderate to high validity of IMUs for measuring
simple movement but showed low and varied to moderate values for complex movements,
such as jumping and running, which may be because the complexity of the movements
causes a problem for devices in transmitting and receiving data. Previous studies have sug-
gested that utilizing Blooth, having the frequency-hopping spread spectrum function [23],
and low speed transmitter of Wi-Fi [24] might cause technical problems which finally result
in lower validity of IMUs in measuring the ankle joint kinematics during fast and complex
movements. In this matter, we adopted a direct sequence spread spectrum with Wi-Fi
and increased transmitting and receiving speed in our device. Although many efforts
to improve the accuracy of data transmission functions of sensors have been made, the
limitation of the place where it could be applied persists. However, with Raspberry Pi, the
function of acquiring and saving a rapidly varying time-signal with high frequency [25,26],
the system-on-chip, which enables the device to save data to its memory room, made it
possible to be used in various outdoor activities.

In terms of the validity related to the specific movement—running, in this study—
we chose the conventional gait model (PiG) to investigate the relationship between the
newly developed device and VICON. One possible limitation of the proposed model is
the different location of marker placement on a calculated joint angle, which was used to
define the internal and external rotation of the tibia against the line of the ankle joint center,
which could cause appreciable errors in ankle joint kinematics, especially the frontal and
transverse planes [27]. In this regard, we devised a similar environment as a marker-based
system to reduce errors between devices. The sensors were positioned perfectly parallel to
each other, as well as the ground, by using a mini-inclinometer for accurate calculations.
The results showed that IMUs seemed to be a suitable alternative to motion capture systems
in both dorsiflexion/plantarflexion and eversion/inversion movements at the ankle joint
during the running task [X: 0.821, Y: 0.835].

High accuracy for assessing the ankle joint movements in the sagittal and frontal
planes was a different result from other previous studies [12,22]. According to the previous
studies, the poor correlation between VICON and IMUs in measuring inversion and
eversion was higher than dorsiflexion and plantarflexion due to its smaller range of motion.
Specifically, they reported that if the complexity of movement increases, validity would
decrease. In addition, they used only simple planar movement protocols, such as isolated
flexion-extension, which may limit the generalizability of their conclusions. Our results
extend these previous findings by considering a more challenging task: running.

As complex movements occurred at more than a single plane and with irregular
movement velocities affecting system performance [28,29], an accurate method for proper
calibration (proper alignment of the IMU axes with the anatomical segment axes) is consid-
ered as an essential factor contributing to reliability due to different calibration protocols
may potentially result in substantially different consequences [30]. IMUs have been sug-
gested as an alternative tool to the 3D motion capture system, because it provides real-time
data in functional tasks within the same error range compared to classical measurement
devices. Providing convenience to clinicians in kinematic measurements, it may be useful
in clinical settings. Pathological patients such as cerebral palsy, Parkinson’s disease, and
stroke have been shown to have ankle joint problems during gait, meaning that the analysis
of ankle kinematics may be important in prescriptions. Our study showed the high validity
of IMUs in measuring the ankle joint (against to VICON), showing the tendency of changes
in the degree of the ankle. Therefore, our newly developed device may be useful for
clinicians to detect the dysfunctions of their patients.

We acknowledge that our study has two limitations. First, as our sensors could not
be rigidly fixed to the shank, a difference in the ankle joint degree between IMU and
Vicon occurred due to the fluctuation in sensor motion. Second, although the possibility of
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application to the measurement in clinical settings has been suggested, we conducted the
validation study with healthy individuals.

The development of device will enable us to provide valid data to assess the range of
motion and joint orientation, and therefore, rehabilitation research and healthcare services
will benefit from IMUs. Although more time and technical resources may be required
from users to assess the patients until the system becomes more user-friendly, it will offer
convenience with higher accuracy of kinematic measurements in clinical settings. We
conducted our validation study with healthy subjects to reduce the error of validity; yet,
IMUs need to ultimately benefit pathological populations and clinicians by guiding the
clinical decision-making [31]. Therefore, in a future study, special considerations will be
needed in pathological populations, as most calibration procedures require specific posture
or movement [32].

5. Conclusions

We developed a system to measure the ankle joint angle using IMU sensors that
are concurrent, convenient, inexpensive (approximately USD 300), light, and portable.
Furthermore, it has a function of communicating with a computer via Bluetooth, and
the computer is able to immediately calculate the data with Python. In order to validate
the device, we compared the ankle X and Y angles data obtained from the IMUs with
those acquired from the VICON system. The result of the comparison indicates that the
IMUs and motion capture systems deviated the level precision to those well below normal
measurements performed in a clinical setting. In the future, we will extend this approach
to the pathological populations and, thus, apply it to the IMU-based training that provides
multiple body joint angle kinematics in real time.
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Abstract: In rehabilitation, the upper limb function is generally assessed using clinical scales and
functional motor tests. Although the Box and Block Test (BBT) is commonly used for its simplicity
and ease of execution, it does not provide a quantitative measure of movement quality. This study
proposes the integration of an ecological Inertial Measurement Units (IMUs) system for analysis of the
upper body kinematics during the execution of a targeted version of BBT, by able-bodied persons with
subjects with Parkinson’s disease (PD). Joint angle parameters (mean angle and range of execution)
and hand trajectory kinematic indices (mean velocity, mean acceleration, and dimensionless jerk) were
calculated from the data acquired by a network of seven IMUs. The sensors were applied on the trunk,
head, and upper limb in order to characterize the motor strategy used during the execution of BBT.
Statistics revealed significant differences (p < 0.05) between the two groups, showing compensatory
strategies in subjects with PD. The proposed IMU-based targeted BBT protocol allows to assess the
upper limb function during manual dexterity tasks and could be used in the future for assessing the
efficacy of rehabilitative treatments.

Keywords: upper limb; Parkinson’s disease; Box and Block test; inertial sensors network; biomechan-
ics analysis; kinematic data; hand trajectories

1. Introduction

Upper limb impairment can result from a number of different conditions or patholo-
gies, including stroke, Parkinson’s disease, musculoskeletal disorders, infantile cerebral
palsy, etc. People who undergo rehabilitation treatments of the upper limb are generally
assessed using functional and motor scales [1–4] in order to characterize the efficacy of
a specific therapy or the evolution of the disease over time. The performance related to
dexterity, strength, upper limb function, and Activities of Daily Living (ADLs) is typically
evaluated via a set of validated clinical tests [5,6].

The recovery of manual dexterity is particularly important because the ability to use
the hands in a skillful, coordinated way to grasp and manipulate objects is correlated to a
good level of quality of life [7]. One of the most used tests to assess manual dexterity is
the Box and Blocks Test (BBT) [8], which has been applied in different pathologies such
as stroke [9], multiple sclerosis [2], traumatic brain injuries [2], Parkinson’s disease [10],
and upper limb amputation [11]. The test provides an essential measure for upper limb
dexterity and motor coordination and consists of moving, one by one, the maximum
number of blocks from one compartment of a box to another of equal size within 60 s. The
BBT is commonly used in clinical practice because it is a quick, simple, and inexpensive
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test [8]. Moreover, it is a well-validated timed performance measure of upper-limb function
with good reliability [2]. Specifically, in subjects with Parkinson’s disease (PD), the BBT is a
good predictor of physical performance in daily living [10]. However, the BBT returns a
global score representing the motor task and does not include any assessments of upper
limb movement quality. In some cases, in addition to counting the number of cubes moved,
clinicians observe a video recorded during the execution of the BBT and qualitatively
describe the patient’s motor performance. However, in these circumstances, the clinical
analysis is subjective, with low inter-rater reliability, and it is time-consuming. To this
extent, the instrumented motion analysis during the BBT would be interesting to integrate
the assessment of manual dexterity with the study of upper limb movement quality.
Specifically, the kinematic analysis during the BBT could allow obtaining an accurate and
objective assessment of the movements of the upper limb and trunk, and thus to find
potential compensatory strategies used by the subject to perform the task [12,13]. The
literature on the instrumented motion analysis during upper limb clinical tests is wide but
heterogeneous in terms of the technology employed for the analysis and of the typology
of tasks analyzed [14–28]. The most common technologies used for analyzing upper limb
kinematics in the clinical setting are stereophotogrammetry and Inertial Measurement
Units systems.

The stereophotogrammetry based on reflective markers and optoelectronic sensors
has been used in different protocols for the upper limb analysis [15], including modified
versions of BBT [16,17]. Specifically, Hebert et al. [16] collected data in 16 able-bodied
participants to establish normative kinematics during the BBT. The subjects performed the
motor tasks with both arms in standing and seated positions and the results highlighted
significant differences between the two conditions in axial trunk rotation, medial-lateral
sternum displacement, and anterior-posterior hand displacement. Kontson et al. [17],
on the other hand, assessed both upper body kinematics and postural control with an
integrated movement analysis framework based on stereophotogrammetry and ground
force data. The analysis of 19 able-bodied subjects conducting a modified version of the
BBT demonstrated the feasibility of the experimental protocol measure and the average
trends of the analyzed population.

Inertial Measurement Units (IMUs) systems have been used as an alternative to
stereophotogrammetry because of a series of features that make them easier to use, es-
pecially in the clinical setting: ecological environment (outside the movement analysis
laboratory), simple application of the sensors (through Velcro strips over the patient’s
clothing, unlike the stereophotogrammetry where the reflective markers are applied to the
skin), and low costs. For these reasons, the literature includes several studies on the use of
IMUs for the kinematic analysis of upper limb movement [19–22]. However, the IMU-based
quantitative evaluation of clinical arm tests is limited to the Action Research Arm Test [23],
the Fugl–Meyer, and the Wolf Motor Function Test in post-stroke subjects [24,25] and three
items of the Unified Parkinson’s Disease Rating Scale (UPDRS) in subjects with PD [26]. To
our best knowledge, only Zhang et al. attempted to automatically assess dexterity with
a multimodal wearable sensors-based BBT system [18] based on both electromyography
and IMUs. Results from both healthy subjects and people with mild cognitive impairment
showed that the multimodal instrumented BBT was feasible and accurate. In this context,
although the analysis of upper limb kinematics during a motor task of manual dexterity,
such as the BBT, could be particularly relevant in subjects having typical impairment
in grasping and manipulating objects, such as PD [13,29], the literature lacks studies on
this topic.

This study aims to assess the upper body kinematics during the BBT with an ecological
IMU-based system. Specifically, the protocol aims to characterize the movement of the
upper body in subjects with PD, comparing them with the data obtained from able-bodied
subjects. We hypothesize that the IMU-based BBT would allow us to characterize the
quality of the movements and thus quantify the compensatory strategies typical of subjects
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with PD [13,30,31]. By meeting these objectives, the IMU-based BBT could be a potential
system for the standardized assessment of the upper limb.

2. Materials and Methods

2.1. Study Design

This was an observational single-session-assessment pilot study assessing upper body
kinematics during the execution of a BBT motor task, comparing able-bodied persons with
subjects with PD. The study was carried out in the neurorehabilitation research laboratory
and rehabilitation bioengineering laboratory of IRCCS San Raffaele Roma (Rome, Italy).

2.2. Participants
2.2.1. Control Group

Adult able-bodied subjects between 60 and 80 years old without upper limb patholo-
gies (peripheral neurological damage, serious inflammatory degenerative joint diseases,
fracture, or trauma results), cognitive and/or severe visual deficit were recruited as the
Control Group (CG).

2.2.2. Parkinson’s Disease Group

Individuals with idiopathic PD consecutively referred for counseling and outpatient
rehabilitation management were included as PD Group (PDG) if they meet the following
inclusion criteria: diagnosis of idiopathic PD by UK Brain Bank criteria; Hoehn and Yahr-
H&Y stage 2–3; aged between 50 and 80 years old; able to maintain a sitting position on a
chair without support for at least 30 min (Trunk Control Test, TCT ≥ 48) [32]; moderate
disease-related upper limb motor performance deficit (i.e., Unified Parkinson’s Disease
Rating Scale, UPDRS Part II, items 8, 9, 10, 11, 12, 16 = 2–3; Part III, items 20, 21, 22,
23, 24, 25 = 2–3); stable symptomatic medications during the month before enrollment;
and provided written informed consent. We excluded individuals with left-side motor
symptom predominance; inability to understand study instructions (Informed Consent
Test of Comprehension); cognitive impairment (Montreal Cognitive Impairment Assess-
ment, MoCA < 26 [33]); severe visual deficit; alcohol or drug abuse (including dopamine
dysregulation syndrome); active depression; anxiety or psychosis interfering with the use
of the equipment or testing; coexisting disabling neurological or orthopedic disorders at
upper limb; and previous brain surgery (including pallidotomy, thalamotomy, or deep
brain stimulation).

2.3. Clinical Assessments

Overall disease-related disability was assessed by the total UPDRS and subtotal
UPDRS part II and III scores [34] the trunk stability by TCT, and gross manual dexterity
by standard BBT of both dominant and non-dominant sides [5]. All clinical measures
were collected in the “ON medication” phase (i.e., 1 h after oral consumption of the usual
Levodopa dose and always in the morning to minimize variability). The assessments were
by trained professionals. The UPDRS was scored by clinicians specialized in movement
disorders and trained for its administration and interpretation.

2.4. Experimental Setup

The study took place at the laboratories of IRCCS San Raffaele Roma equipped with
the IMU sensors network MOVIT (Captiks srl, Rome, Italy). The experimental setup is
shown in Figure 1.

The subject was seated on a stable chair (without backrest and armrests) adjustable in
height so that hip and knee angles equal to 90◦ are formed. A height-adjustable table was
placed in front of the subject; the heights of the table and seat were adjusted so that the
subject formed 90-degree elbow angles by resting the forearms on the table. A standardized
BBT box (53.7 × 25.4 × 8.5 cm3) was placed on the table so that the 15.2 cm high division
was in correspondence with the median-lateral axis of the subject and at a distance such
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that the subject reached the vertex of the box with the distal point of the metacarpal bone
of the middle finger.

Figure 1. Experimental setup of the IMU-based targeted BBT.

After the IMU sensors network calibration phase, seven IMUs were applied using
elastic bands fastened with Velcro strip on the following anatomical points: front head; C5;
T10; L5; mid arm; mid forearm; and hand (III◦ metacarpus). Data were collected at a rate
of 60 Hz. A digital video camera was also incorporated into the system to capture frontal
recordings of the subjects performing each task. After the measurement of anthropometric
data (i.e., distances between the following: spinous processes of C5–T10; T10–L5; acromion
processes; acromion process–olecranon process; olecranon process–styloid process), the
participants were asked to execute the motor task with both the dominant and the non-
dominant arm at self-paced velocity.

The motor task was a modified version of the BBT (namely targeted BBT) and consisted
of transporting each block over the partition starting with the innermost left block (n◦ 1),
and moving across the rows following the numbering, and placing it in the corresponding
position as accurately as possible. Each IMU-based targeted BBT task was composed
of two phases, phase A (ipsilateral subtask) and phase B (contralateral subtask). Each
task was executed twice with each arm; since the first execution allowed the subject to
become familiarized with the experiments, data analysis was conducted on the second
execution only.

2.5. Data Processing and Statistical Analysis

The Captiks Motion Analyzer software returned the joint angles curves in the sagittal,
frontal, transverse planes, and the calibrated quaternions. The following angles were
analyzed in the study: wrist Flexion-Extension (F-E); Ulnar Radial Deviation (URD);
forearm Prone-Supination (P-S); elbow F-E; shoulder F-E; shoulder Abduction-Adduction
(A-A); shoulder Rotation (R); trunk F-E; and trunk R. The data were segmented into ten
trials, where the trial start was defined as the initiation of the approach to pick up a block,
and the trial end was defined as the release of the block. The angles were analyzed by with
an in-house software developed in MATLAB R2020a (The MathWorks, Natick MA, USA).
The following joint angle parameters were calculated for each trial and for each subject:
the mean angle and the Range of Execution (ROE). The ROE was defined as the difference
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between the maximum and the minimum values of each joint angle during the motor task.
Moreover, the mean temporal trends of each joint angle were plotted with respect to the
trial completion percentage.

The 3D hand trajectory was estimated by using calibrated quaternions and anthropo-
metric data. The first objective was to obtain the spatial orientation of each body segment
with respect to the absolute reference system acquired during the calibration phase; fol-
lowing software specifications, the calibrated quaternion coefficients allowed to derive the
elements of rotation matrix (R) of the reference system of each device integral with a body
segment with respect to the absolute reference system. Secondly, vector coordinates

→
v of

distance between consecutive sensors were derived from the anthropometric data. The
transformation matrices between two consecutive coordinated systems of each proximal
and distal segment couples were obtained by placing column

→
v into rotation matrices

multiplication, as detailed in the following formula:

proximalTdistal =

(
proximal R ∗ Rdistal

→
v

0 0 0 1

)

Considering the pelvis as a motionless segment during the task, the pose of the hand
relative to the pelvis was obtained by concatenating the transformation matrices connecting
distal and proximal segments, in accordance with the following formula [35]:

pelvisThand = pelvisTT10 ∗ T10TC7 ∗ C7Tarm ∗ armTf orearm ∗ f orearmThand

The hand trajectory was achieved by selecting the x, y and z axis coordinates from
the resulting transformation matrix and the following parameters were calculated: mean
velocity (Vm); mean acceleration (Am); and DimensionLess Jerk index (DLJ). The DLJ is a
measure of the movement smoothness, i.e., as an assessment of the quality of the gesture
related to its continuity and interruptions absence [36,37]. In this study, we calculated the
DLJ index to estimate the shape of trajectory, considered as the most effective and common
smoothness measure [38]. It is defined as follows:

DLJ = − (t2 − t1)
5

v2
peak

∫ t2

t1

∣∣∣∣d2v(t)
dt2

∣∣∣∣
2

dt,

where t1 and t2 are the instants of gesture start and end respectively, v(t) is the movement
speed and vpeak is its maximum in the interval [t1, t2]. Values of DLJ closer to 0 correspond
to a smoother movement shape.

All estimated parameters were averaged within-subject among blocks and then sta-
tistical analysis was conducted. Since data were non-normally distributed (Shapiro-Wilk
test), the Mann–Whitney test between CG and PDG for each parameter was applied with a
significance level set to p < 0.05 (IBM SPSS Statistics for Windows, Version 26.0. Armonk,
NY, USA: IBM Corp).

2.6. Ethical Aspects

This study was conducted in accordance with the Declaration of Helsinki and was
approved by the local ethics committee (no. PR 19/34 of December 2019). Participants
were included in the study after signing informed consent.

3. Results

Thirteen subjects with PD (in the PDG) and eleven able-bodied subjects (in the CG)
were enrolled in the study. Two patients in the PDG were excluded from the analysis
because of the presence of artifacts in the IMU data. Table 1 describes the clinical and
demographic characteristics of the participants included in the study.
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Table 1. Clinical and demographic characteristics of the enrolled subjects.

CG (N = 11) PDG (N = 11)

Age (years) 66.90 ± 5.80 72.00 ± 8.20
Gender Male, n (%) 6 (54.5%) 6 (54.5%)
BBT—dominant side (n◦ cubes) 66.90 ± 10.25 56.73 ± 12.97
BBT—non dominant side (n◦ cubes) 64.18 ± 8.46 52.36 ± 11.27
Affected side dx, n (%) - 4 (36.3%)
Hoehn&Yahr - 2.5 (2–3)
UPDRS I - 5 (0–8)
UPDRS II - 19 (13–22)
UPDRS III - 20 (18–32)
UPDRS VI - 5 (0–10)
UPDRS TOT - 51 (38–67)
TCT - 61 (42–87)

Abbreviations: BBT, Box and Blocks Test; UPDRS, Unified Parkinson’s Disease Rating Scale; TCT, Trunk Control Test; CG,
Control Group; PDG, Parkinson’s Disease Group. Notes: Data are reported as mean ± standard deviation or frequency with
percentage (%) or median (min–max).

All participants conducted the IMU-based targeted BBT tasks without any difficulties.
The data analysis calculated the joint angle parameters shown in Table 2.

Table 2. Joint angles parameters calculated for each phase (A and B) of the targeted BBT tasks.

Joint Angles

Dominant Arm Non-Dominant Arm

Phase A Phase B Phase A Phase B

Joint Group Mean Angle ROE Mean Angle ROE Mean Angle ROE Mean Angle ROE

Wrist
F-E

CG 7.7 ± 17.5 19.4 ± 8.3 8.7 ± 18.2 16.1 ± 6.4 14.2 ± 13.7 18.8 ± 8.9 11.9 ± 13.2 15.5 ± 7.2
PDG 22.4 ± 23.6 26.9 ± 12.5 24.5 ± 23.5 22.3 ± 13.8 18.8 ± 14.4 21.5 ± 7.6 22.7 ± 14.9 17.6 ± 7.8

URD
CG 6.0 ± 9.6 20.3 ± 8.4 −1.9 ± 9.8 11.6 ± 6.4 2.2 ± 13.5 23.9 ± 10.6 −4.7 ± 13.9 17.8 ± 11.1

PDG 9.4 ± 18.7 20.7 ± 11.8 7.3 ± 20.4 18.8 ± 13.0 10.7 ± 19.7 16.5 ± 6.7 6.8 ± 20.7 14.3 ± 10.3

Forearm P-S
CG 105.1 ± 22.6 13.9 ± 9.0 108.7 ± 23.2 11.5 ± 6.7 104.8 ± 12.9 11.7 ± 3.8 106.8 ± 14.3 12.0 ± 3.7

PDG 92.8 ± 15.2 19.9 ± 16.1 95.7 ± 14.8 18.6 ± 12.5 97.8 ± 16.5 13.6 ± 9.2 100.9 ± 16.3 13.5 ± 7.8

Elbow F-E
CG 85.6 ± 24.2 17.7 ± 7.0 87.7 ± 26.1 19.4 ± 7.8 76.5 ± 14.4 19.0 ± 8.2 77.4 ± 15.4 19.8 ± 9.1

PDG 89.5 ± 41.5 17.6 ± 7.7 90.9 ± 41.6 19.5 ± 8.6 79.3 ± 27.0 25.3 ± 46.6 74.8 ± 44.0 38.4 ± 76.3

Shoulder

F-E
CG 29.5 ± 12.4 35.7 ± 11.5 26.5 ± 13.4 38.5 ± 12.0 29.0 ± 10.3 38.2 ± 9.7 27.3 ± 10.1 39.7 ± 9.9

PDG 27.2 ± 27.8 26.2 ± 11.4 24.3 ± 27.3 28.3 ± 13.2 42.5 ± 28.5 34.8 ± 12.0 38.8 ± 33.3 34.7 ± 12.8

A-A
CG 40.3 ± 14.3 25.6 ± 7.0 44.4 ± 14.2 29.3 ± 8.0 37.1 ± 10.2 26.4 ± 7.9 39.5 ± 10.2 29.8 ± 7.6

PDG 39.1 ± 20.3 21.2 ± 8.5 41.2 ± 18.5 25.2 ± 9.5 36.1 ± 14.6 21.7 ± 12.9 37.4 ± 14.2 26.7 ± 14.1

R
CG −39.8 ± 13.1 38.6 ± 12.2 −44.0 ± 15.3 41.1 ± 12.3 −39.9 ± 10.0 40.9 ± 10.1 −41.8 ± 10.9 41.9 ± 9.2

PDG −52.8 ± 32.0 28.5 ± 12.3 −56.5 ± 30.9 31.2 ± 11.8 −34.9 ± 20.8 26.8 ± 9.3 −41.0 ± 26.0 28.7 ± 11.2

Trunk
F-E

CG 10.8 ± 7.9 2.8 ± 1.6 12.0 ± 7.8 2.5 ± 1.7 8.6 ± 4.3 3.0 ± 1.4 9.6 ± 4.3 3.0 ± 1.6
PDG 11.7 ± 6.1 4.3 ± 2.3 11.7 ± 6.6 4.6 ± 3.7 15.2 ± 8.1 4.0 ± 2.3 15.6 ± 8.1 3.4 ± 2.2

R
CG 3.0 ± 6.6 6.9 ± 3.8 3.5 ± 7.3 7.4 ± 3.5 −10.5 ± 9.0 8.0 ± 3.1 −11.9 ± 10.8 8.6 ± 2.9

PDG 6.0 ± 19.0 8.1 ± 4.3 5.7 ± 19.8 9.8 ± 4.8 −5.9 ± 10.2 7.4 ± 3.9 −6.2 ± 13.1 8.4 ± 3.6

Abbreviations: F-E, Flexion-Extension; URD, Ulnar Radial Deviation; P-S, Prone-Supination; A-A, Abduction-Adduction; R, Rotation. CG, Control
Group; PDG, Parkinson’s Disease Group. Notes: Data are reported as mean ± standard deviation. The data marked in bold denotes significant
inter-group difference (p < 0.05).

The mean joint angles registered significant differences between the PDG and the CG
in the following angles: wrist F-E (both arms, both phases) and URD (both arms, both
phases); forearm P-S (both arms, both phases); shoulder F-E (non-dominant arm, both
phases) and R (both arms, both phases); trunk F-E (non-dominant arm, both phases) and R
(both arms, both phases).

The ROE index exhibits statistically significant inter-group differences in the following
angles: wrist F-E (both arms, both phases) and URD (dominant arm phase B; non-dominant
arm both phases); forearm P-S (dominant arm phase A); shoulder F-E (both arms, both
phases), A-A (both arms, both phase) and R (both arms, both phases); trunk F-E (dominant
arm both phases; non-dominant arm phase A) and R (non-dominant arm phase A).

Figure 2 depicts the mean joint angle trajectories (dominant arm) over the trial com-
plexion % for both phase A and B (the highlighted line and the shaded color represent the
averaged trajectory among blocks and subjects and its standard error, respectively). The
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analysis of the angle trends revealed the proposed IMU-based targeted BBT protocol is able
to detect different motor strategies employed during the movement execution. Specifically,
the kinematics of the PDG is characterized by a limited range of movement of the shoulder
and a compensatory strategy of the trunk.

Figure 2. Time-normalized angle joints in phases A and B, dominant side.

In Figure 3, the averaged dominant hand trajectories are shown for both phase A and
B, considering each block separately, highlighting differences especially in grasping and
moving the more proximal blocks (from number 5 to number 10). The kinematic parameters
calculated from the hand trajectories are depicted in Table 3; statistically significant inter-
group differences have been found in all parameters. The mean velocity and the mean
acceleration showed significantly lower values in PDG than CG. The DLJ index revealed
that subjects with PD had lower movement smoothness than the able-bodied ones.
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Figure 3. Averaged hand trajectories for both CG and PDG for each block of phase A and B (dominant side). Trajectories are
obtained from the projection of 3D curves in the 2D coronal plane. The thickness of lines represents the dispersion of data
around the mean trajectory.

Table 3. Averaged hand trajectory parameters calculated from the dominant and non-dominant arms in phases A and B.

Hand Trajectory Parameters

Parameter Group
Dominant Non-Dominant

Phase A Phase B Phase A Phase B

Vm (cm/s)
CG 40.45 ± 2.66 42.13 ± 2.86 41.11 ± 2.78 38.47 ± 2.69

PDG 31.79 ± 3.36 36.33 ± 3.73 37.22 ± 3.41 35.69 ± 3.50

Am (cm/s2)
CG 687.45 ± 59.05 695.96 ± 65.33 665.95 ± 51.92 602.55 ± 48.88

PDG 570.18 ± 65.98 622.77 ± 79.83 618.15 ± 63.82 548.90 ± 54.95

DLJ
CG −2.95 ± 0.78 −2.40 ± 0.49 −2.63 ± 0.69 −2.97 ± 0.69

PDG −8.85 ± 6.54 −7.21 ± 4.78 −4.91 ± 1.48 −4.56 ± 1.59

Abbreviations: Vm, mean velocity; Am, mean acceleration; DLJ, DimensionLess Jerk index; CG, Control Group; PDG, Parkinson’s Disease Group. Notes:
Data are reported as mean ± standard deviation. The data marked in bold denote significant inter-group difference (p < 0.05).

4. Discussion

This observational pilot study was conducted on 11 subjects with PD compared to
11 able-bodied subjects in order to assess the upper body kinematics during the targeted
BBT with an ecological IMU-based system. To this extent, the IMU-based targeted BBT was
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analyzed for both the dominant and non-dominant upper limbs. All subjects were able to
easily perform the requested motor tasks.

The analysis of the IMU data allowed us to calculate the joint angle kinematics. The
outcomes from the able-bodied subjects were in accordance with the literature on similar
studies based on stereophotogrammetry [16,17]. The results from subjects with PD allowed
us to characterize the quality of the movements and the compensatory strategies typical of
this disease [13,30,31]. Specifically, the wrist evidenced a significant higher mean flexion
and ulnar deviation in the PDG compared to the CG, while the wrist F-E mean angular
trajectories (Figure 2) were similar in both groups. The ROEs were significantly higher in
the PDG than the CG in all wrist angles except for the URD dominant arm, Phase A. The
forearm registered significantly higher supination values in the CG compared to the PDG;
the variations of this angle over time were similar during the trial execution. The shoulder
depicts significant lower ROEs in PDG than CG in F-E, A-A and R angles. Moreover, the
mean shoulder F-E trajectories of the two groups were similar from 0% to 50% of trial
completion, while when the block was carried over the partition the PDG evidenced a
reduced shoulder flexion. This outcome was found in both dominant and non-dominant
arms and in both phases A and B. The shoulder A-A is characterized by a significant smaller
ROE in all motor tasks, thus revealing a limited angular excursion in PDG. Conversely, the
PDG significantly rotated the shoulder more than the CG, showing significant inter-group
differences in the mean angle and the ROE. Therefore, we can affirm that the PDG partially
involved the shoulder during the execution of the motor tasks, except for the shoulder R,
which seems to compensate for the limited ROE in FE and AA. The trunk exhibited higher
ROEs in PDG than CG, thus confirming the employment of a compensatory strategy in
subjects with PD [13,30,31].

The qualitative analysis of the hand trajectories (Figure 3) showed that the subjects
with PD moved the end-effector like the able-bodied subjects in the movement of the
first blocks (grasp and release of blocks 1–4), while they tended to decrease the range of
motion and the precision in the subsequently blocks (grasp and release of blocks 5–10).
Moreover, the PDG executed the movement with a significant lower mean velocity and
mean acceleration of the hand in all considered motor tasks. The DLJ shows that the
subjects with PD moved the end-effector with lower smoothness, in accordance with the
literature on the quantitative analysis of bradykinesia and rigidity in PD [29,31].

The results of this study evidence that the proposed IMU-based targeted BBT is able
to quantitatively and easily assess upper body kinematics during a test of manual dexterity.
Moreover, the analysis of joint angle trajectories allows to characterize movements’ quality
and to find the compensatory strategies of subjects with PD. The analysis of such compen-
satory motor approaches could help the understanding of functional gain in a perspective of
personalized punctual evaluation of patients with PD undergoing rehabilitative treatments.

The proposed IMU-based targeted BBT protocol is feasible, easy-to-do, low-cost
and ecological. All recruited subjects participated in the experiments and executed the
motor tasks without any difficulty. In a period in which motor rehabilitation increasingly
needs an objectification of motor performance to personalize treatment, this system allows
performing a quantitative movement analysis easily and accurately in the clinical setting.

The main limitations of the study are the restricted number of recruited subjects and
the inclusion of PD subjects with a moderate impairment only. Future studies should
consider a higher sample size to confirm our outcomes. Moreover, the analysis of subjects
with different pathologies and motor impairment would allow us to discriminate different
motor strategies.

5. Conclusions

An IMU-based targeted BBT allowed to analyze the upper body kinematics in subjects
with PD and able-bodied persons. The analysis of joint angles and hand trajectories charac-
terized the quality of the movements in the two groups and evidenced the compensatory
strategies of subjects with PD. The obtained results suggest future studies on different
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pathologies since the IMU-based BBT could be a potential system for the standardized
assessment of the upper limb in the clinical setting.
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Abstract: The aim of the present study was to quantify joint kinematics through a wearable sensor
system in multidirectional high-speed complex movements used in a protocol for rehabilitation and
return to sport assessment after Anterior Cruciate Ligament (ACL) injury, and to validate it against
a gold standard optoelectronic marker-based system. Thirty-four healthy athletes were evaluated
through a full-body wearable sensor (MTw Awinda, Xsens) and a marker-based optoelectronic (Vicon
Nexus, Vicon) system during the execution of three tasks: drop jump, forward sprint, and 90◦

change of direction. Clinically relevant joint angles of lower limbs and trunk were compared through
Pearson’s correlation coefficient (r), and the Coefficient of Multiple Correlation (CMC). An excellent
agreement (r > 0.94, CMC > 0.96) was found for knee and hip sagittal plane kinematics in all the
movements. A fair-to-excellent agreement was found for frontal (r 0.55–0.96, CMC 0.63–0.96) and
transverse (r 0.45–0.84, CMC 0.59–0.90) plane kinematics. Movement complexity slightly affected
the agreement between the systems. The system based on wearable sensors showed fair-to-excellent
concurrent validity in the evaluation of the specific joint parameters commonly used in rehabilitation
and return to sport assessment after ACL injury for complex movements. The ACL professionals
could benefit from full-body wearable technology in the on-field rehabilitation of athletes.

Keywords: wearable inertial sensors; marker-based optoelectronic system; ACL; rehabilitation;
motion capture validation; kinematics

1. Introduction

Biomechanical assessment of human movement represents a key tool to discriminate
normal and pathological patterns in a wide variety of applications. In the sport-related
context, the risky patterns lead to an increased risk for severe injuries such as the non-
contact Anterior Cruciate Ligament (ACL) injury [1–5]. The ACL injury has detrimental
consequences: a return to sport (RTS) at pre-injury level is not guaranteed, the re-injury
rate is high (up to 30% [6,7]), and the risk of post-traumatic osteoarthritis increases by
4-fold [8]. All the main joints have a role in the ACL injury mechanism [1,9,10], and targeted
neuromuscular training has been proposed to modify the specific risky patterns in the
rehabilitation phase after injury [11–14]. Thus, the interest in tools for assessing multi-joint
biomechanics in this context has increased more and more [15,16]. Such evaluation could
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help to understand the injury risk in high-speed and multidirectional movements, thus
supporting the rehabilitation phase.

The optoelectronic marker-based (OMB) motion capture approach represents the gold
standard for biomechanical evaluations. The OMB systems have been used for multiple
applications in the analysis of both healthy and disease-related movement patterns [4,17].
Nevertheless, when it comes to an ACL scenario, the main and well documented-limitations
of this technology are amplified: there is a need for a dedicated space, causing difficult
on-field applications; there is a high cost in terms of money, time and technical skills;
it is difficult to obtain quick reports [18,19]. The alternative solution is represented by
wearable inertial sensors (WIS). This technology is indeed portable, less cumbersome on
the body, and can produce real-time results. Different uses of the WIS technologies have
been reported: single sensors settings have been mainly used in the assessment of athletes’
performances at both individual and team level; multiple sensors settings have been mainly
used for biomechanical assessments of both healthy movement patterns and to identify the
effects of several diseases, including different contexts and applications [18–20].

The advantages brought by the WIS systems might have a strong impact on the
ACL rehabilitation; ACL professionals might indeed benefit from a direct assessment
of the biomechanical predictors of ACL injury risk, while performing the evaluation in
players’ actual environments, thus reducing the bias caused by controlled conditions and
limited space.

Although previous studies have been carried out to validate the WIS against the
OMB, demonstrating consistent results and good accuracy [18], extensive use of the WIS
technology in the assessment of athletes’ biomechanics during ACL rehabilitation is still
not reported. A possible explanation is that no validation of WIS has been performed
on clinically relevant parameters addressing the analysis of ACL injury risk in complex
movements; in fact, movement complexity plays a significant role in motion capture system
accuracy, adding extra sources of noise on the expected outcomes [19,21]. A feasibility
analysis on clinically relevant parameters for ACL professionals is also crucial to focus on
modifiable risk factors and athletes’ progress. At present, little knowledge exists on the
reliability of the WIS systems with respect to such specific requirements.

Therefore, the aim of the present study was to quantify joint kinematics through a
full-body WIS system and to test its concurrent validity against a gold standard OMB
system in a set of multidirectional high-speed complex movements included in a protocol
for rehabilitation and RTS assessment after ACL reconstruction.

The main hypothesis was that the WIS system could be reliably used in the analysis of
multi-joint kinematics when focusing on clinically relevant parameters and tasks.

2. Materials and Methods

The experimental session was conducted in the Green Room of the Isokinetic Medical
Center of Bologna (Italy). An a priori power analysis was performed based on a previous
similar study [22] to determine the correct sample size. At least 28 athletes were required
to have a power of 0.9 with a minimum effect size of 0.5 (large) and a type I error of 0.05.

Overall, 34 recreational and elite athletes were recruited for the study (Table 1). In-
clusion criteria were that they were aged between 18–50 years old, and had a Tegner level
of at least 5. Exclusion criteria were musculoskeletal disorders or impairment, BMI > 35,
previous surgery to lower limbs, and cardiopulmonary or cardiovascular disorders.

All the athletes signed informed consent before starting the acquisition protocol. The re-
search study was approved by the Institutional Review Board (IRB approval: 555/2018/Sper/IOR
of 12/09/2018) of Area Vasta Emilia Romagna Centro (AVEC, Bologna, Italy) and registered
on ClinicalTrials.gov (Identifier: NCT03840551) (accessda on 15 march 2021).
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Table 1. Demographic data, mean ± SD [range].

Number of athletes 34
Age (years) 22.8 ± 4.1 [18–31]

Gender (m/f) 18/16
Body Mass Index 22.6 ± 2.6 [18–27]

Dominant limb (r/l) 1 30/4
Tegner 8.6 ± 1.0 [5–9]

1 Dominant limb is meant as the preferred one used to kick a ball.

2.1. Experimental Protocol

The analysis was performed in a specialized laboratory, equipped with artificial turf.
Regarding the OMB motion capture, a set of 10 stereophotogrammetric cameras (Vicon
Vero, Vicon Motion Systems Ltd., Oxford, UK) with a sampling frequency of 120 Hz were
used. Three synchronized, calibrated, high-speed RGB cameras were also used to record
the movement. The calibration of cameras and volume of the acquisition was performed at
the beginning of the acquisition and repeated periodically during the session. A total of
42 retroreflective markers were placed on each athlete according to the full-body Plug-in
Gait protocol (Appendix A, top row).

Regarding the WIS system, a set of 15 inertial sensors (MTw Awinda, Xsens Technolo-
gies, Enschede, Netherlands) with a sample frequency of 60 Hz were placed according
to the Full body No Hands Xsens protocol (Appendix A, bottom row). The WIS has an
internal sampling rate of 1000 Hz, an accelerometer range of 16 g, a gyroscope range of
±2000◦/s, and a dynamic systematic uncertainty of 0.75◦.

During data acquisition, the athletes were contemporary equipped with both systems.
A single operator (G.P.) carried out the athletes’ sensor and marker placement. After marker
and sensor positioning, both static and dynamic subject calibrations were performed
simultaneously for the two systems, and anthropometric measurements were collected.
Data capture was triggered via hardware by using the OMB system as a master and the
WIS system as a slave to directly compare the two systems’ acquisitions.

Each athlete performed three motor tasks: a drop jump (DJ), a forward sprint (FS), and
a change of direction at 90◦ (CD). The DJ consisted of a bilateral landing from a 41 cm-high
box, with an immediate vertical jump at maximum force [2]. The FS consisted of a frontal
sprint followed by a sudden stop on a single leg and by a further backward sprint, all
performed at maximum speed [23]. The CD consisted of a frontal sprint followed by a
sudden sidestep cutting maneuver at 90◦ and a further frontal sprint in the new direction,
all performed at maximum speed [24] (Figure 1). These motor tasks are included in a
protocol for the biomechanical assessment of return to sport after ACL reconstruction,
developed and currently deployed at the Isokinetic Medical Group, a FIFA Medical Centre
of Excellence.

Before the real test, the athletes were instructed and performed a few warm-up
repetitions of each task in order to get confident with the movement. A sports medicine
physician (F.D.V.) instructed each athlete on the movements performed and verified each
trial’s validity. All the athletes performed three valid repetitions of each task per leg
(18 total valid trials per athlete). The tasks were performed consecutively, after a short rest
(of a few seconds) per each athletes’ fatigue.
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Figure 1. Representation of the three motor tasks performed by the athletes and used for comparative analysis alongside
the real-time movement reconstruction in the wearable sensor software environment: (a,b) the drop jump (DJ); (c,d) the
forward sprint (FS); (e,f) the change of direction at 90◦ (CD).

2.2. Features Selection and Data Processing

The kinematic parameters’ selection was based on the current concepts of ACL injury
mechanisms in the orthopedics and sports medicine community [1–3,11]. Since the main
injury pattern, and the neuromuscular training to prevent it, involves both the lower limbs
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and the trunk complex, the ankle, knee, hip, and trunk joint angles were taken into account.
Although a complete kinematical comparison (frontal, transverse, and sagittal plane for
all the joints) between the systems was performed, the final analysis was focused on the
following parameters: ankle transverse plane, knee frontal and sagittal plane, hip frontal,
transverse and sagittal plane, trunk frontal and transverse plane (Figure 2). Data were
resampled and normalized by considering the overall time length of each trial (0-100% of
the task) to perform a direct comparison of each data frame. Joint angles were verified to
match common conventions in all the three anatomical planes: abduction (+), adduction
(-); internal (+), external (-) rotation; flexion (+), extension (-) [22].

 

Figure 2. Common ACL injury mechanism according to the current literature. From the left: ankle, knee, hip, and trunk
joint main kinematical mechanisms found in ACL injury. Arrows indicate the direction of joint motion. The limitation of
these patterns is the goal of targeted neuromuscular training in rehabilitation after ACL injury. The figure is adapted from
Della Villa et al. [1].

2.3. Statistical Analysis

The normal distribution of the data was verified through the Shapiro-Wilk test. Data
were compared using different metrics [17,18,25,26]: Pearson’s correlation coefficient (r);
the Coefficient of Multiple Correlation (CMC); the offset defined as the difference between
the means of the waveforms (ΔOFF); the Normalized Root Mean Square Error (NRMSE).

Pearson’s r and the CMC coefficient indicated the agreement between the systems. For
Pearson’s r, the statistical significance of the correlation was also assessed with an alpha
level of 5%. The CMC, calculated according to the definition given in Ferrari et al. [25],
defined the similarity across the full movement, after offset removal. The validity was
considered excellent if r and CMC > 0.75, fair if r and CMC 0.4–0.74, and poor if r and
CMC < 0.39 [27].

The average offset error indicated the systematic error between the two waveforms
and was expressed in degrees. In order to keep the information regarding which was the
highest value between the two systems, positive values of ΔOFF indicated higher values
for the OMB system, while negative values indicated higher values for the WIS system.
The agreement was considered excellent for values of ΔOFF lower than ±5◦ [28,29]. The
NRMSE indicated the dispersion of the data along with the waveforms and was normalized
over the range of motion of the OMB system, thus ranging from 0 to 1. The validity was
considered excellent for NRMSE < 0.2 [19]. All the statistical analyses were performed in
MATLAB (The MathWorks, Natick, MA, USA).

3. Results

The athletes’ age was 22.8 ± 4.1 years, and the Tegner level was 8.6 ± 1.0 (Table 1).
Overall, a total of 469 valid trials (77% of the total)—168 for DJ, 137 for FS, 164 for CD—
were kept and compared between the two systems. Trial exclusion was made due to technical
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reasons, i.e., error in data acquisition or export of either the OMB or the WIS system data.
The waveforms for all the kinematical parameters investigated can be found in Appendix B.

3.1. Drop Jump

Excellent agreement was found for the knee and hip sagittal plane angles (r = 0.99,
CMC = 0.98) (Table 2). A fair-to-excellent agreement was found for knee, hip, and trunk
frontal plane angles (r 0.69–0.81, CMC 0.67–0.88). Fair agreement was found for ankle, hip,
and trunk transverse plane angles (r 0.58–0.74, CMC 0.63–0.83). Errors (ΔOFF) were always
lower than 5◦, except for hip sagittal plane angles (–6.91◦, NRMSE = 0.1, Table 3). Higher
average values on lower limb frontal and transverse plane angles were found for the OMB
system at the peak flexion angles (Appendix B).

Table 2. Agreement measurements (r, CMC) between the two motion capture systems for the three motor tasks, mean [range].

r CMC
DJ FS CD DJ FS CD

Ankle
Transverse 0.58 [0.49, 0.67] 0.53 [0.43, 0.62] 0.45 [0.35, 0.55] 0.63 [0.57, 0.69] 0.63 [0.56, 0.69] 0.62 [0.55, 0.69]

Knee
Frontal 0.69 [0.59, 0.79] 0.55 [0.43, 0.67] 0.60 [0.50, 0.70] 0.67 [0.58, 0.76] 0.65 [0.57, 0.73] 0.63 [0.55, 0.72]
Sagittal 0.99 [0.98, 0.99] 0.95 [0.94, 0.97] 0.95 [0.93, 0.96] 0.99 [0.99, 0.99] 0.98 [0.97, 0.98] 0.97 [0.96, 0.98]

Hip
Frontal 0.81 [0.76, 0.86] 0.85 [0.81, 0.89] 0.96 [0.95, 0.97] 0.88 [0.85, 0.91] 0.91 [0.88, 0.93] 0.96 [0.96, 0.97]

Transverse 0.64 [0.55, 0.73] 0.47 [0.34, 0.59] 0.63 [0.56, 0.71] 0.74 [0.68, 0.81] 0.59 [0.48, 0.70] 0.72 [0.67, 0.77]
Sagittal 0.99 [0.98, 0.99] 0.97 [0.97, 0.98] 0.96 [0.94, 0.97] 0.99 [0.99, 0.99] 0.98 [0.98, 0.99] 0.97 [0.96, 0.97]
Trunk
Frontal 0.77 [0.72, 0.82] 0.67 [0.55, 0.79] 0.87 [0.84, 0.90] 0.85 [0.82, 0.89] 0.81 [0.75, 0.88] 0.91 [0.89, 0.94]

Transverse 0.74 [0.67, 0.81] 0.84 [0.79, 0.89] 0.81 [0.76, 0.86] 0.83 [0.78, 0.88] 0.90 [0.87, 0.93] 0.89 [0.87, 0.92]

Note: DJ = Drop Jump; FS = Frontal Sprint; CD = Change of Direction at 90◦; CMC = Coefficient of Multiple Correlation.

Table 3. Error measurements (ΔOFF, NRMSE) between the two motion capture systems for the three motor tasks,
mean [range].

ΔOFF (◦) NRMSE (%)
DJ FS CD DJ FS CD

Ankle
Transverse 3.31 [0.38, 6.24] −8.51 [−11.39, −5.64] −7.91 [−11.16, −4.66] 0.26 [0.23, 0.28] 0.31 [0.27, 0.35] 0.37 [0.32, 0.42]

Knee
Frontal −4.14 [−5.90, −2.37] −9.93 [−13.63, −6.22] −10.93 [−14.67, −7.19] 0.27 [0.22, 0.32] 0.43 [0.35, 0.51] 0.40 [0.33, 0.47]
Sagittal −4.67 [−6.63, −2.71] −2.45 [−5.24, 0.35] −3.86 [−6.28, −1.43] 0.08 [0.06, 0.09] 0.12 [0.09, 0.14] 0.12 [0.10, 0.14]

Hip
Frontal 3.91 [2.55, 5.27] 4.82 [3.19, 6.45] 5.18 [3.38, 6.99] 0.36 [0.28, 0.44] 0.29 [0.23, 0.35] 0.21 [0.17, 0.25]

Transverse −1.05 [−4.69, 2.6] 6.57 [1.83, 11.31] 5.49 [1.21, 9.76] 0.26 [0.22, 0.29] 0.38 [0.31, 0.45] 0.30 [0.25, 0.35]
Sagittal −6.91 [−9.13, −4.68] −2.94 [−5.62, −0.27] −4.99 [−7.54, −2.44] 0.10 [0.09, 0.12] 0.13 [0.10, 0.16] 0.14 [0.12, 0.17]
Trunk
Frontal −0.33 [−1.30, 0.64] −0.69 [−2.0, 0.61] −1.05 [−2.40, 0.31] 0.30 [0.25, 0.35] 0.31 [0.25, 0.37] 0.20 [0.17, 0.23]

Transverse 0.38 [−1.06, 1.83] −0.85 [−2.66, 0.97] −1.14 [−3.26, 0.98] 0.37 [0.30, 0.45] 0.21 [0.17, 0.25] 0.26 [0.21, 0.30]

Note: DJ = Drop Jump; FS = Frontal Sprint; CD = Change of Direction at 90◦; ΔOFF = difference between means of the waveforms;
NRMSE = Normalized Root Mean Square Error.

3.2. Frontal Sprint

Excellent agreement was found for the knee and hip sagittal plane angles (r > 0.94,
CMC = 0.98) (Table 2). A fair-to-excellent agreement was found for frontal and transverse
plane joint angles (r 0.47–0.85, CMC 0.59–0.91). The ΔOFF were lower than 1◦ and 7◦ for
trunk and hip angles, respectively (Table 3). The highest offset errors were found for knee
frontal (−9.93◦, NRMSE = 0.43) plane angles, with higher average values for the OMB
system (Appendix B).
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3.3. 90◦ Change of Direction

Excellent agreement was found for the knee and hip sagittal plane angles, and for
hip and trunk frontal plane angles (r > 0.87, CMC > 0.91) (Table 2). A fair-to-excellent
agreement was found for the remaining frontal and transverse plane joint angles (r 0.45–0.87,
CMC 0.66–0.91). The ΔOFF were always lower than 6◦, except for knee frontal and ankle
transverse plane angles (Table 3). The OMB system showed higher average values for knee
frontal and transverse angles (Appendix B).

4. Discussion

The aim of the present study was to quantify joint kinematics and validate a full-
body WIS motion capture system against a gold standard OMB in complex movements
specifically used for the clinical evaluation of the ACL injury risk and return to sport. The
analysis was carried out on a consistent number of healthy athletes, mainly coming from
competitive sports (Tegner level 9 in 85% of athletes).

The main finding of the present study was that the WIS motion capture system
showed overall fair-to-excellent correlation with respect to the OMB system, and acceptable
measurement errors in all the movements assessed. This finding confirmed the concurrent
validity of the WIS system already underlined in previous studies [18,28–30], and further
extended its usability to clinical applications in the ACL rehabilitation context. For the first
time, a stronger focus was put on clinically relevant biomechanical parameters used by
the ACL professionals in the rehabilitation protocols after ACL injury in sport-specific, high-
speed, and multidirectional movements. Indeed, the parameters investigated are the common
targets of neuromuscular training used by sports physicians and orthopedic surgeons in
the rehabilitation phase, and to clear patients for RTS [12,13,16,31–33] (Figure 2). The latter
finding represents a great step forward in the use of full-body wearable technology by
health professionals for ACL rehabilitation and RTS, both in-lab and on-field.

The differences found between the two systems were tolerable according to the litera-
ture requirements [18,19,27–29]. Knee and hip sagittal plane angles showed the highest
agreement between the two systems (minimum CMC = 0.95). Similar levels of agreement
and errors were reported in literature considering the very same WIS system used in the
present study and either the same [22] or different OMB systems [28,29,34] addressing
walking, stair climbing, and landing tasks. The results of the present study confirmed that
sagittal plane angles could be accurately assessed in sprints and counter-movements. A
trustful evaluation of sagittal plane joint angles is of primary importance for ACL injury
risk and RTS. Many rehabilitation programs focus on reaching a good joint range of motion
in dynamic tasks, as this reduces the stress on lower limb joints and the trunk [5,35,36].
Landing strategies favoring the hip (i.e., higher hip than knee flexion, namely “hip strat-
egy”) or knee (i.e., higher knee than hip flexion, namely “knee strategy”) are also widely
assessed in rehabilitation programs since they were shown to correlate with lower and
higher knee abduction moment, respectively [37].

The agreement between the two systems on the frontal plane was fair-to-excellent
for the hip and trunk, and fair for the knee. Measurement errors and agreement were
only slightly affected by the different complexity of the three movements evaluated. This
aspect partially extended the validity of the WIS system on frontal plane angles to include
complex movements. Furthermore, the average and range of motion data were generally
higher for the OMB system compared to the WIS system, particularly for the knee joint.
These findings are in line with previous studies which focused on either gait or counter-
movements [22,38]. The evaluation of frontal plane angles is crucial in the assessment
of ACL injury risk and RTS [39,40]. Primary attention is paid to knee and hip frontal
plane kinematics. The limitation of the dynamic valgus pattern represents a milestone of
every ACL rehabilitation program since literature extensively underlines how this pattern
increases the knee abduction moment and it is present in almost all the ACL rupture
mechanisms in the athletes [1,2]. Trunk kinematics is also largely evaluated since excessive
homolateral lean also increases knee abduction moment [41].
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Fair-to-excellent agreement was found for the hip and trunk transverse plane angles.
This aspect extends the possibilities of the ACL professionals during the rehabilitation:
without 3D technologies, the correct assessment of such angles is critical and often ne-
glected. The importance of rotational patterns has been already highlighted: the coupling
of hip abduction and internal rotation leads to the dynamic knee valgus [4,24,42,43], and
the excessive trunk rotation magnifies the knee’s external moments and the loss of core
stability [41,42,44]. The lowest agreement was found for ankle transverse plane angles. The
errors also increased with movement complexity (highest for the DJ task, lowest for the CD
task). As for the knee frontal plane angles, absolute average values and range of motion
were higher for the OMB system compared to the WIS in all the tasks. All the previous
studies investigating the validity of WIS systems against the OMB systems reported a low
agreement for transverse plane kinematics [17,18,20,28,29,37]. The assessment of such an-
gles is critically related to the definition of the biomechanical models, the markers/sensors’
positioning, and the limited range of motion [18,28]. Ankle joint definition is probably the
most critical for both the OMB and the WIS systems [26,45]. For the former, the relatively
large shape of medial and lateral malleoli introduces complexity in landmark palpation [28]
and the presence of an expert operator is mandatory. For the latter, the malleoli are auto-
matically placed at the same height in the biomechanical model, thus probably introducing
an offset on frontal orientation with respect to the OMB reference system. Moreover, the
limited range of motion of such angles has been associated with an intrinsic decrease of
measurement agreement like the CMC [46].

Regarding the clinical interpretation of the results obtained, the high peaks and range
of motion evaluated through OMB seem to be highly non-physiological, even for counter-
movements. This aspect was likely due to cross-talk between the sagittal and frontal
plane in the OMB data analysis, thus mainly related to marker placement. Although this
aspect could be of limited interest in gait analysis, it could cause severe flaws in an ACL
scenario, where such high varus/valgus and internal/external rotation values could cause
unreasonable alerts in the data interpretation [26]. The same joint angles evaluated with the
WIS systems are much smaller. Despite this could be symptomatic of an “over-constrained”
biomechanical model, these results seem more appropriate for a healthy athlete’ population.
In clinical scenarios, attention should be paid when interpreting specific angle values. The
strength of such WIS system relies on the kinematical assessment of multiple joints, which
offers an overall consideration of the movement. ACL professionals should, therefore, take
into account multiple variables when drawing clinical conclusions from such analyses.

The novelty of the present work relies on the clinically-oriented analysis carried out in
terms of both motor tasks and parameters evaluated. Compared to the previous literature,
the set of motor tasks evaluated in the present study is one of the most demanding in terms
of complexity and has, most of all, practical clinical use in rehabilitation after ACL injury
and the RTS in terms of parameters assessed. Therefore, the WIS system used in the present
study (MTw Awinda, Xsens) resulted in a suitable solution for motion capture in the sports
environment for the biomechanical assessment of ACL rehabilitation. The assessment
of wearables’ accuracy before experimental applications has been recently advocated in
specific applications such as outdoor sport and the military [19,47]. The present study,
alongside all the limitations of the OMB system in outdoor use, endorses the use of WIS
in ACL rehabilitation during on-field assessments. Such kinematical analyses could be of
crucial importance to deeply evaluate movement quality directly on-field, thus improving
and personalizing the rehabilitation strategies [20,48–50].

The present study has some limitations. First, the athletes’ velocity was not controlled.
Although each athlete performed the movement at his/her best, intra-subject differences
could have influenced the obtained outcome. Such analysis could contribute to under-
standing whether differences between the two systems increase over a defined level of
velocity. Second, the systems’ comparison was based only on healthy athletes’ kinematic
data. The analysis of those with ACL injuries or ACL reconstructed athletes could offer
stronger insights on the sensibility of the two systems and should be objectives of future
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investigations. Third, the systems’ comparison was based on kinematic data only. Recent
studies underlined the correlation between the angular velocity evaluated through WIS
and the knee abduction moment evaluated through OMB and force platform in single-leg
landing [51]. The assessment of joint moments, powers and inter-segmental forces is an
intrinsic limitation of the wearable technology compared to optical tracking, alongside a
lower applicability in specific motion capture fields, i.e., facial, hands, etc. Furthermore,
the accuracy of the WIS system on knee and ankle frontal and transverse plane angles was
flawed by the high—and probably non-physiological—values of the OMB systems. This
is reported in the literature as an intrinsic limitation of the OMB biomechanical model
and protocol selected for the study, which, on the other hand, were selected for their
ease of use [18,47]. Lastly, a single full-body configuration was adopted for the WIS sys-
tem. The possibility to reduce the number of inertial units while achieving a comparable
accuracy [52] should be an objective of future investigations.

5. Conclusions

The full-body WIS motion capture system showed a fair-to-excellent concurrent valid-
ity in the evaluation of complex movements commonly used in rehabilitation after ACL
injury. The ACL professionals could benefit from full-body wearable technology in the
on-field rehabilitation of athletes.
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Appendix A

 

Figure A1. Motion capture systems used in the study: (top row) Plug-in-Gait VICON marker-based protocol in (from left to
right) front, side, back, and 3D-environment view; (bottom row) Full Body Xsens inertial sensors protocol in (from left to
right) front, side, back, and 3D-environment view.

Appendix B

Figure A2. Joint kinematics of marker-based (OMB, blue) and inertial sensors (WIS, red) for the drop jump (DJ) task. Data
are normalized by the length of the motor task. The waveforms are shown as average (solid lines) and standard deviations
(shaded lines).
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Figure A3. Joint kinematics of marker-based (OMB, blue) and inertial sensors (WIS, red) for the forward sprint (FS) task.
Data are normalized by the length of the motor task. The waveforms are shown as average (solid lines) and standard
deviations (shaded lines).

Figure A4. Joint kinematics of marker-based (OMB, blue) and inertial sensors (WIS, red) for the change of direction (CD)
task. Data are normalized by the length of the motor task. The waveforms are shown as average (solid lines) and standard
deviations (shaded lines).
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Abstract: The main purpose of the present study was to assess the effects of foot drop stimulators
(FDS) in individuals with stroke by means of spatio-temporal and step-to-step symmetry, harmonic
ratio (HR), parameters obtained from trunk accelerations acquired using a wearable inertial sensor.
Thirty-two patients (age: 56.84 ± 9.10 years; 68.8% male) underwent an instrumental gait analysis,
performed using a wearable inertial sensor before and a day after the 10-session treatment (PRE
and POST sessions). The treatment consisted of 10 sessions of 20 min of walking on a treadmill
while using the FDS device. The spatio-temporal parameters and the HR in the anteroposterior (AP),
vertical (V), and mediolateral (ML) directions were computed from trunk acceleration data. The
results showed that time had a significant effect on the spatio-temporal parameters; in particular,
a significant increase in gait speed was detected. Regarding the HRs, the HR in the ML direction
was found to have significantly increased (+20%), while those in the AP and V directions decreased
(approximately 13%). Even if further studies are necessary, from these results, the HR seems to
provide additional information on gait patterns with respect to the traditional spatio-temporal
parameters, advancing the assessment of the effects of FDS devices in stroke patients.

Keywords: foot drop stimulation; gait; symmetry; stroke; inertial measurement sensor

1. Introduction

Stroke and cerebrovascular disease are leading causes of morbidity, mortality, and
disability and represent the most common reason for long-term care not only in developed
countries, but also in low- and middle-income countries where stroke is the fourth-leading
cause of disability among people older than age 65 [1]. Stroke may severely affect a wide
range of motor skills at different levels, including upper and lower limb functioning,
particularly due to muscular weakness or partial paralysis (often restricted to one side of
the body), which are present in more than 80% of individuals [2]. Hemiparetic individuals
often suffer from limitations in mobility and the most common post-stroke impairment
that affects gait is foot drop [3]. This motor impairment is associated with the weakness or
lack of voluntary control in ankle dorsiflexors and/or the increased spasticity of plantar
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flexor muscles [4–6]. Foot drop interferes with ankle dorsiflexion during the swing phase
of gait and contributes to the disruption in weight acceptance and weight transfer in the
initial foot contact and stance phases [7]. The most evident alterations in gait, besides a
marked asymmetry, include walking speed reduction, longer durations of double-stance
and paretic swing phases, reduced paretic single-stance phase duration, cadence, and
stride length [3,8], asymmetric postural behavior during walking and standing [9], altered
kinematics, and reduced ankle push-off ability in terminal stance [10,11]. In this context,
gait impairments cause difficulties with performing the activities of daily living and
mobility, thus reducing independence and quality of life [12]. The different degrees of
impairment that characterize the affected and not-affected side suggest that the study of
gait symmetry represents a crucial feature in characterizing and quantifying locomotion
in hemiparetic individuals, also considering that an asymmetric gait pattern is generally
characterized by poor efficiency and requires high energy expenditure. In addition, the
restoration of gait symmetry is not only an indicator of functional recovery but also an
important aim for clinical rehabilitation practice.

Generally, the gait asymmetry metrics of both healthy [13] and injured individuals [14–16]
are based on the assessments of right vs. left spatio-temporal parameters, kinematics (e.g.,
joint angles), and kinetics (e.g., ground reaction forces, GRFs) carried out using three-
dimensional motion analysis systems. However, due to a number of issues associated
with high cost, operator skills, and space requirements, their application is often limited to
research settings [17]. Therefore, it appears important to have available reliable quantitative
tools that are suitable for clinical daily use and are able to effectively quantify gait asymme-
try. For this purpose, wearable accelerometers represent a very appealing option due to
their relatively low cost and ease of use, and are becoming widespread in investigating
several aspects of human movement in a variety of contexts [18]. Usually, gait asymmetry
is quantified on the basis of conventional spatio-temporal parameters, including step time
asymmetry, stance time asymmetry, swing time asymmetry, and step length asymmetry;
these are calculated as the absolute difference between consecutive left and right steps.
However, further asymmetry variables derived from the cyclical acceleration signals dur-
ing gait have been found to be effective in detecting gait alterations. In particular, trunk
accelerations acquired during gait, using a single sensor placed on the lower back, allows us
to obtain information about the so-called “smoothness” of gait (also defined as step-to-step
symmetry) by means of a parameter called the Harmonic Ratio (HR) [19–21]. The HR
is based on a spectral analysis of the acceleration signals and is related to the bilateral
rhythmicity of movement, based on the measure of trunk acceleration during a stride that
is expected to be formed by two alternating symmetric steps; it provides different kinds of
information with respect to the traditional spatio-temporal parameters, which are focused
on the lower limb symmetry at the distal level [22]. Recent studies demonstrated that the
HR parameter is worthwhile in quantifying gait alterations associated with neurologic
and orthopedic conditions, such as older people [23], Parkinson’s disease patients [22],
multiple sclerosis [24], normal weight and obese children/adolescents [25,26], Prader–Willi
patients [27,28], and cognitively impaired individuals [29]; in several cases, it is able to
reveal subtle changes in gait that might occur well before they become detectable in terms
of conventional spatio-temporal parameters [22,24–26,30]. Furthermore, it must be em-
phasized that trunk accelerations could be easily recorded by a single sensor in clinical
settings or in other ecological contexts, without the limitations of a movement analysis
laboratory, which requires expensive equipment, long setup times, and time-consuming
post-processing procedures [26,28,30,31].

Concerning its application on individuals with stroke, to date, several studies reported
that the HR could be considered a robust outcome in quantifying the step-to-step asymme-
try during gait [18,32–37]. However, to the best of our knowledge, the HR has not been
used so far as an indicator of the effectiveness of rehabilitative treatment targeting the
improvement of gait in individuals with stroke. Thus, in the present study, we employed
the HR to quantify the possible changes originating from the use of the foot drop stimulator
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(FDS) on gait asymmetry in chronic post-stroke subjects while walking in an outdoor
environment. FDSs are based on the functional electrical stimulation (FES) of the peroneal
nerve to elicit ankle dorsiflexion during the swing phase of the step cycle [38–40]. Such
devices have been proven to be effective in enhancing gait speed in short- and long-term
studies [41–43], but there is no evidence about the reduction of step-to-step symmetry.

The FDS device seems to have positive effects on gait in stroke patients [40,44]; thus,
it appears of interest to assess the feasibility of the HR and to compare it to conventional
spatio-temporal measures. Our hypothesis is that changes in the spatio-temporal param-
eters of gait previously reported [41,43] could also be accompanied by modifications of
step-to-step symmetry in stroke patients.

2. Materials and Methods

2.1. Study Design

This quasi-experimental clinical trial was registered at ClinicalTrial.gov (NCT04266899)
and approved by the Ethics and Research Committee of the Santa Casa de Misericórdia Hos-
pital of Porto Alegre (CAAE 64819617.0.0000.5335). Procedures were conducted according
to the Template for Intervention Description and Replication (TIDeR) checklist [45].

2.2. Participants

Participants were recruited through a database of the Santa Casa de Misericórdia
Neurology service in Porto Alegre and social networks, and then selected according to
eligibility criteria. We included individuals with ischemic or hemorrhagic chronic stroke
confirmed by head Computerized Tomography (CT) or Magnetic Resonance Imaging (MRI)
at least 6 months before recruitment, aged 20 to 80 years, with mild (29–34/34), moderate
(20–28/34), or severe hemiparesis (0–19/34) according to the Fugl–Meyer score’s lower
limb subdivision [46]. Patients had to have minimal cognitive ability on the Mini-Mental
State Examination (>20 points (illiterate) or >24 (literate)) [47], and no history of seizures
or recent episodes of a fall (at least 3 months before study engagement). In addition,
participants were required to be able to walk at least 30 m autonomously without assistive
devices. Individuals who presented any contraindication for electrical stimulation were
excluded (any electric or metallic implant; skin problems or lesion in proximity to the site of
FDS stimulation; pregnancy). Furthermore, subjects with any lower limb musculoskeletal
disorder, significant visual impairment, low response to FDS electrical stimulation (no
response to the highest stimulation intensity provided by the FDS device, namely 200 mA
intensity), or relevant ankle restriction (fixed ankle contracture at ≥10 degrees of plantar
flexion in the hemiplegic leg with the knee extended) were also excluded.

A group of healthy individuals (Control Group: CG) matched by age and sex were also
tested. Exclusion criteria for the CG were the existence of cardiorespiratory, neurological,
or musculoskeletal disorders. All of them exhibited normal flexibility and muscle strength,
had no evident gait abnormalities, and were able to walk independently.

The experimental protocol was carried out in accordance with the ethical standards of
the institute and the 1964 Declaration of Helsinki and its later amendments. All participants
signed a free and informed consent form before enrolment.

2.3. Procedures

This study was conducted at the Movement Analysis and Rehabilitation Laboratory
of the Federal University of Health Sciences of Porto Alegre (UFCSPA) between January
2018 and May 2019. Each participant participated in a clinical and documented evalua-
tion session. Indirect assessment of spasticity was done by the Modified Ashworth Scale
(MAS) [48], which consists of five ordinal values ranging from 0 (no tonus increase) to 4
(stiffness) [48]. Participants were evaluated while lying in a supine position and were in-
structed to remain relaxed during the test. The spasticity of plantar flexors, knee extensors,
and hip adductors was tested. All clinical assessments were performed by the same re-
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searcher at baseline (pre-intervention; 2 days before the first session) and post-intervention
(1 day after the last session).

2.4. Intervention

Subjects underwent 10 face-to-face sessions of 20 min of walking on a treadmill (Ath-
letic advanced 720EE, Buenos Aires, Argentina) with a self-selected comfortable velocity
while using the FDS device, configured according to each subject’s need (Figure 1).

 
Figure 1. The experimental setup.

The WalkAide device (Innovative Neurotronics, Austin, TX, USA) was used to stimu-
late the peroneal nerve on the affected side through a tilt sensor that detects the affected
leg tilt when the foot contact on the ground changes from posterior to anterior (pre-swing
phase). The stimulus stops when the leg is tilted forward on foot strike [49,50]. Before
treatment, subjects underwent a 3-day adaptation period with the FDS device that included
walking overground on a flat surface, walking up and down stairs, and walking on a
treadmill. The FDS device was set at enough intensity to achieve the movement, but, at the
same time, was required to be comfortable. Before each session, subjects underwent 15 min
of lower limb stretching and vital sign measurements. The training sessions, which were
interspersed by 5 min rest periods, consisted of 20 min of walking on a treadmill. Each
session was administered by the same physical therapist that annotated the overall covered
distance and also periodically checked subjects’ heart rate and blood pressure. Subjects
were allowed to stop the trial at any time, if necessary.
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2.5. Data Acquisition

A single miniaturized inertial sensor (G-Sensor®, BTS Bioengineering, Milano, Italy),
previously validated for investigations on gait in unaffected individuals and people with
neurologic conditions [25–27,51–53], was placed on the participants’ lower back, approxi-
mately at the L4–L5 vertebrae position. The sensor, which is sized 70 mm × 40 mm × 18 mm
and weighs 37 g, is composed of a three-axis accelerometer, a three-axis gyroscope, and a
three-axis magnetometer. After a brief familiarization phase, participants were asked to
walk at a self-selected speed on a 30-m flat pathway of the university outdoors. The gait
test was performed before and a day after the 10-session treatment and named as PRE and
POST session, respectively. Each trial was repeated three times and a mean of them was
calculated. Participants were equipped with the FDS device during the gait assessment of
the PRE and POST session.

The values of the linear accelerations along the antero-posterior (AP), medio-lateral
(ML), and vertical (V) directions were acquired by means of the inertial sensor at a frequency
of 100 Hz. The elaboration and parameter computations were performed with a custom
Matlab® routine. The first 5 s of the acquisition (during which the subject was requested to
stand still) were used to verify the orientation of the sensor, and this information was then
used to correct the acceleration vectors’ data during the gait trial.

Based on the raw acceleration data, the main spatio-temporal parameters (gait speed,
stride length, cadence, and duration of stance and double support phase) were calculated
following the approaches described in the literature [27,54,55]. The HRs for the AP, ML, and
V directions were computed according to the procedure proposed by Pasciuto et al. [20].

2.6. Statistical Analysis

Sample size was determined by G-Power 3.0 software (version 3.1.9.4.; Faul & Buch-
ner, Germany) based on a previous study [18] considering the minimum effect size of
0.56% to detect a minimum clinical difference in the HR of the ML direction. Sample size
was calculated by adopting 90% power and an alpha value of 0.05. A total of 29 partici-
pants was calculated as necessary to perform this study. The parametric Student’s t-test,
non-parametric Mann–Whitney U test, and Chi-square test were used to compare the
demographic characteristics between the stroke and the control groups. After verifying
their normality (using the Shapiro–Wilk test) and homogeneity of variances (Levene’s test),
a one-way analysis of variance for repeated measure (RM-ANOVA) was conducted using
SPSS software (v.20, IBM, Armonk, NY, USA) to verify the effect of the use of the foot drop
stimulator (FDS) on spatio-temporal parameters and the HR PRE and POST training. Time
(PRE/POST) was set as an independent variable, while the five gait parameters previously
listed and the three HRs represented the dependent variables. After the Bonferroni cor-
rection was performed considering the three main outcomes (HR in the AP, ML, and V
direction), the statistical significance was fixed at p = 0.017. The Student’s t-test assessed
the differences between PRE evaluations and the controls (Control Group).

3. Results

Participants were recruited from March 2017 to August 2019, while the final measure-
ments were carried out in August 2019. Forty-one stroke survivors were contacted and
the final tested sample included 32 individuals. Their baseline demographic and clinical
characteristics are reported in Table 1.
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Table 1. Participant characteristics.

Stroke Control Group p Value
(n = 32) (n = 32)

Gender, n (%)
Male 22 (68.8) 22 (68.8) 0.444 ¥

Age (years) 56.84 ± 9.10 56.81 ± 8.88 0.989 #

Height (m) 1.68 ± 9.73 1.72 ± 8.23 0.221 #

Body mass (kg) 75.13 ±11.90 78.26 ± 12.97 0.318 *

Time since stroke (months) (min–max) 39.41 (6–96)
Stroke type, n (%)

Ischemic 24 (75)
Hemorrhagic 8 (25)

Affected hemisphere, n (%)
Right 19 (59.4)
Left 13 (40.6)

FMA–LL (0–34), (min–max) 19.63 (11–32)
MAS, frequency (0/1/1 + /2/3/4)

Plantiflexors 0/3/2/4/11/12
Knee extensors 5/7/6/4/8/2

Adductors 5/4/4/12/7/0
FMA—LL, Fugl–Meyer Assessment—Lower Limb; MAS, Modified Ashworth Scale; max, maximum; min,
minimum; n, number of participants; SD, standard deviation. # p-value parametric Student’s t-tests; * p-value non-
parametric Mann–Whitney and ¥ p-value Chi-square tests were used to compare the demographic characteristics
between the stroke and control groups.

Table 2 presents the values of the spatio-temporal parameters and the HR features for
stroke patients in the PRE and POST session and for the Control Group. In the comparison
of the PRE session of stroke individuals vs. the Control Group, all parameters exhibited
significant differences, with the exception of the double support phase.

Table 2. The spatio-temporal parameters of gait and the Harmonic Ratio values of the participants.

Stroke Control Group
PRE POST F p Value p Value

Spatio-temporal parameters

Gait speed (m/s) 0.62 ± 0.47 0.66 ± 0.25 * 4.615 0.040 1.22 ± 0.23 <0.001 #

Stride length (m) 1.28 ± 0.47 1.23 ± 0.48 3.23 0.082 1.47± 0.12 0.044 #

Cadence (steps/min) 85.06 ± 26.78 88.64 ± 25.81 4.49 0.043 116.99 ± 9.60 <0.001 #

Stance phase (% Gait Cycle) 55.66 ± 7.98 56.17 ± 6.92 0.845 0.365 59.46 ± 1.40 0.010 #

Double support phase (% Gait Cycle) 9.72 ± 4.26 10.13± 5.03 0.80 0.379 9.82 ± 1.50 0.102

Harmonic Ratio

AP direction 80.87 ± 11.24 71.44 ± 18.00 * 10.47 0.003 95.12 ± 2.33 <0.001 #

ML direction 38.02 ± 19.92 47.65 ± 21.44 * 6.05 0.020 85.61 ± 8.03 <0.001 #

V direction 72.38 ± 11.89 64.13 ± 19.97 * 8.39 0.007 95.18 ± 2.02 <0.001 #

Values are expressed as mean ± SD. PRE = pre-training (after habituation with FDS—3 days); POST = post-training (after 10 sessions
of intensive training with the Foot Drop Stimulator); AP = Antero-posterior; ML = medio-lateral; V = vertical; * significant difference
between PRE and POST training: One-way Repeated Measure Analysis of variance (spatio-temporal parameters p = 0.05; Harmonic Ratio
parameters’ statistical significance after Bonferroni correction (p < 0.017); # significant difference when comparing the PRE intervention and
control group: Student’s t-test (p < 0.05).

As for the assessment of time effects (PRE vs. POST session in stroke patients), a
significant effect of time was found and, in particular, the post-hoc analysis detected a
significant increase in gait speed (p = 0.028). Regarding the symmetry parameters (HR
features), the statistical analysis detected a significant effect of time for the HR in all three
directions. In particular, the HR in the ML direction increased (+20%, p = 0.02), while those
in the AP and V directions decreased after training (both approximately 13%, AP direction:
p = 0.003, V direction: p = 0.007).
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4. Discussion

The purpose of the present study was to assess the effects of FDS use in individuals
with stroke by means of spatio-temporal and step-to-step symmetry parameters obtained
from trunk accelerations acquired using a wearable inertial sensor.

In terms of the spatio-temporal parameters, the only significant change observed post-
treatment involved gait speed. This result is consistent with previous, similar studies [41–43].
However, it is worth noting that such improvement (+0.04 m/s), although statistically
significant, was lower than the value indicated in the literature as clinically meaningful;
several authors reported that the minimally clinical important difference in individuals
who undergo inpatient rehabilitation after stroke lies between 0.10 and 0.18 m/s [56,57].
Concerning the HR parameters, mixed effects were observed in the treatment. Generally
speaking, higher HR values denote better gait stability [30] and improved symmetry,
smoothness, and rhythmicity. Our results show that the HR in the ML direction significantly
increased, and this result may be explained by the fact that, during gait, the central nervous
system controls the ML displacements related to the weight acceptance of each step [58,59].
However, in hemiplegic subjects the lack of lower muscle strength and increased instability
observed in the affected side often acts by disrupting this strategy [60–67]. In this sense, the
FDS walking training may have increased the ML gait symmetry by generating better foot
contact [68] while shifting the body weight to a medial position, resulting in an improved
ML stability during the walking movement and possibly, in the medium term, improving
muscle strength and spasticity [69]. The important role played by the HR in the ML
direction as a determinant of stability is also confirmed by previous studies reporting
that a good lateral harmonic stability in gait may be important for minimizing fall risk
in older people [70,71]. In addition, however, the p value observed in the HR of the ML
direction is slightly higher than the post-Bonferroni correction fixed statistical significance;
the improvement of the HR in the ML direction is highly clinically relevant (+20%) and
must be taken into consideration. Furthermore, it is important to note that the improvement
of the HR appears in the more critical direction, the ML direction, which exhibited, in the
PRE session, a much lower value than the control group value with respect to the V and
AP directions.

In contrast, we also detected a reduction of the AP and V components of the HR,
even though it is worth noting that the magnitude of such changes is approximately half
compared with those related to the ML direction (−13% vs. +20%). This result suggests that
the number of training sessions may be insufficient to let participants completely adapt to
the new gait strategy. Further studies are thus necessary to verify whether a longer training
period may trigger a complete readaptation of gait, from the point of view of symmetry,
which involves all directions. This hypothesis is somewhat supported by previous studies
that report how neuroprostheses are effective in enhancing balance control during walking
(and thus effectively manage foot drop) after 8 weeks [41].

In addition, it is important to consider that our study’s participants are mainly severely
impaired. In this view, they probably need longer intervention periods to exhibit substantial
changes in walking symmetry, which may contribute to the lack of improvement in the AP
and V components of the HR.

While walking, maintaining balance requires continuous integrative control, especially
in the ML direction, in order to cope with instability during single limb support [72]; thus,
we can hypothesize that, after the treatment, patients are trying to adapt to the new gait
strategy, which is characterized by higher velocity too, and the importance is given to the
ML direction. Furthermore, it has been demonstrated that the HR is speed-dependent and
it is especially affected in the very slow condition [73]. It is important to underline that, in
this study, only the HR and spatio-temporal parameters were investigated; further research
should be conducted, integrating these parameters with kinematic and kinetic data, to
evaluate the most sensitive measures to changes in walking due to the FDS. Kinematics
and kinetics may clarify where the symmetry deviations occur. In addition, in this study,
no placebo control group was included. Further research that includes a placebo control
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group should be conducted in order to distinguish, more clearly, whether the procedure is
effective or if the changes could be associated with a placebo effect.

Future studies may also wish to assess the effects of the FDS at a longer follow-up to
more fully understand if the gait changes are maintained over time. In addition, this study
contains a disproportionate number of men, who make up 68.8% of the study participants.
Thus, by increasing the number of female patients, further work could be conducted to
better understand the possible sex-related differences in trunk movement asymmetry. In
addition, a large range of time since stroke (from 6 to 96 months) could have influenced the
results. Further studies with a larger sample size and with a restricted range of time since
stroke should investigate whether the results differ in stroke patients with dissimilar levels
of impairment (i.e., mild–moderate vs. severe impairment).

Even though this study presents some limitations, it presents two original aspects: (1)
the assessments were conducted using an inertial wearable sensor to document the effects
of the FDS on gait in stroke patients; and (2) the analysis was conducted considering not
only the traditional spatio-temporal parameters but also the HR, which has never been
used to quantify the modifications of step-to-step symmetry in stroke patients induced by
FDS treatment.

Author Contributions: G.S. and M.J.d.C.: conceptualization, methodology, clinical and instrumental
assessment of the participants, and writing—original draft; V.C.: writing—original draft, formal
analysis, and data curation; M.P. (Massimiliano Pau), B.L., and M.P. (Micaela Porta): formal analysis
and software; M.G.: review and editing; A.S.P.: conceptualization, methodology, and review. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics and Research Committee of the Santa Casa de
Misericórdia Hospital of Porto Alegre (CAAE 64819617.0.0000.5335).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sousa, R.M.; Ferri, C.P.; Acosta, D.; Albanese, E.; Guerra, M.; Huang, Y.; Jacob, K.S.; Jotheeswaran, A.T.; Rodriguez, J.J.; Pichardo,
G.R.; et al. Contribution of chronic diseases to disability in elderly people in countries with low and middle incomes: A 10/66
Dementia Research Group population-based survey. Lancet 2009, 374, 1821–1830. [CrossRef]

2. Aqueveque, P.; Ortega, P.; Pino, E.; Saavedra, F.; Germany, E.; Gómez, B. After Stroke Movement Impairments: A Review
of Current Technologies for Rehabilitation. In Physical Disabilities—Therapeutic Implications; Tan, U., Ed.; IntechOpen Limited:
London, UK, 2017.

3. Sheffler, L.R.; Chae, J. Hemiparetic Gait. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 611–623. [CrossRef] [PubMed]
4. Chisholm, A.E.; Perry, S.D.; McIlroy, W.E. Correlations between ankle–foot impairments and dropped foot gait deviations among

stroke survivors. Clin. Biomech. 2013, 28, 1049–1054. [CrossRef] [PubMed]
5. Stewart, J.D. Foot drop: Where, why and what to do? Pr. Neurol. 2008, 8, 158–169. [CrossRef] [PubMed]
6. Pittock, S.J.; Moore, A.; Hardiman, O.; Ehler, E.; Kovac, M.; Bojakowski, J.; Al Khawaja, I.; Brozman, M.; Kaňovský, P.; Skorometz,
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Abstract: This paper presents a new wearable e-textile based system, named SWEET Sock,
for biomedical signals remote monitoring. The system includes a textile sensing sock, an electronic
unit for data transmission, a custom-made Android application for real-time signal visualization,
and a software desktop for advanced digital signal processing. The device allows the acquisition
of angular velocities of the lower limbs and plantar pressure signals, which are postprocessed to
have a complete and schematic overview of patient’s clinical status, regarding gait and postural
assessment. In this work, device performances are validated by evaluating the agreement between
the prototype and an optoelectronic system for gait analysis on a set of free walk acquisitions. Results
show good agreement between the systems in the assessment of gait cycle time and cadence, while the
presence of systematic and proportional errors are pointed out for swing and stance time parameters.
Worse results were obtained in the comparison of spatial metrics. The “wearability” of the system and
its comfortable use make it suitable to be used in domestic environment for the continuous remote
health monitoring of de-hospitalized patients but also in the ergonomic assessment of health workers,
thanks to its low invasiveness.

Keywords: wearable devices; e-textile; gait analysis; m-health; plantar pressure; validation; Internet
of Things

1. Introduction

The term Electronic-Textiles, or E-Textiles, refers to a wide range of studies and products that
extend the usefulness and functionalities of common fabrics. The innovative feature taken by this novel
application regards the embedding of digital components, such as batteries, LEDs, and, in general,
electronic components, in common fabrics. Thus, through E-Textile technology, every kind of digital
application can be potentially developed on a textile substrate. This attractive opportunity is bringing a
revolution in the market of wearable devices, with the involvement of big companies which are trying
to shift from the wearable electronic hardware to the more comfortable electronic textiles. The market
of wearable technologies has a compound annual growth rate of 15.5%, with great opportunities of
expansion, it is expected to reach 51.6 billion USD by 2022 (IDTechEx). E-textile is gradually covering
this market, offering cheap and comfortable solution in different sectors, such as fashion, entertainment,
military and defense, space exploration, health, and wellness.
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Healthcare remains one of the most interesting and promising markets: e-textile features are
very suitable for the development of innovative medical devices or applications that can potentially
establish significant cost reductions for healthcare systems. Wearable devices for health monitoring
can be easily used by patient in domestic environment and, when they are integrated in a complete
communication chain, they allow smart remote monitoring with great benefits for caregivers and
patient himself. E-textile sensitive fabrics can be developed to acquire and react to clinical signals
detectable on body, with some interesting advantages: first, the nature of fabrics makes them the best
solution to realize sensors in direct contact with the skin; second, fabrics are flexible and well adaptable
to human body offering technological possibilities not available with the common electronics; and third,
fabrics are cheap, comfortable, washable, and easily customizable [1]. Thus, smart biomedical clothes
potentially represent an innovative tool for the continuous monitoring of vital signs, combining the
function of sophisticated medical devices with the comfort and ease of use of clothing products.

Moreover, the opportunity to integrate these innovative devices in IoT networks makes possible
to establish smart solution for remote health monitoring, exploring the growing field of m-health and
supporting cost reduction in healthcare system by facilitating early hospital discharges. Many E-Textile
solutions for health monitoring have been proposed in literature, but most of them are blocked in the
research field and are not intended to flow to the pragmatic healthcare world. Regulatory issues regarding
patient safety, privacy, data management [2,3], and the need of a safe degree of reliability for device
performances represent the main obstacles to the large commercial diffusion of such types of devices.

This manuscript presents a prototypical system, based on an e-textile sensing sock, able to collect
the angular velocities of lower limbs, using Inertial Measurement Units (IMUs), and the plantar
pressures, by means of textile sensors. Our aim is to provide a wearable and portable system for the
assessment of both postural and gait tasks, exploiting the recent advances in the field of e-textile,
electronic and signal processing. In particular the system is intended to provide the assessment of
spatio-temporal gait parameters by processing the angular velocities signals while the pressure signals
will be used to assess Center of Pressure (COP) displacements during static postural tests.

Static posturography in clinical environment is usually achieved by means of commercial platform
systems. These systems include a big number of sensors arranged in a matrix resulting in high
spatial resolution and high accuracy [4]. However, platform systems are expensive, not portable,
and require a trained technician to be used. In-shoe systems can overcome the usability limitations
of platforms, enabling measurements of plantar pressure distribution within a shoe, in indoor and
outdoor environments. In [5–7], three insoles with, respectively, 10, 4, and 3 sensors are used to
measure the COP for the assessment of balance. All these applications are based on force sensing
resistors (FSRs), whose hard structure can reduce the comfort for the user. Moreover, insoles create
an additional layer inside the shoe, which can essentially change the distribution of plantar load of
the foot compared to the natural in-shoe condition [8]. Textile pressure sensors represent an attractive
solution because they improve comfort for users and their thickness ensure no distortion of plantar
pressure. Several experimental custom-made smart socks, with textile pressure sensors embedded,
are described in literature. Most of them are developed for the assessment of spatio-temporal gait
parameters [9–11], while other solutions [8,12] provide for postural assessment in dynamic tasks.
Nevertheless, the latter offers only a qualitative representation of pressures distribution during walking
tasks. Unlike these, the proposed system uses the textile pressure sensors not for gait analysis nor
for dynamic postural assessment, but pressure signals are considered and processed to provide
quantitative estimation and analysis of COP displacement during static tasks.

Regarding gait assessment, we decided to exclusively exploit kinematic data collected from
IMUs because plantar pressure signals would not provide significant support for the estimation of
spatio-temporal parameters. IMUs are nowadays broadly used in biomedical field. These devices
are light, small, and can be easily integrated in electronic circuits, so they are very suitable for
wearable application. Different kinds of IMU-based medical applications are available in literature,
from the activity classification [13–18] to the balance assessment [19,20], but gait analysis is the most
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explored [21,22]. IMUs overcome the limitations of laboratory measurements enabling the assessment
of spatio-temporal gait parameters in indoor and outdoor environments. Moreover, IMUs are cheaper
and more practical than full gait analysis systems, thus broadening the range of its potential users.
As reported in [23], gait analysis is typically gained using the accelerometer, while the gyroscope is
arguably the next most commonly used sensor. The different gait phases can be detected from angular
velocities, measured by gyroscopes attached to lower limbs [24]. Accelerometers by themselves can
measure angular rotation but they cannot give a good result as gyroscopes. Thus, gyroscopes are
often used in fusion with accelerometer readings [25–27], when deployed together such as in an IMU,
or alone [28–31] in the assessment of gait parameters.

There is a variety of commercially available IMU-based systems for gait analysis that are currently
used in clinical environment, such as Opal by APDM or G-Sensor by BTS. They are wearable and
portable systems, but they are expensive and require the presence of a technician to place sensors and
carry out the acquisition using the computer software. Therefore, they cannot be used in domestic
environment nor without the supervision of an expert. In contrast, our system is intended to be used in
real-life conditions without any aid, as it only requires to wear socks and follow the easy steps guided
by a mobile application that can be installed on the patient’s smartphone.

In this manuscript, we describe the details of prototype design and development. We also provide
a validation analysis of the system concerning the assessment of spatio-temporal gait parameters
deriving from IMU signals digital processing. This analysis has been obtained by performing
comparative assessments with a stereophotogrammetry system for gait analysis, used in clinical
environment and considered to be the gold standard in this kind of assessment.

2. Materials and Methods

The aim of this work is to present the novel wearable device SWEET Sock for remote health
monitoring and to validate its performances in the acquisition and analysis of angular velocity signals
of the lower limbs for the assessment of spatio-temporal gait parameters. The first version of this
device, presented in [32], has been improved with new more efficient textile and electronic components
and through the addition of a set of signal processing algorithms. In this chapter, we will present in
detail the units making up the update version of the system and the materials and methods used to
perform the validation analysis.

2.1. Wearable Device: SWEET Sock

SWEET Sock is a wearable sensing device which allows the acquisition of accelerometric and
pressure signals. It can be integrated in a complete system for remote health monitoring, presented in
the schematic diagram in Figure 1.

Figure 1. System Architecture: (1) SWEET Sock—Textile Unit; (2) SWEET Sock—Control Unit;
(3) SWEET App; (4) Web Server; (5) SWEET Lab.

The wearable sensor unit allows the acquisition of bio-signals when connected to the analogue
front-end located in the electronic unit. This unit also contains a microcontroller and allows data
transmission through an integrated Bluetooth Low Energy (BLE) module. A custom-made Android
mobile application has been developed to receive and visualize real-time signals on a smartphone,
and to upload data on a dedicated web server afterwards. This is a restricted area that is accessible
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after prior authentication, exclusively by authorized and appointed health professionals, who can
download, analyze, and process data using the custom-made MATLAB desktop software.

In the following sections, the functional modules of the system are individually presented.

2.1.1. Wearable Sensing Unit

The wearable sensing unit consists of a commercial sports sock in which three pressure sensors,
in e-textile technology, have been integrated as sensing elements in three strategic points of the foot
arch. The number and placement of sensors were based on anatomical considerations: in standing
position, the main force transmitted onto the foot originates at the bones of the lower leg. At the ankle,
this force is divided into three smaller forces in the style of a tripod. Within the foot, one of these
three forces is directly transmitted onto the calcaneus, the second one onto the first metatarsal, and the
third one is distributed across the second to fifth metatarsal [33]. We therefore decided to use three
pressure sensors per foot: one under the heel (HEEL), one under the first metatarsal bone (MTB1), and
one under the fifth metatarsal bone (MTB5) (Figure 2c). Besides the experimental device presented
in [33], also the commercial smart socks Sensoria are designed with the same number and placement
of the pressure sensors. The performances of the latter in static postural assessment have been also
investigated, with good results, in comparison with a stabilometric platform [34]. The use of the
minimum number of sensors needed for the analysis reduces the complexity of textile design and can
improve the comfort and wearability for users.

Sensors have been realized by using 2-by-4 cm sheets of EeonTex fabric, a conductive and
nonwoven microfiber with piezo-resistive functionality (surface resistivity 2000 ohm/sq), offering a
reduction of the electrical resistance to the application of force. Their characterization was carried out
with load tests using a controlled mechanical clamp with decreasing/increasing loads [32]. The three
conductive sensors have been covered by non-conductive fabric to prevent degradation by contact with
the skin and are thin enough to provide postural monitoring at natural in-shoe conditions, without
distortion of plantar pressure. A conductive ribbon (5 mm tick), with a resistance of less than 0.1 ohm
per cm, has been used to connect sensors to the output connectors of the wearable unit. Compared
to the conductive wires available on the market, the ribbon has a lower resistance (0.1 vs. 0.9 ohm
per cm) and is more robust as it does not break due to stretch. The design of conductive pathways
provides a placement of all connectors of the data acquisition system, represented by snap buttons, on
the lateral part of the sock, which essentially improves the system usability. The textile connections
have been sewn on the side of the sock avoiding, when possible, the passage under the sole of the
feet, where they could be deteriorated. Connection lengths have also been minimized by studying the
shortest path in order to reduce noise and interference. Figure 2 shows the complete device with its
sartorial design.

Figure 2. SWEET Sock sensing unit: (a) external view; (b) internal view of textile connections; (c) textile
pressure sensors.

2.1.2. Electronic Unit

The electronic unit is a compact module containing all the electric and electronic elements to allow
acquisition, digitalization, storage, and wireless transmission of the signals.
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A conditioning circuit, for each conductive sensor, has been realized in order to read a voltage
signal proportional to the applied force. This circuit is realized by means of a voltage divider consisting
of two resistors: one of which is of known value and the other represented by the e-textile sensor.
The known resistance value is fixed to 18 kohm, around which the conductive sensor resistance ranges,
to reach the condition of maximal sensitivity. The IMU FLORA 9-DOF (Adafruit Inc.: New York,
NY, USA) has been integrated in the electronic unit to acquire gyroscopic signal. It consists of a
small electronic board mounting LSM9DS1 module, a system-in-package featuring a 3D digital linear
acceleration sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor.

A LilyPad Simblee™ BLE Board (Sparkfun Inc.: Niwot, CO, USA) has been used as the
microcontroller. It provides the digitalization of pressure signals, and it is connected to Flora IMU
through the I2C serial bus interface. LilyPad Simblee also allows to send data via Bluetooth Low-Energy
protocol (BLE, or Bluetooth 4.0), using Simblee™ Bluetooth® Smart Module integrated on the shield.
BLE technology represents a perfect trade-off between energy consumption, latency, piconet size,
and throughput. Its control features are implemented exploiting the ARM® Cortex M0 microcontroller
that can be programmed using the Arduino IDE. The control unit is programmed to sample pressure
analogue signals with a sample period of 15 ms (66.7 Hz), and to receive digital data from the
gyroscope with the same rate. Data are collected in 16-bytes-sized packets (2 bytes for each information:
Packet, Time, x-y-z axes of the gyroscope, MTB1, MTB5, and HEEL pressure data) and real-time sent,
via BLE, to the smartphone using SWEET App. Other signals deriving from IMUs (signals from
accelerometer and magnetometer) are not recorded by the device because they do not provide any
essential information for the planned assessments. We actually choose to implement a gyroscope-based
algorithm to evaluate all spatio-temporal metrics because accelerometer signals are affected by gravity
and are sensitive to sensor location [35]. When using accelerometers, it is important that they are
placed in the same location each time as the signal is affected by how far from the center of rotation
they are. The advantage of using a shank mounted gyroscope compared to accelerometers is that, as
long as the gyroscope is recording data in the correct plane, it does not matter where on the shank the
sensor is placed [36,37]. This reduction in the amount of acquired and sent data allows to improve
signals sampling and sending rate.

All modules making up the electronic unit are powered by a 190 mAh/3.7 V lithium battery,
placed on the back of the same unit. The electronic unit is housed in a 3D-printed plastic case (73 mm
× 52 mm × 21 mm). On the top part of the case, 4 snap buttons allow the connection to the wearable
sensing unit, in order to provide the input signals for the analogue front ends. In Figure 3 the electronic
unit, with its main details, is shown.

Figure 3. SWEET Sock ElectronicUnit: (a) internal electronic unit; (b) complete unit external view.

2.1.3. SWEET App

SWEET App is a custom-made Java language application for mobile devices requiring Android
6.0 or higher operating system and BLE technology. The application allows the smartphone to
communicate and receive data coming from the electronic unit, via BLE protocol. When the application
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is started it is possible to associate and connect the wearable device, using its MAC address. Then, the
measurement session can start, data are transferred from the electronic unit to the mobile device, which
allows signals real time plotting. At the end of the session data are automatically saved in a “.csv” file,
which is stored locally and can be uploaded at any time to a dedicated web server. In Figure 4 the
main frames of the app are shown.

Figure 4. SWEET App main frames: (a) login; (b) unit connection; (c) signal recording; (d) results summary.

2.1.4. Signal Processing Algorithms

A custom-made Matlab GUI software, named SWEET Lab, has been developed to allow signal
visualization and digital processing. Health professionals have the possibility to download data
from the server and analyze them using the tools offered by this software. Pressure and gyroscope
signals gathered by the hardware are individually processed to respectively perform posturographic
assessment and spatio-temporal gait analysis. The two types of signal were not integrated because
they are used in the analysis of two separate phases: pressure signals for static postural assessment
while angular velocities in dynamic walking tasks analysis.

A gyroscope-based algorithm for gait analysis has been developed. The angular velocity signals
on the sagittal plane are selected and low-pass filtered with 5th order Butterworth filter (cut-off
frequency 5 Hz) to reduce noise. Mid-swing, heel-strike, and toe-off events are then identified on
the filtered signals for both feet, using a threshold-based algorithm [38]. The starting point of the
algorithm is the identification of the time events corresponding to the mid-swing, identified as the local
maximum peaks of the signal. In the next step, local minimum peaks prior and after the mid-swing
point are selected as, respectively, toe-off and heel-strike time events. Starting from these gait events
times, all temporal parameters of gait analysis are calculated. In Table 1, the list of temporal parameters
is provided with a description clearly outlining the methods used to calculate them. Spatial parameters
are assessed using a single pendulum model described in [36], where the distance from the foot to the
top vertex of the rotation is modeled as equal to the height of the subject multiplied by a scaling factor.
Equation (1) shows how the stride length is calculated:

StrideLength(m) = S × H × 2(1 − cos θ) (1)

S represents the scaling factor chosen equal to 0.52 [36], H represents subject height [m] and θ is
the angular displacement in the sagittal plane during the stride [rad], assessed by integration of the
gyroscope signal.

Plantar pressure signals collected by the sensorized socks are used to perform sway analysis,
as a systematic assessment of the readiness and stability of the human body to achieve and maintain
equilibrium. This analysis starts with the estimation of the center of pressure (COP), whose displacement
during stand task is a meaningful parameter for a quantitative evaluation of the ability to maintain
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equilibrium. At each instant, COP coordinates in the medio-lateral (XCOP) and antero-posterior (YCOP)
directions have been calculated by processing raw pressure data according to the following Equation (2),

XCOP =
∑N

i=1 XiPi

∑N
i=1 Pi

YCOP =
∑N

i=1 YiPi

∑N
i=1 Pi

(2)

where N denotes the total number of sensors, and X and Y are the sensor coordinate inside the whole
foot shape area and P the pressure value. The resulting signals express COP displacement along time
in the medio-lateral (ML) and antero-posterior (AP) directions, with respect to a reference point located
in the middle between the feet. The mono-dimensional representations of these signals constitute the
ML and AP stabilograms, while the combined bidimensional plot is referred to as statokinesigram,
representing the ground projection of the COP during the stand task.

Table 1. Spatio-temporal gait parameters.

Temporal Measures

Variable Description

Gait Cycle Time (GCT) [s] Defined as the time between two successive heel strikes of the same foot.
Stance Time [s] The amount of time a foot is in contact with the ground within a single

gait cycle. It is the time between the heel-strike and the successive toe-off
of the same foot.

Stance Phase [%] Stance time expressed in percentage of the GCT.
Swing Time [s] Duration of the swing phase, in which the foot is not in contact with the

ground. It is calculated as the time between the toe-off and the successive
heel strike of the same foot.

Swing Phase [%] Swing time expressed in percentage of the GCT.

Single Support [%] Part of the GCT in which a single foot is in contact with the ground. It is the
time between the toe-off of the opposite foot and the successive heel-strike
of the opposite foot, expressed in percentage of the GCT.

Double Support [%] Part of the GCT in which both feet are in contact with the ground. It is
the time between the heel-strike of a foot and the successive toe-off of the
opposite foot, expressed in percentage of the GCT.

Cadence [steps/min] Number of steps per minute.

Spatial Measures

Variable Description

Stride Length [m] Distance covered during GCT.
Stride Velocity [m/s] Defined as the ratio between Stride Length and GCT.

Signals are filtered with a low-pass 4th-order Butterworth digital filter with a cut-off frequency of
5 Hz [39], and then analyzed in time domain to calculate a set of parameters describing the stability of
the subject during the task (Table 2) [34,40,41].

Stabilometric signals are also analyzed in frequency domain. The Matlab periodogram algorithm
is used to estimate power spectral density (PSD), modified using the Hamming window. Frequency
assessment is provided by means of a set of measures describing the distribution of PSD, such as peak
and centroidal frequencies, band powers, and others. All the parameters assessed are listed in Table 2.
The description clarifies the methods used to evaluate both spatial and frequency domain metrics
starting from stabilometric signals and ground projection of the COP trajectory.
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Table 2. Static postural assessment parameters.

Time Domain Measures

Variable Description

Mean COP coordinates [cm] ML and AP mean COP displacements during time.

Mean Distance [cm] Mean distance of COP trajectory from the center of the trajectory itself.

COP Trajectory Range [cm] Maximum distance between 2 points of COP trajectory in ML and AP directions.

Root Mean Square (RMS) [cm] RMS of COP trajectory. It is provided also for single ML and AP directions.

Angle form AP axis [deg] Mean angle formed by the segments composing COP trajectory and AP direction.

Sway Path [cm] Total length of COP trajectory, computed as the sum of distances between successive
points of the trajectory.

Mean Velocity [cm/s] Mean velocity of COP trajectory, computed as the ratio between sway path length
and duration of the test.

95% Ellipse Area [cm2] Area of 95% confidence ellipse encompassing the COP trajectory in transverse plane.

95% Ellipse Angle [deg] 95% confidence ellipse inclination with respect to the ML direction.

Frequency Domain Measures

Variable Description

Peak Frequency [Hz] Peak frequency for ML and AP power spectrum.

Median Frequency [Hz] Frequency below which the 50th percentile of total power is present.

80% Frequency [Hz] Frequency below which the 80th percentile of total power is present.

Centroidal Frequency [Hz] Spectral centroid of power spectrum. It indicates where the center of mass of the
spectrum is located.

Band Power [cm2] Power comprised in low [0.1–0.2 Hz], mid [0.2–0.3 Hz], and high [0.3–1 Hz] frequency
bands, expressed as absolute and percentage values.

2.2. Validation Analysis

This manuscript presents a validation analysis concerning SWEET Sock gait assessment.
In [42], a first validation analysis was performed by comparing the raw accelerometric and plantar

pressure signals acquired by the prototype with those recorded by reference systems. Following the
results obtained, in this work we want to proceed the process of validation of device performances
exploring the results of gait assessment, in order to carry out any possible unconformity in measurement
and/or processing phases managed by the new prototype. We compared spatio-temporal gait
parameters calculated by SWEET Sock with those found by an optoelectronic stereophotogrammetric
system. The comparison has been carried out by means of statistical methods. This section describes
the methods used for data acquisition and analysis.

2.2.1. Stereophotogrammetric System for Gait Analysis

The reference system chosen for the validation analysis is SMART-DX 700 by BTS Bioengineering,
an optoelectronic stereophotogrammetric system used for movement analysis. Stereophotogrammetry
is usually considered a “gold standard” in gait analysis when used appropriately. The system is made
of 6 infrared digital cameras, with a sensor resolution of 1.5 megapixel, an acquisition frequency from
250 fps (at maximum resolution) to 1000 fps and an accuracy lower than 0.1 mm. The recognition of body
segments during movement is achieved through the use of twenty-two retro-reflective passive markers
(diameter 14 mm), which are attached to subject’s skin at specific landmarks. Video data are processed
on a PC workstation running SMART Clinic software, able to store and compute a set of parameters
concerning kinematic (spatiotemporal parameters, joint angles) and dynamic (forces exchanged).

2.2.2. Experimental Setup

One-hundred-and-eight records were acquired on three healthy subjects: two males (aged 27
and 26) and one female (aged 25). Participants were free of neurological, muscular, and skeletal
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comorbidities affecting mobility and gait. The subject wore the sensorized socks connected to the
electronic unit and was equipped with the markers of the stereophotogrammetric system, in order
to perform simultaneous recording of the walking tasks with the two systems under test (Figure 5).
The markers were attached to subject’s skin according to the protocol described by Davis et al. [43].

Figure 5. Subject equipped with both systems: SWEET Sock and reflective markers.

The trials involved free walking tests on a 11 m walkway in the movement analysis laboratory
of University Hospital “Ruggi D’Aragona” of Salerno (Italy). Each subject was instructed to perform
eight independent trials respectively at preferred, slow and fast self-selected walking speed. After that,
the use of a metronome was introduced to force subjects walking at fixed normal, slow and high
speed. Metronome rate was set at 100%, 67%, and 133% of the average cadence previously assessed
for each subject over 5 free walking tests using the accelerometers-based gait analysis system Opal
by APDM. Subjects performed four walking trials at each speed imposed by metronome. The trials
were performed at different walking speed in order to obtain a dataset covering a wider range of
values. Doing so, we expect a more specific characterization of the relationship existing between the
two methods over all the range of measurement.

In order to validate the proposed e-textile wearable system, the gait analysis parameters obtained
from this device have been compared with those obtained by the reference system. Starting from
gyroscope signals measured by SWEET Sock, spatio-temporal gait parameters were computed
by the custom-made MATLAB algorithms shown in the previous paragraph. The corresponding
parameters assessed by the reference system were retrieved from the reports generated by SMART
CLINIC software.

The following spatiotemporal parameters were considered for the benchmarking analysis;
Gait Cycle Time (s), Cadence (step/min), Stance Time (s), Swing Time (s), and Step Length (m).

2.2.3. Statistical Analysis

The agreement between measurements computed by the two systems—SWEET Sock and
SMART-DX 700—was investigated by means of two-tailed paired t-test, Passing–Bablok regression,
and Bland–Altman analysis. The paired t-test has been performed for all the parameters selected for the
analysis, in its parametric or nonparametric form (Wilcoxon matched pairs signed-rank test) in according
to D’Agostino–Pearson omnibus normality test result. With the paired t-test, the null hypothesis of
no difference between the two systems in mean values of each spatio-temporal parameter was tested.
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A two-tail test was used and the nominal alpha level was set to 0.05 [44]. In combination with the t-test,
the linear correlation between each pair of measurements has been assessed, using Pearson’s correlation
coefficient (r). The agreement was further investigated using PB regression and BA plots, with the aim to
find out any proportional or constant systematic error between the two methods of measurement.

Passing–Bablok regression is a method proposed in 1983 for testing the agreement of two sets of
measurement achieved by different systems [45]. The novelties taken by this method, with respect
to the standard linear regression are that it is based on nonparametric model, it is not sensitive
towards outliers, and it assumes imprecision in both measurement methods and that errors in both
methods have the same distribution, not necessarily normal. As quantitative outcomes, this method
returns slope (proportional systematic error) and intercept (constant systematic error) of the fitting
linear model. The quantitative-based rules to accept the agreement between systems are whether the
confidence intervals (CI) of slope and intercept contain respectively 1 and 0 [45].

Bland–Altman analysis is a graphical method based on the plots of the differences between two
measurements against their averages, and it is the most popular method used to measure agreement
between two measurement systems [46]. If the differences are randomly distributed around the
zero-value axis, no proportional nor systematic error is underlined by the analysis. Quantitative
assessment is given through the bias, as the mean of the differences, and the limits of agreement (LoA)
assessed as the bias ±1.96 times standard deviation of the differences [47,48]. If the differences between
methods do not have a normal and/or symmetric distribution, LoA are considered to be between the
2.5% and 97.5% percentiles. Significant statistical errors are said to be present if the confidence interval
does not contain zero value. Bland and Altman propose to accept the agreement between the methods
under test if this interval contains zero value [47].

Statistical analyses were performed using R software (ver. 4.0.3).

3. Results

We approached the analysis of agreement between the two methods of measurement performing a
paired t-test on all the parameters considered for the analysis. For each parameter, the values deriving
from all the trials performed were considered, with no separation between subjects or walking speeds
adopted. Table 3 shows mean and standard deviation values of each analyzed parameter dataset
for each system of measure. The results of the two tailed paired t-test, with a confidence interval of
95%, are reported using a symbol in accordance with the following convention: ns p-value > 0.05,
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001. The hypothesis of no
difference between systems was tested, so lower p-values suggest rejecting the accordance of systems.
In the same table Pearson’s r values are reported.

The Bland–Altman analysis produces the plots shown in Figures 6a–10a. They provide a
qualitative assessment of the distribution of the differences between methods. The descriptive numeric
values deriving from the analysis are reported in Table 4. The bias represents the mean of the differences
between the measures computed by the systems, it is provided with the limits of its 95% CI. In the
plots, biases are reported as continue red lines, while the red dashed lines represent the corresponding
confidence intervals. The LoA reported in table are also shown in the graphical representations as
black dashed lines. They are assessed as the 2.5 and 97.5 percentiles of differences, as they do not have
a symmetric gaussian distribution.

The last analysis on data was performed using Passing–Bablok regression. In addition to the
previous analyses, this analysis can reveal the presence of a trend between the measures of the two
systems, thus indicating a proportional error in the tested method according to the slope of the fitting
regression line. Figures 6b–10b show the scatter plot of the dataset for each parameter, with the
Passing–Bablok regression line in black. The shaded area around the regression line represents its
CI, while the red dashed line corresponds to the reference identity line, to which the regression line
should be tend in a scenario of perfect agreement. In the Passing–Bablok plots, Pearson’s correlation
coefficient (r) is also shown because high values of r justify the choice to perform a linear regression
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analysis. The quantitative outcomes of Passing–Bablok analysis are reported in Table 5: slope and
intercept of the regression line are listed for each parameter, along with the corresponding 95%
CI limits.

Table 3. Paired-T test.

Variable SWEET BTS p-Value Pearson’s r

(mean ± std) (mean ± std) Summary 1

Gait Cycle Time [s] 1.15 ± 0.25 1.15 ± 0.26 ns 0.992
Cadence [step/min] 109.30 ± 21.85 109.60 ± 22.25 * 0.996
Stance Time [s] 0.63 ± 0.19 0.70 ± 0.18 **** 0.994
Swing Time [s] 0.52 ± 0.07 0.45 ± 0.08 **** 0.969
Step Length [m] 0.73 ± 0.08 0.68 ± 0.10 **** 0.283

1 ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Table 4. Bland–Altman analysis.

Variable Bias Lower Bound Upper Bound Lower Bound Upper Bound
Bias CI Bias CI LoA LoA

Gait Cycle Time [s] 0.00 −0.01 0.01 −0.06 0.05
Cadence [step/min] −0.35 −0.74 0.03 −3.83 3.26
Stance Time [s] −0.07 −0.07 −0.06 −0.11 −0.01
Swing Time [s] 0.07 0.07 0.08 0.04 0.10
Step Length [m] 0.06 0.03 0.08 −0.13 0.25

Table 5. Passing–Bablok regression analysis.

Variable Slope Lower Bound Upper Bound Intercept Lower Bound Upper Bound
Slope CI Slope CI Intercept CI Intercept CI

Gait Cycle Time [s] 1.00 0.99 1.02 0.00 −0.02 0.02
Cadence [step/min] 0.99 0.97 1.00 0.74 −0.95 2.38
Stance Time [s] 1.06 1.03 1.08 −0.11 −0.13 −0.09
Swing Time [s] 0.90 0.87 0.94 0.12 0.10 0.13
Step Length [m] 0.70 0.52 0.95 0.25 0.08 0.36

Figure 6. Gait cycle time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.
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Figure 7. Cadence: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.

Figure 8. Stance Time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.

Figure 9. Swing Time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.
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Figure 10. Step length: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.

4. Discussion

This work aims to evaluate the agreement between a novel wearable and portable device for
gait analysis and the gold standard of stereo-photogrammetry system. The comparative analysis has
been performed on a selected group of the principal temporal and spatial parameters assessed in
gait analysis by both systems. Three different statistical methods were used to properly characterize
the relationship between the measurement systems under test: paired t-test, Bland–Altman plots,
and Passing–Bablok regression analysis.

In the assessment of the mean gait cycle time, significant agreement has been pointed out by
the statistical analysis. The paired t-test leads to a non-significant p-value (p > 0.05), suggesting to
accept the hypothesis of no difference between systems. The bias value in the Bland–Altman analysis
is null (0.00 from Table 4) and the LoA are very low (in the order of few hundredths of a second).
The Pearson’s correlation coefficient is very high (0.992), supporting the concept of a linear dependence
between the measures, explored by means of Passing–Bablok analysis. The regression line obtained
with this method coincides with the identity line (slope = 1.00, intercept = 0.00), confirming the
significant agreement between the two methods in assessing gait cycle time.

Concerning the measure of cadence, a deeper discussion is required. The T-test result suggests
to refuse the hypothesis of absence of difference between the methods, but with low significance
(0.05 < p-value < 0.01). The bias pointed out by Bland–Altman analysis is very low (−0.35, about 0.3%
of the average value of cadence), with its 95% CI containing the zero value and limited to few units of
steps per minute (−0.74 to 0.03). Passing–Bablok regression is legitimated by a high value of Pearson’s
r (0.996): its slope is very close to 1 (0.99 with CI of 0.97–1.00), the intercept is different from 0 (0.74) but
its CI contains this value (−0.95 to 2.38). Starting from these results and analyzing the Bland–Altman
Plot in Figure 7a, we can observe that the SWEET system slightly underestimates the value of cadence
compared to BTS system. Further exploring data, we identified the cause of the non-perfect agreement
in the different range of steps analyzed by the two systems. The reference system SMART-DX 700 by
BTS performs gait analysis on a limited range of steps, contained in the central 3 or 4 strides of the
walking trial, as they are completely included in the field of view of the cameras. The detected volume
cannot be extended because it is limited by the configuration of the system which considers the limited
volume of the laboratory. Instead, SWEET Sock system elaborates the entire signal coming from the
IMUs, removing only the first and the last steps performed to start and stop walking. The analysis of
the punctual values of cadence assessed in each single step of the walking trial by SWEET Sock system
clarify that in the first and last part of walking a lower step cadence is adopted. Figure 11 shows,
for each step of the walking trial, the average of the differences between the punctual cadence assessed
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by SWEET and the mean step cadence suggested by BTS system. We can observe that in the first and
last part of walking the difference is higher in absolute value, while in the middle steps it is reduced.
Therefore, we can affirm that probably a better agreement would have been obtained if the same range
of steps were analyzed by the two systems. We have chosen not to do so for two reasons: the first is
that in SMART-DX 700 the steps to be considered in the analysis have to be chosen manually, while the
signal processing of SWEET Sock is entirely automatic, and second because we have chosen not to
modify the methods of analysis of SWEET system, which can provide more accurate results by taking
into account the entire walking trial.

Figure 11. Mean difference between the punctual cadence assessed by SWEET and the mean step
cadence suggested by BTS system for each step of the walking trial.

Stance and swing phase durations are complementary parameters, because they are the two
parts composing the gait cycle time. Gait cycle time is defined as the time between two successive
initial contacts of the same foot. Stance phase duration is the time between the initial contact and the
successive terminal contact of the same foot, while swing time goes from the terminal contact to the
subsequent initial contact. The complementarity of these parameters is perfectly reflected in the results
of the statistical analyses. The T-test identified a significative statistical difference between the systems
(p-values < 0.0001), even if a linear correlation exists in both stance and swing phase durationsas
shown by Pearson’s r values, respectively 0.994 and 0.969. The Bland–Altman plots clearly show that
SWEET system underestimates Stance time compared to BTS system (bias = −0.07), and therefore
overestimates of the same quantity the Swing time (bias = 0.07). Passing–Bablok results confirm the
presence of a systematic error in the measures: intercepts’ CIs are symmetric for the two variables
and do not contain zero value (stance Cis = −0.13 to −0.09, swing Cis = 0.10 to 0.13). It also points
out a proportional error proven by the fact that the slopes of the two regression lines are different
from 1 (the CIs are respectively from 1.03 to 1.08 and, symmetrically, from 0.87 to 0.94). Therefore,
the difference between the methods of measures is made of a constant part and a proportional part
which grows when the value of the parameter is increased. The error is to be probably addressed to
the wrong detection of the initial and terminal contact of the foot with the ground, made by SWEET
system through the analysis of the filtered gyroscope signal in accordance to the rules illustrated by
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Doheny et al. in [36]. Although the gait cycle time shows very good agreement, it does not mean
that the initial contacts are well identified in the signal, because they could be all translated in time of
the same quantity, still resulting in good output values. To understand the error a further analysis is
required on the mutual position of initial and terminal contacts identified on gyroscope signals.

The last parameter is the step length, which has been selected to investigate the performances
of SWEET system in the assessment of spatial measures. Results of the statistical analysis are not
very encouraging. T-test points out a significative statistical difference between the measures of the
systems (p < 0.0001), that is confirmed by Bland–Altman analysis. Actually, even if the CI of bias
includes the zero, it is quite wide (−0.13 to 0.25 m) for the precision required in this spatial metric.
Moreover, the reduced value of Pearson’s coefficient shows that no linear correlation exists between
the measures (r = 0.283), so it does not make sense to perform the Passing–Bablok regression analysis.
Actually Passing–Bablok regression line in Figure 10b does not fit accurately the points, which are
distributed with no detectable trend. These results allow to affirm that there is not agreement between
the systems in the assessment of the step length. Moreover, in this case the cause of the error could
be probably found in the processing of the gyroscope signal that lead to the assessment of the spatial
parameters. The algorithm proposed in [36] is based on modeling the movement of the shank as a
single pendulum, thus deriving the spatial parameters from the calculation of the angle covered by
the foot during the swing phase and using geometrical consideration. A further analysis is required
to understand if this model is too simplistic to represent leg swing during gait or if other aspects
(device positioning, signal filtering, etc.) cause errors in the measure of spatial parameters in SWEET
Sock system. Our first purpose is to try maintaining a gyroscope-based algorithm for gait assessment,
by considering other more specific models proposed in literature regarding the movement of the shank
during the swing phase. An example is the double segment gait model involving both shank and
thigh proposed by Aminian et al. in [24]. Doing so we can avoid the use of other sensors data, such as
linear accelerations, keeping the gyroscope advantages explored in the description of the electronic
unit, and avoiding the reconfiguration of the entire system.

We explored scientific literature to find out and analyze other results from gait analysis systems
based on similar measuring principles. Some works exist regarding validation analysis of wearable
systems for gait analysis based on processing of kinematic signals. These studies address comparative
analyses with clinical instruments, such as instrumented treadmill [49], force platform [50] or pressure
sensitive walkway (GAITRite) [35,51,52]. No works presenting a comparative analysis with the gold
standard (stereophotogrammetry system) has been found. Results from the analyzed works show a
common trend: temporal parameters present a better agreement than spatial metrics. Among temporal
parameters, step time and GCT show the best agreement, while stance and swing phases measurements
are moderately correlated with reference measures. Results presented in this article are in accordance
with this trend, confirming the poor performances of IMU-based systems in assessing gait spatial
metrics. Only in [35] spatial metrics show a good agreement level, that could be caused by the different
placement of IMUs, placed on both feet rather than on shanks. Results from the works in [35,49]
demonstrated that foot placement allow a better measurement of spatial gait parameters. However,
we did not choose this placement because it can worsen the comfort and wearability of the system for
users and preclude its in-shoes use.

Comfort Assessment

In addition to the validation of technical performance, the wearability and comfort assessment
was carried out in order to evaluate the acceptance of the system by final users and to identify possible
areas of improvement in terms of design. To carry out this conformity assessment, an already validated
methodology was used, specifically the Comfort Rating Scales (CRSs).

The wearability evaluation of a device is a multidimensional analysis: wearable devices affect the
wearer in different ways. Among the effects to be taken into consideration, there are those related to
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comfort. When wearing something, the level of comfort can be affected by several aspects, such as
device size and weight, how it affects movement, and pain.

The design of the sock has been implemented in order to achieve the greatest comfort for the user.
The integrated pressure sensors are made of textile material, therefore are flexible and imperceptible
on the skin. The electronic unit has also been designed to be as comfortable as possible for the user:
it is light and it can be connected to the textile sock without the need to use bands. In fact, the use of
the latter could cause discomfort to the user due to the presence of a narrow element tied to the limb.

In addition to physical factors, comfort may be affected by psychological responses such as
embarrassment or anxiety. Consequently, Knight and Baber proposed that comfort should be measured
across a number of dimensions and for such task they developed the Comfort Rating Scales (CRSs) [53].

The CRSs provide a quick and easy-to-use tool to assess the comfort of wearable devices, which
attempt to gain a comprehensive assessment of the comfort status of the wearer of any item of technology
by measuring comfort across the six dimensions described in Table 6. In rating perceptions of comfort,
the scorer simply marks on the scale his or her level of agreement, from low (0) to high (20), with the
statements made in the “description” column of Table 6. According to Knight and Baber, this range was
considered large enough to elicit a range of responses that could be used for detailed analysis [53].

The three participants involved in the study were invited to fill in the CRSs to provide a judgment
on their comfort. Table 6 shows the scores assigned, for each field, by the subjects involved in the study.

Although the evaluation was carried out on only three people, it provides a preliminary measure
of the comfort of the prototype device. Knight et al. [54] have proposed five Wearability Levels (WLs),
determined by proportioning the scales into equal parts (Table 7). The mean score of Emotion dimension
is in the WL2 suggesting that users show little embarrassment in wearing the system. All the other
dimensions were rated in the WL1 proving a high wearability and comfort of the device. However,
to better identify the wearability level of the device and how to improve it, future analysis will aim to
make a significant assessment of comfort, testing the device on a wider cohort of subjects.

Table 6. Comfort rating scales.

Title Description Subject 1 Subject 2 Subject 3 Mean

Emotion I am worried about how I look when I wear this device. I feel tense
or on edge because I am wearing the device.

7 4 7 6.0

Attachment I can feel the device on my body. I can feel the device moving. 3 3 5 3.7
Harm The device is causing me some harm. The device is painful to wear. 0 0 0 0.0
Perceived change Wearing the device makes me feel physically different. I feel strange

wearing the device.
5 0 0 1.7

Movement The device affects the way I move. The device inhibits or restricts
my movement.

5 2 1 2.7

Anxiety I do not feel secure wearing the device. 0 0 0 0.0

Table 7. Wearability Levels.

Wearability Level CRS Score Outcome

WL1 0–4 System is wearable
WL2 5–8 System is wearable, but changes may be necessary, further investigation

is needed
WL3 9–12 System is wearable, but changes are advised, uncomfortable
WL4 13–16 System is not wearable, fatiguing, very uncomfortable
WL5 17–20 System is not wearable, extremely stressful, and potentially harmful

5. Conclusions

SWEET Sock is a new wearable and portable device for the measurement and analysis of
biosignals, based on textile sensors, able to perform posturographic assessment and gait analysis.
In this manuscript, we presented the development of the system and we illustrated the validation
analysis of the performances of the novel system in gait assessment.
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The sensing unit is a textile sock in which textile sensors and bus structures are integrated,
making it possible to use the system during normal daily activities, without any discomfort. The system
includes a mobile app for real time visualization of the acquired signals and a software desktop for
off-line plotting and digital signal processing.

The analysis of the performances of the system in gait assessment was performed by comparing
the results given by the novel system with the corresponding values computed by an optoelectronic
stereophotogrammetric system (SMART-DX 700 by BTS Bioengineering) in the analysis of 108 walking
trials at different walking speeds. Study results show that the agreement is not confirmed for all
the spatio-temporal gait parameters analyzed. In particular, gait cycle time and cadence are the two
parameters presenting the best agreement, even if the latter presents a small systematic difference
between the values computed by the two systems. Stance and swing phase durations present both
systematic and proportional errors in the comparison between the methods. Although both errors
could be removed by taking into account this misalignment, a further analysis will be performed to
understand and correct the problems directly in the processing phase. Worse results are achieved
in the analysis of spatial parameters’ agreement. The measures of step length provided by the two
systems are not correlated. For this parameter, a further analysis is required to correct the issues
in the computational process. Based on these findings, we can affirm that the novel system can be
safely used in the evaluation of gait cycle time while some issues were found in the validation of
the other temporal and spatial parameters. Future developments will concern the resolution of the
problems encountered in this work and the execution of a similar validation analysis regarding the
posturographic assessment provided by the system.

The innovative features of the system rely in the multiparametric approach in health monitoring
and in its ease of use. The “wearability” of the system and its comfortable use make it very suitable
to be used in domestic environment for the continuous remote health monitoring of de-hospitalized
patients. The CRSs were used to assess the comfort of the wearable system. The scores provided by
the subjects involved in the study, allow to assume a good level of comfort when the socks are used.

Another valid field of interest regards occupational ergonomics, related to the prevention of
work-related musculoskeletal disorders (WRMSDs) in healthcare workers.

The use of SWEET Sock during working hours by nurses and therapists could help monitor
postural and dynamic variables in activities most associated with exposure to biomechanical overload
(i.e., frequent patient handling, pushing and pulling, awkward postures, prolonged standing, and
significant sideways twisting).

The biomechanical advantage of using patient handling devices and technological aids, including
exoskeletons, could be verified through the analysis of postural parameters. Gait analysis could help
rethink preventive strategies aimed at work organization (for example by providing for the alternation
of dynamic and static phases, and adequate recovery breaks). Last, but not least, balance analysis
and COP coordinates could provide insights into the prevention of slips, trips, and falls, which are
the second most common cause of injuries leading to lost working days in hospitals. The advantages
combined in a minimally invasive device, together with the accuracy and reliability of the measurement,
and the future opportunity of integration into IoT networks open new perspectives to increase the
effectiveness of prevention and safety strategies in healthcare workers.
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Abstract: Precise and objective assessments of upper limb movement quality after strokes in functional
task conditions are an important prerequisite to improve understanding of the pathophysiology of
movement deficits and to prove the effectiveness of interventions. Herein, a wearable inertial sensing
system was used to capture movements from the fingers to the trunk in 10 chronic stroke subjects
when performing reach-to-grasp activities with the affected and non-affected upper limb. It was
investigated whether the factors, tested arm, object weight, and target height, affect the expressions of
range of motion in trunk compensation and flexion-extension of the elbow, wrist, and finger during
object displacement. The relationship between these metrics and clinically measured impairment
was explored. Nine subjects were included in the analysis, as one had to be excluded due to defective
data. The tested arm and target height showed strong effects on all metrics, while an increased object
weight showed effects on trunk compensation. High inter- and intrasubject variability was found in
all metrics without clear relationships to clinical measures. Relating all metrics to each other resulted
in significant negative correlations between trunk compensation and elbow flexion-extension in the
affected arm. The findings support the clinical usability of sensor-based motion analysis.

Keywords: upper extremity; stroke; biomechanical phenomena; kinematics; inertial measurement
systems; motion analysis

1. Introduction

Human hand and arm function contribute to a wide range of activities in daily life, ranging from
sensory functions to interacting with the environment and to functions that have a strong motor
component like the manipulation of objects in grasping [1]. Hand and arm functionalities including
object manipulation and physical interactions with the environment rely on the ability to control
prehensile finger forces to perform specific grasp types [2,3] and ability to control both the distal and
proximal joints of the upper limb in a goal-directed manner [4], for example when transporting the
hand to reach the location of a desired object and forming the fingers for grasping [5].

In subjects, experiencing upper limb impairments due to a stroke, these complex hand- and
arm-grasping functionalities are defective [6]. Stroke is known as the leading cause of disability
in the world [7], defined as a disruption in brain cell perfusion that leads to cell death and losses
in network connectivity and multimodal impairments [8]. In particular, infarctions of the middle
cerebral artery affecting the primary motor cortex and the integrity of the corticospinal tract have
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been associated with upper limb movement deficits [9,10], such as weakness, decreased interjoint
coordination and in particular diminished finger dexterity [11,12]. Of these motor performance aspects,
weakness caused by stroke indicates the inability to activate certain upper limb muscles or segments,
whereas interjoint coordination is defined as the ability to control all upper limb joints or segments
in a spatially and temporally efficient manner. The differentiation between weakness and interjoint
coordination during upper limb activities is rather precisely definable, as both show strong associations
with each other [13] and other stroke-related impairments, such as spasticity [14]. Phenotypes of
stroke-related interjoint coordination deficits include the appearance of the pathological flexor synergy
in reaching, increased trunk movements to compensate for the upper limb limitations and a decreased
finger dexterity for prehensile grasp application. The pathological flexor synergy was defined as
a stereotypical co-activation of elbow flexion and shoulder abduction [15] that becomes visible in
reaching [14], in arm-load related reductions in upper limb workspace [16], and in a diminished
ability to extend the fingers [17,18]. Engaging trunk movements in reaching has been considered as
movement strategies to compensate for upper limb motor impairments with associations to the level
of impairment [19]. These stroke-related movement abnormalities might become present in isolation
or combination and chronically manifested depending on the severity of deficit and cerebral region
affected [11], thereby presenting a continuous challenge for treatment approaches.

Being able to capture these upper limb movement characteristics is important to improve the
understanding of stroke-related movement deficits, including their possible underlying dysfunctions,
and to further investigate effectiveness of approaches to influence these deficits [20]. In this
regard, it needs to be considered that upper limb movements can be assessed on different levels.
Approaches to evaluate and assess upper limb movement deficits after strokes range from more or less
extensive qualitative descriptions of body functions and activities in therapeutic records of clinical
practice, over clinical scales that mostly rely on observer-based scoring and time-efficiency measures,
to instrumentations and technologies for kinematic motion analysis. Although clinical assessments,
such as the Fugl–Meyer Assessment of the Upper Extremity (FMA-UE) or the Action Research Arm
Test (ARAT), have demonstrated excellent reliability and validity as assessment tools [21], their level
of information detail, mostly due to the gross ordinal scoring nature of relatively complex defined
movement items, does not allow to sufficiently discriminate physiological and above-mentioned
pathological movement behavior [20].

Kinematic assessments on the other hand are supposed to offer fine-grained and objective outcomes
on movement quality and have shown to detect stroke-related movement impairments in terms of longer
movement times, greater trunk displacement and less elbow extension in reaching movements [22,23].
However, the widespread application of kinematic measurements in clinical practice faces several
barriers. First, the high variety of measurement systems with different considerations on interaction
forces, movement tasks and different metric derivations hampers the comparability and conclusion
drawing [24]. Secondly, investigations of complete motion kinematics including trunk and finger
motions were sparse. Thirdly, most of the measurement systems being used were optoelectronic and
robotic systems that are based on fixed laboratory environments and expensive equipment [25]. Being
able to perform comprehensive upper-limb kinematic analysis outside of the laboratory, in flexible
environments with the least possible influence on movement behavior would facilitate implementation
of kinematic measurements of qualitative aspects movement behavior in clinical practice. In setting
up this pilot study, it was aimed to address the outlined limitations by extensively measuring and
quantifying reach-to-grasp movements after stroke, with respect to interjoint coordination determined
by trunk compensation and flexion-extension of the elbow, wrist and fingers, specifically quantified
during active grasp and object displacement. A portable inertial system was used to measure complete
upper limb kinematics, from the trunk to the fingertip, including fingertip force sensing in flexible
experimental tasks and set-up environments. Different task characteristics, such as the target locations
and the object to be grasped were considered in the experimental design to investigate influences
of additional arm load and workspace relations including increased mechanical work demands in

190



Sensors 2020, 20, 4770

movements against gravity on metrics for determining inter-joint coordination. It is assumed that the
reaching movement might result in different joint executions with respect to different target locations
in the workspace, e.g., features of the pathological flexor pathology might become more pronounced in
target positions with higher anti-gravitational mechanical work and with more distance from the body
center. Likewise, grasping different object weights results in different additional armloads, that could
affect the ability to perform unaffected reaching.

The primary study goal was to evaluate spatiotemporal kinematic metrics for the assessment of
upper limb movements after stroke. It was first questioned whether changes in the kinematic range of
motion (ROM) in terms of joint angle ranges can be attributed to the factor tested arm, object weight
and target height during object displacement. The second question was how far the kinematic metrics
relate to clinically measured upper limb impairment. The third question related to the correlation
between each of the joint range metrics to evaluate potential joint coupling, such as the pathological
flexor synergy between shoulder flexion-extension, elbow flexion-extension and trunk compensation.

2. Materials and Methods

2.1. Study Design and Participants

This pilot study was set up to investigate upper limb motion primitives from proximal to distal
function in stroke subjects by use of a wearable inertial sensing system. The study was approved
by cantonal ethics in Zurich (BASEC-No: Req-2019-00417) and carried out in accordance with the
declaration of Helsinki. Subjects after stroke were recruited from a University Hospital Zurich Stroke
Registry and invited for a single-session measurement of two hours at the Clinic of Neurology of the
University Hospital Zurich, Switzerland.

Subjects were included if they were at least 18 years old, able to give informed consent and had
been diagnosed with unilateral stroke at least six months before the study onset with associated upper
limb impairments. Subjects had to have at least partial ability to move the arm against gravity and to
perform finger movements for basic grasp function. Exclusion criteria were pre-existing deficits of
the upper limb, such as orthopedic impairments, severely increased muscle tone with limitation in
range of motion in the upper limb (Modified Ashworth Scale of >2 in one of the upper limb muscle
groups), severe sensory deficits in the upper limb (absence of light touch in the hand and fingers),
and severe communication or cognitive deficits that cause inability to follow the procedures. Participant
characteristics of interest included the gender, age, stroke location side, time since stroke, stroke affected
cerebral perfusion territory and the severity of upper limb motor impairment, as measured with
FMA-UE. The FMA-UE is a cumulative numerical scoring system to evaluate motor function after
stroke, which consists of an arm, wrist, hand and coordination subsection to account for independent
severity and recovery patterns, presented in a full score range from 0 to 66 points [26].

2.2. Measurement System

The wearable inertial sensing measurement system was a modified version of the inertial
measurement unit (IMU)-based hand and finger sensing system, reported and evaluated by
Kortier et al. [27]. It was composed of eight IMUs, with triaxial accelerometers and gyroscopes,
based on a micro-controller-based sensing system principles of the PowerGlove [27,28] that were
covered by 3D-printed housings, and combined with force sensors. The IMUs were placed and fixated
at the sternum, shoulder, upper arm, lower arm, hand, thumb, index and fingers with medical tape or
3D-printed flexible straps (Figure 1). Additionally, the finger IMUs were combined with force-sensitive
resistors (FSR) to detect interaction forces between the object to be grasped or manipulated and the
finger pad. The upper arm IMU was placed on the lateral side of the arm, close to the elbow and the
lower arm IMU was placed on the dorsal side of the forearm, close to the wrist. The hand sensor
was placed on the back of the hand, and the thumb, index and middle finger IMUs were attached
on the fingertips of the respective fingers, with the force-sensitive resistors fixed on the finger pad
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by the IMU housing’s strap. Each pair of triaxial accelerometers and gyroscopes (ST LSM330DLC
manufactured by STMicroelectronics, Geneva, Switzerland) were contained within small printed
circuit boards (PCBs). The separately encased IMUs were connected via flexible cabling strips, forming
two separate strings (arm string—containing the sternum, shoulder, upper and lower arm sensors;
and hand string—containing the hand and fingers sensors). Signals from both sensor strings were
collected and connected through a bus master/microcontroller (Atmel XMEGA manufactured by Atmel,
California, USA) and streamed real-time via the USB channel onto a PC for control in Matlab software
(MATLAB version 2016b, The Mathwork, Natick, MA, USA). Acceleration data was collected with a
sampling frequency of 100Hz and gyroscope data with a frequency of 200 Hz. Both were low-pass
filtered by using a Butterworth filter with a cut-off frequency of 10 Hz

(a) (b) 

Figure 1. Wearable inertial sensing system: (a) system set-up; (b) anatomical frame definition
per segment.

2.3. Kinematic Reconstruction

All sensors were calibrated each day prior to the measurements by placing them inside a
box with orthogonal sides, which was turned over 90 degrees in all three orthogonal directions.
The accelerometer bias in the different axes and the gyroscope static bias was measured before
the whole experiment per subject and compensated during the measurements [29]. The kinematic
reconstruction was based on the estimation of the sensors’ orientation, which is taken from the
acceleration and angular velocity measures of the IMUs. In order to estimate the orientation of the
limb segments, a sensor-to-segment calibration was performed, as well as a definition of a common
global frame for all sensors. The sensor-to-segment calibration was carried out to determine the upper
body anatomical axes of the limb segments (joints) relative to the corresponding sensors by performing
ten different postures and movements that were based on Luinge et al. [30] and Ricci et al. [31].
The equipped test person was assisted by a trained research clinician to perform the calibration
protocol, which consisted in eight static positions and two dynamic movements, as shown in Table 1.
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Table 1. Sensor-to-segment calibration protocol.

No Calibration Position/Movement
Anatomical Axes

Left Arm Right Arm

1 Hand held in pronation flat on the metal box zh, zi, zm zh, zi, zm

2 Hand held in sagittal plane with 90◦ elbow flexion −yh, −yi, −ym yh, yi, ym

3 Thumb held flat on the metal box zt zt

4 Thumb held in sagittal plane with the hand in pronation yt −yt

5 Forearm held in pronation along the transversal plane zla zla

6 Forearm motion from supination to pronation in elbow flexion xla −xla

7 Upper arm held parallel to the sagittal plane with 90◦
elbow flexion −xua −xua

8 Shoulder horizontal abduction with 90◦ elbow flexion zua zua

9 Standing straight zsh, zst zsh, zst

10 Bending forward by hip flexion until around 60◦ ysh, yst −ysh, −yst

In the static positions, the gravity vector measured by the accelerometers represents one of the axes.
In the dynamic movements, the angular velocity, depending on the rotation direction, also represents the
rotation around a specific anatomical axis of a body segment. For each anatomical frame, two different
axes were measured using either the accelerometer or gyroscope, depending on the segment. The third
axis is calculated using the cross-product of the previous two axes. Subsequently, an orthonormal
coordinate axis was based on these three axes. The last two movements, standing straight and bending
by hip flexion, were used to determine the global frame and initial sensor orientation estimation [32].
The static neutral pose, with the arm stretched along the body and the fingers extended, gives the
common vertical axis by measuring the gravity vector in all sensors. The hip flexion movement is
performed with the arms extended along the body for the definition of the horizontal axis of the
global frame. With the sensor-to-segment alignment and the common global frame for every IMU,
it is possible to reconstruct the movement of the trunk, arm, hand, and fingers. Integration drift
of the angular velocity over time was corrected by applying a Madgwick filter to correct for the
inclination error of the sensor with respect to the gravitational component of the accelerometers [33].
Drifts in the gyroscope orientation were reduced by zero-velocity updates, following the methods of
Kirking et al. [34] where if the norm of the angular velocity is below 3◦/s is defined to be static in terms
of actual sensor movements.

The joint angles are defined as the angle between two anatomical axes of adjacent limb segments of
the respective joint as indicated in Figure 1b. Positive angles indicate flexion, abduction or supination
of a joint and a negative angle indicates extension, adduction or pronation.

Three trunk compensation angles were calculated by comparing the projected trunk axes onto
the global frames corresponding to the static neutral pose, consisting of trunk flexion (rotation in the
sagittal plane around the y-axis of the sternum), lateral rotation (rotation around the x-axis of the
sternum), and torsion (rotation around the z-axis of the sternum). Shoulder flexion/extension was defined
as the angular variation of the upper arm’s x-axis (xua) in the frontal plane (defined by the x-z plane of
the sternum’s frame). Shoulder abduction/adduction is determined by relating the upper arm (xua)
to the sternum’s frame in the frontal plane (defined by the y-z plane of the sternum, see Figure 1b).
Elbow flexion/extension was determined by the angle between the upper (xua) and the lower arm’s
(xla) x-axis. Forearm supination/pronation was defined by the mean orientation variation around the
x-axis of the lower arm (xla). Wrist flexion/extension was defined by the angle between the x-axis of
the lower arm (xla) and the hand’s x-axis (xh). The finger flexion/extension (thumb, index finger and
middle finger) was defined as the angle between the x-axis of the hand (xh) and the fingertip frames
(xm, xi and xt).
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2.4. Experimental Protocol

At the beginning, each participant was interviewed about demographic information and assessed
for upper limb impairments by use of the FMA-UE [26]. The experimental protocol was performed
on both limbs separately, starting with the non-affected limb (NAF) followed by the affected limb
(AF), to study differences between pathological and physiological movement behavior. The protocol
consisted in performing reach-to-grasp and displace different types of cubic blocks to different target
positions. The participant was positioned sitting in front of a table with the tested arm held in 90◦ elbow
flexion and the palm facing down on the table. Three markers were defined on the table for placing the
hand and fingers in the starting position. The target positions were determined by each participants’
maximal arm length in four pre-defined target locations as shown in Figure 2 and mirrored between
both upper limbs. This task set-up was adapted from the ARAT [35], which evaluates the ability to
grasp and displace, for example wooden blocks, onto a 37 cm high to-shelf.

Figure 2. Experimental set up in sagittal and top view including the target locations: Tab 1; in ipsilateral
arm length, Tab 2; in abducted arm length, Top 3; ipsilateral arm length, Top 4; in abducted arm length.
Block objects: BL (big light block, 108 g), BW (big wooden block, 490 g) and BH (big heavy block,
1008 g).

The target locations at table height (1, ipsilateral arm length and 2, abducted arm length) and
at top-shelf height (3, ipsilateral arm length and 4, abducted arm length) were selected to explore
kinematic expressions in a relevant arm workspace and observe effects of arm loading in movements
against gravity. The 10 cm block objects to be grasped varied in three different weights: 108 g (BL, big
light block), 490 g (BW, big wooden block) and 1008 g (BH, big heavy block) to investigate influence of
additional load during object grasp and displacement. The weight range of the object was based on
the weight of the standardized weight of the wooden block (490 g) that is used in the Action Research
Arm Test. The 1kg weight was selected as it corresponds to objects, relevant for daily-life functioning
daily life, e.g., when manipulating a 1 l bottle of water. The lighter block was included to enable the
movement analysis with only little additional weight load. The order of blocks was randomized in
advance to avoid task-related physical fatigue during the experiments. This resulted in a combination
of 12 task conditions per tested arm, that were each repeated three times.

After donning the system, the sensor-to-segment calibration protocol was performed with manual
guidance of a therapist to assure proper execution of the static positions and the dynamic movements.
Each position was measured for at least five seconds and checked online by an experienced engineer.
For accurate global frame definition and sensor orientation estimations, the last two calibration
movements were performed before each measurement trial. This procedure allowed to reduce drift in
the sensor data during measurements. In between the three repetitions, each subject was asked to avoid
extra movements of the tested arm and go back to the starting position as soon as the movement task
was finished. This procedure allowed the subjects to rest for about 10 s between the trials. The whole
experiment was expected to be performed within a maximum of 2 h. After the system was donned,
each participant rated the wearing comfort of the system, possible limitations of gross movements due
to the cables and limitations of grasping due to the fingertip sensors on a 5-point Likert-scale.
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2.5. Feature Extraction

To enable task-specific spatiotemporal analysis of the reach-to-grasp movements, each movement
trial was segmented into three phases: (1) reach, (2) displacement and (3) return by determining the
time points of movement onset, grasp, release and movement end. Movement start and movement end
were detected using a threshold detection algorithm for the upper arm’s IMU angular velocity norm,
where a threshold of 0.1 rad/s was used [36] to account for relevant limb motion. The force data of the
fingertips on the table was also used as an onset and offset indicator, where applicable. The moment of
grasping was defined by the detection of finger reaction and interaction forces, whereas the release is
defined by the decrease in force signal to the lowest value of force, as displayed in Figure 3. In cases
where no force profile was detected due to low interaction forces or because the finger contact points
deviating from the force sensor placements, the grasp and release time points were identified via the
joint angle profiles. The release time point was defined by the changes from finger flexion to extension
including the maximum elbow extension and shoulder flexion, that represent the moment of maximal
reach to target position. The duration of each movement phase was calculated as the time between the
delimitating time points of each phase.

Figure 3. Proximal (shoulder, elbow), distal (finger) motion data and force signal for phase segmentation.
The data is scaled to fit the plot, not the actual measured values on the y-axis.

For validation of the relevant expected differences between physiological and pathological
movement behavior in the study sample, movement time and active range of motion of the main
degrees of freedom (DOF) were compared between the affected and non-affected side. Movement
time was defined as the time between movement start and end, detected by the 0.1 rad/s threshold.
The DOF included trunk compensation, shoulder flexion-extension, shoulder abduction-adduction,
elbow flexion-extension, forearm supination-pronation, wrist flexion-extension, thumb, middle
finger and index finger flexion-extension for the entire task analysis per target location of the
reach-to-grasp movement.

The primary outcome parameters, range of motion in trunk displacement, elbow, wrist, and finger
flexion-extension were defined as the difference between the maximum and minimum angle of the
joint during the period of object displacement, because they were expected to show expressions of the
pathological flexor synergy and compensatory trunk movements. Kinematic parameters of interest to
determine interjoint-coordination during the reach-to-grasp movement were defined as the joint ranges
in trunk displacement, elbow, wrist, and finger flexion-extension within the displacement phase of the
task. Trunk compensation in degrees was used as a metric to quantify the amount of compensatory
trunk inclination during the upper limb movement and was defined by the square root of the sum
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of squares of the ranges in all three trunk compensation angles. Range of motion in elbow and wrist
flexion-extension were calculated by taking the difference between the maximum and minimum joint
angle measured in the displacement phase, as a metric for quantifying the pathological flexor synergy.
The range of motion in finger flexion-extension was calculated as the mean between the range of the
index and the middle fingers for each movement execution to consider distal characteristics of the
pathological flexor synergy.

Statistical Analysis

All outcome parameters were visually inspected in histograms and presented descriptively by
means and standard deviations.

Differences in range of motion in trunk displacement, elbow, wrist, and finger flexion-extension
during object displacement were analyzed with respect to tested arm, object weight and target height,
by considering the average of the three repetitions per subject and task condition. A linear mixed model
analysis was applied to investigate significant differences and interactions between the independent
factors, arm (AF, NAF), object (BL, BW, BH) and target height (Tab, Top), on the dependent variable
of the metrics on joint range of motion, as presented in the model: Metric−a1 × Arm + a2 ×Weight
+ a3 × Height + a4 × Subject. The linear mixed model analysis was selected as it takes into account
the repeated measures experimental design and inner subject effects in a nested structure of the
dependent variables.

The analysis of the relationship between the displacement phase kinematics of trunk displacement,
elbow, wrist, and finger flexion-extension and the individual impairment level, as determined with the
clinical FMA-UE test, was explored by plotting the median joint ranges including the upper and lower
boundaries of the interquartile range of the affected arm against the measured impairment with the
FMA-UE. Statistical testing for answering the second and third research question was performed by cross
correlations based on Spearman rank correlations to investigate the relationships between FMA-UE,
trunk displacement, elbow flexion-extension, wrist flexion-extension, and finger flexion-extension.
All statistical tests were performed using Matlab (MATLAB version 2016b, The Mathwork, Natick,
MA, USA) and SPSS (SPSS version 26.0, IBM Corp., Armonk, NY, USA) with a significance level of
p = 0.05, indicating significances of p = 0.01 and p = 0.001 specifically.

3. Results

Kinematic measurements were gathered in 10 chronic stroke subjects within a recruitment period of
8 days in July 2019. One subject performed only two of the three block conditions due to time constraints.
The data of the remaining blocks were discarded due to incomplete and incorrect sensor-to-segment
calibration data. This resulted in a total of nine out of 10 subjects, who were included in the data
analysis, adding up to 324 affected and non-affected side motion data sets. All participants rated
the measurement system to be comfortable to wear. One subject rated some influence on the gross
movements due to the cable wires of the sensing system. Three of the participants reported impedance
of grasp due to the finger sensors.

3.1. Demographics

The demographics of the study participants are shown in Table 2, consisting of four right-side
dominant and five left-side affected subjects. Upper limb impairments were measured with the
FMA-UE score, ranging from 28 to 46 out of 66 points. Subjects with strokes in the perfusion territory
of the middle and posterior cerebral artery showed slight increased upper limb impairments (FMA-UE
mean 32.6) when compared to those with strokes in the anterior cerebral artery area (FMA-UE mean
43). According to a group analysis of the upper limb capacity-levels in relation to FMA-UE score [37],
this sample included one subject with poor capacity (FMA-UE 23–31), eight subjects showing limited
capacity (FMA-UE 32–47) and no subject with notable capacity (FMA-UE 48–52) or full function
(FMA-UE 53–66).
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3.2. Upper Limb Kinematic Measures

The automated detection algorithms were successfully applied in 56.1% of the data. Corrections
had to be made in 47.8% of the NAF data and 52.2% of the AF data. Failures in automated detection
were 76.5% related to inconsistent or low force profiles and in 23.5% related to jerky and noisy angular
velocities or joint angle profiles and manually corrected.

Statistically significant higher movement times were found in the AF (mean 4.9 ± 1.6 s) when
compared to the NAF (mean 2.8 ± 5.4 s) for the whole task execution (p < 0.000) and accordingly
for all subphases (p < 0.000) of the reach-to-grasp movement. The mean difference in ROM across
the main DOF between the AF and the NAF was 10.0 ± 6.9 degrees across the investigated joints,
ranging from 0.2 to 28.7 degrees. The differences in range of motion between the AF and NAF were
statistically significant across target locations for shoulder flexion-extension, elbow flexion-extension,
wrist supination-pronation, thumb, and index finger flexion-extension, as shown in the Appendix A,
Table A1. Range of motion in flexion-extension of the shoulder and the elbow were consistently lower
in the AF when compared to the NAF, indicating a limited ability to elevate the arm and extend the
elbow in reaching. Trunk compensation was significantly different between AF and NAF for the two
abducted target locations. A higher mean flexion-extension range was detected for both the index and
the middle finger of the AF compared to the NAF, besides lower flexion-extension ranges in the thumb
of the affected side for all target positions.

3.3. Influences of the Factors, Arm, Object Weight and Target Height on Joint Range of Motion

For each of the primary kinematic features (trunk compensation, elbow, wrist, and finger
flexion/extension), significant differences in range of motion of the displacement phase can be
attributed to the factors tested (arm, object weight, target location). The results of estimates for the
independent fixed factors arm (affected side vs. non-affected side), object (BL, BW, BH) and target
height (table location vs. top location) on the selected DOF are shown in Table 3.

Table 3. Statistical significance of the effects of the independent fixed factors arm, object, and height
on the dependent variables of the selected joint range metrics. The factor object including post-hoc
pairwise testing between the three levels (BL, BW, BH).

Factor
Trunk

Compensation
Elbow Flexion

Extension
Wrist Flexion

Extension
Finger Flexion

Extension

Arm (AF vs. NAF) 0.006 ** 0.000 *** 0.000 *** 0.000 ***

Object (BL, BW, BH) 0.022 * 0.146 0.401 0.588
−BL vs. BW 1.000 0.680 1.000 1.000
−BL vs. BH 0.026 * 1.000 0.543 1.000
−BW vs. BH 0.067 0.156 1.000 1.000

Height (Tab vs. Top) 0.006 ** 0.000 *** 0.040 * 0.006 **

Legend: *, **, *** indicate statistical significance of p < 0.05, p < 0.01 and p < 0.001, respectively. AF, affected side; BH,
heavy block; BL, light block; BW, wooden block; NAF, non-affected side; Tab, table target position; Top, top location.

The factor of the tested arm showed significant effects on trunk compensation with larger range
of motion in the AF (mean 9.4 ± 1.2 degrees) when compared to the NAF (mean 8.2 ± 1.1 degrees)
with F = 8.327, p = 0.006. Elbow flexion-extension was significantly lower in the AF (mean 44.3 ± 3.9
degrees) than in the NAF (mean 54.2 ± 4.6 degrees) resulting in significant effects of the arm tested with
F = 23.385, p = 0.000. Higher ranges in wrist flexion-extension were found in the AF (mean 29.4 ± 4.2
degrees) than in the NAF (21.2 ± 2.7 degrees) with F = 30.798, p = 0.000 and in finger flexion-extensions
of the AF (mean 99.6 ± 11.4 degrees) when compared to the NAF (mean 77.1 ± 9.0 degrees) with
F = 29.553, p = 0.000.

Significant effects for the fixed factor of object weight were found on the metric of trunk
compensation (F = 4.238, p = 0.022). Considering post-hoc pairwise testing, trunk displacement was
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significantly larger when displacing the big heavy block (mean 10.2 ± 1.9 degrees) when compared
to the displacement of the big light block (mean 7.9 ± 1.4, p = 0.026) and non-significantly larger in
comparison to the big wooden block (mean 8.4 ± 1.3 degrees, p = 0.067).

The factor height showed significant effects on all DOF. Displacement to the top height location
resulted in significantly higher trunk compensation (mean 9.5 ± 1.3 degrees) when compared to table
locations (mean 8.1 ± 1.1 degrees, p = 0.006). The highest statistically significant effect was found in
elbow flexion-extension with pronouncedly increased range of motion in the top height location (mean
61.3 ± 4.4 degrees) when compared to the table locations (mean 37.2 ± 3.9 degrees, p = 0.000) with
F = 147.742, p = 0.000. Likewise, ranges in wrist flexion-extension and finger flexion were increased
in the top locations with a wrist flexion-extension mean of 23.7 ± 3.4 degrees in the table locations
when compared to a mean of 26.9 ± 3.8 degrees in the top locations (F = 4.354, p = 0.040) and a finger
flexion-extension mean of 82.1 ± 9.9 degrees in the table locations and a mean of 94.4 ± 11.1 degrees in
the table locations (F = 7.920, p = 0.006).

3.4. Relationship between Kinematic Parameters and Clinical Measures of Impairment

For investigating the relationship between the individual participants’ impairment level, as
indicated by the FMA-UE score, and the joint ranges of the affected side during displacement,
the FMA-UE score was plotted against the subjects median range of motion in trunk compensation
and flexion-extension of the elbow, wrist, and fingers as visualized in Figure 4a–d. Three repetitions,
three block weights and four target positions were considered for each subject resulting in 36 trials
per subject and tested arm, represented by median and interquartile range. There was no significant
correlations found between the FMA-UE and the individuals mean trunk compensation (r = 0.11,
p = 0.78), elbow flexion/extension (r = 0.00, p = 1.00), wrist flexion/extension (r = −0.12, p = 0.77) and
finger flexion/extension (r = −0.28, p = 0.46).

Figure 4. Subjects median joint range of (a) trunk compensation, (b) elbow, (c) wrist, and (d) finger
flexion/extension of the affected side in relation to impairment level (FMA-UE score ranging from
0–66 points). Error bars represent the interquartile range over all trials performed by each of the nine
subjects and the regression lines over the subjects are included for each metric.
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In a sub analysis, the relationship between the kinematic metric and the related FMA-UE subsection
was explored. The correlation between the FMA-UE arm section and trunk compensation resulted in
r = −0.57 (p = 0.11). Elbow flexion/extension correlated statistically significantly with the FMA-UE
arm subsection with r = 0.68 (p = 0.04). The relationship between the FMA-UE wrist subsection and
wrist flexion/extension (r = 0.00, p = 0.99) as well as between the FMA-UE hand subsection and finger
flexion/extension (r = −0.56, p = 0.11) was not conclusive.

3.5. Relationship between the Selected Joint Range Metrics

Similarly, the relationship between the selected joint range metrics did not result in significant
correlations, except for trunk compensation and elbow flexion/extension. A statistically significant
correlation was found between the mean trunk compensation and the elbow flexion/extension in the
AF with a negative relationship (r = −0.88, p = 0.0031) as shown in Table 4. In the NAF statistically
significant correlations were found between wrist and finger flexion/extension with strong positive
correlations (r = 0.72, p = 0.0369).

Table 4. Confusion matrix of the Spearman rank correlation coefficients between the selected joint
range metrics of the AF and the NAF side.

AF
Trunk
Comp

Elbow
Flex/Ext

Wrist
Flex/Ext

Finger
Flex/Ext

NAF
Trunk
Comp

Elbow
Flex/Ext

Wrist
Flex/Ext

Finger
Flex/Ext

Trunk
Comp

1.00 −0.88
** 0.05 0.10 Trunk

Comp
1.00 −0.35 0.08 0.17

Elbow
Flex/Ext

. 1.00 −0.32 −0.20 Elbow
Flex/Ext

. 1.00 0.35 −0.03

Wrist
Flex/Ext

. . 1.00 0.53 Wrist
Flex/Ext

. . 1.00 0.72 *

Finger
Flex/Ext

. . . 1.00 Finger
Flex/Ext

. . . 1.00

* indicates the statistical significance of the correlation with p < 0.05 and ** indicating statistical significance of the
correlation with p < 0.01.

The relationship between the statistically significant correlations between the DOF,
elbow flexion/extension joint ranges against trunk compensation and wrist against finger
flexion/extension joint ranges were further evaluated by visualizing, as presented in Figure 5. The linear
regression line between the trunk and the elbow joint ranges of the AF was defined by y = −3.6x + 76.
Linear regression between the wrist and finger flexion/extension joint ranges was described by
y = 2.1x + 34.
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Figure 5. Correlations between (a) trunk compensation and elbow flexion/extension in the affected
side, (b) trunk compensation and elbow flexion/extension in the non-affected side, (c) wrist and finger
flexion/extension of the affected side, and (d) wrist and finger flexion/extension of the non-affected side.

4. Discussion

In this pilot study, sensor-based upper limb kinematic measurements of reach-to-grasp and
displacement activities executed by chronic stroke subjects were used to examine and relate
characteristics of movement impairments and to explore the influences of additional weight loads
and mechanical work requirements on the upper limb kinematics. Movement impairments, such as
longer movement times and decreased range of motion across the upper limb DOF were found in the
affected when compared to the non-affected side, supported by existing literature [23,38]. Besides the
evidence for weakness and impaired interjoint coordination in the affected upper limb, illustrated in the
consistently decreased shoulder flexion and elbow extension for the whole task execution, this study
focused on investigating the expression of pathological coupling between the trunk, elbow, wrist and
fingers during object displacement within maximal arm length, as most clearly represented in Table 4.
In order to include distally pronounced aspects of movement behavior in the kinematic analysis of
object grasping and displacement, the range of motion of the wrist and the fingers’ flexion-extension
has been included in the analysis. The increased finger flexion in the AF when compared to the NAF
expands on the characterization of the pathological flexor synergy and confirms previous research by
Miller et al. [39] and Lan et al. [17] that described and increased difficulty to release the finger flexion
with increased arm load. The significant positive correlation between finger and wrist flexion/extension
in the non-affected upper limb, as shown in Table 4, could be interpreted as a physiological movement
synergy allowing the subject to perform efficient grasp function. Herein, factors impacting the force and
mechanical work demands were examined to prove the load-dependent appearance of pathological
joint coupling in the upper extremity.

On the level of trunk compensatory movements, increased trunk movements were found in tasks
with the affected arm when displacing the heavy block, that could be related to a compensation of
weakness in the proximal shoulder muscles or weakness of the trunk muscles themselves. If trunk
weakness itself was present in the investigated population, this could account as one explanation
for why trunk compensatory movements were also detected in the non-affected side of the data
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set. It can be assumed that trunk weakness itself would diminish the ability to counterbalance an
additional arm weight with either the affected or the non-affected limb. Another explanation for
increased trunk movements in the non-affected side could be based on the fact that the NAF arm
might deviate from complete healthy movement behavior due to indirect deficits in the non-crossing
pathways from the ipsilesional cortex [40]. Nevertheless, these findings are in line with Repnik et al.,
2018, who investigated the parameters movement time, smoothness, hand trajectory similarity and
trunk stability in stroke subjects and healthy subjects when performing the ARAT and found similarly
differences in trunk movements, especially early at movement onset, besides also noting occasional
trunk motions above 10◦ in healthy subjects [41]. These findings suggest that the trunk compensation
feature should be further studied with respect to diagnostic sensitivity and specificity to quantify
stroke-related upper limb impairments. Apart from trunk compensation, an increase of the object
weight showed no significant effects on the features of flexion-extension range of motion of the elbow,
wrist, and fingers.

Differences related to the target height factor were detected in all tested features and can be
partially explained by the different movement trajectory and positioning of the block object with respect
to the hand posture between the top shelf and the table locations. The differences in wrist and finger
flexion/extension can in part be explained by differences in hand positioning with respect to the target
location, e.g., the hand might be more flexed in the wrist when displacing the block to the top shelf.
Nevertheless, the strongest effect of target height was found in the elbow flexion/extension ROM, with
a mean increase of elbow range of motion 24.0 ± 5.9 degrees in the top shelf locations when compared
to the table target locations. This study finding was surprising, since all four target locations were
defined by the maximum arm length to assure the requirement of complete elbow extension at the end
of the displacement phase. Furthermore, the increased elbow flexion/extension motion in movements
with increased gravity impact stand in contrast to previous research and the hierarchical structure
of the synergistic movement patterns [15,26], that presume an increased difficulty of uncoupling
elbow flexion from shoulder flexion with increased load and motion. The present study’s findings,
contrarily, could suggest that range of motion in elbow extension is increased in target positions that
have a larger distance to the subjects’ body center and require increased mechanical work against
gravity. Despite the tentativeness of these results and the small study population, these outcomes
could open new intervention strategies and should be addressed in future research with larger study
samples to investigate possible underlying mechanisms. If the identification of factors that influence
the increase or decrease in pathological joint coupling is possible, new intervention approaches would
be opened to sustain stroke-related movement impairments. Including gradual decrease or increase of
the armload has shown benefits for determining the severity of pathological joint coordination and
providing patient-centered interventions, as indicated by Ellis and colleagues [42]. The examination of
the influence of task conditions on the selected DOFs support the definition of the task-dependent
and dynamic appearance of the pathological flexor synergy [13,17,18]. In the current study, the body
of research on task-dependent changes based on planar movement task evaluations were extended
to evaluations of reach-to-grasp activities in non-laboratory environments with a close linkage to
functional activities of daily life. The fact, that we did not find significant effects of the object weight
on the upper limb features, elbow, wrist, and finger flexion-extension except for trunk compensation,
might be due to the range of object weight selected, from 100 g to 1 kg. Considering previous research
on arm loading during reaching reported a maximum additional load of 50% of the arm weight [18]
that would result in about 2 kg for an average person of 80 kg and an arm weight of around 5% of
the body weight. Nevertheless, the subjects included in this study showed considerable difficulty in
grasping and displacing the 1 kg heavy block.

These findings on movement condition effects on the relevant kinematic features stress the
importance of considering task-dependent influences, such as gravitational forces and biomechanical
constraints, when assessing and treating stroke-related upper limb impairments. Cortes et al.
2017 studied arm motor control in a planar robotic device and found a non-linear relationship
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between two-dimensional pointing parameters and scores from clinical scales incorporating antigravity
strength demands. The authors suggested that arm motor control plateaus at 5 weeks post-stroke,
whereas strength improvement, as measured by clinical scales, continues to improve up to 54 weeks
post-stroke [43]. In this regard, it would be interesting to extend these objectives to three-dimensional
movement tasks and investigate whether arm motor control, when measured in more complex
reach-to-grasp movements by use of less motion impeding measurement systems, follows a similar
recovery scheme when compared to 2D arm motor control and clinical scales. The usage of wearable
sensing allows movement quality to be tracked in terms of kinematics in a less obstructive and more
flexible way.

Another question addressed in this study was the relationship between the kinematic features of
the displacement phase and the clinically measured individual impairment level. No clear correlations
were found between the kinematic metrics and the FMA-UE, whereas trunk compensation and
elbow flexion/extension showed strong correlation with the FMA-UE arm subsection, as well as
the correlation between the FMA-UE hand subsection and finger flexion/extension. These findings
are in line with existing research [24,44] and support the fact that kinematic parameters are, rather,
complementary than redundant to standard clinical scales and potentially add clinically relevant
information. The large interquartile ranges in all measured DOF in all study subjects illustrates the
large variability in movement execution especially in non-cyclical discrete motions. The negative
correlation between trunk compensation and elbow flexion/extension in the movements of the affected
limb can be interpreted as an expression of the pathological joint coupling in stroke, where trunk
compensation is increased relatively to the lack of active range of motion in the elbow during reaching.
The significant positive correlation between the wrist and finger flexion/extension in the non-affected
side could account for the appearance of physiological movement synergies during grasping and
displacement that is less strong including larger interquartile ranges in both joints and non-significant
in the affected side. These results support the use of the selected spatiotemporal features by use of
non-laboratory kinematic movement analysis to assess aspects upper limb movement quality and
impairments after stroke. Capturing and analyzing the relevant joint ranges during functional activities
provides additional complementary information concerning how functional movements are performed
and thereby help to overcome limitations of most existing clinical scales. Being able to detect the main
aspects of movement quality and impairments allows selecting and monitoring changes in functional
outcome and planning interventions that target these aspects. Future research should consider and
re-evaluate the outcome features and task considerations presented herein on larger sample sizes
to further underpin existing evidence of sufficient validity and reliability for metrics of joint range
of motion and trunk displacement [24,44]. Furthermore, analysis of the assessments’ clinimetric
properties should be extended to domains sensitivity and specificity for differentiation physiological
and pathological movement behavior.

4.1. Implementation of the Device and Analysis Methods in Clinical Practice

Wearable devices for assessments of motor function have been an ongoing research direction over
the last decade. Portable devices facilitate the setup time and do not require patients to be directed
to specific labs for measurements. The presented system potentiates the objective monitoring of the
patients’ impairments and provides the therapists an additional and more precise information about
the movements’ profile. The collective use of visual observations by the clinician and objectively
measured patient movements using a sensing system as proposed in the current study system is
intended to be used as means to provide better diagnostic and, thus, better therapy outcomes by
providing a more thorough evaluation. Further research should focus on a clinician’s point of view
in the usability of the system in the clinic. By instructing therapists on how to use and analyze the
distributed measuring system and its output, it is possible to obtain feedback, both from the patient
and therapist, on its usability and relevance. In future, and after iterating the development steps of the
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device and methodology based on the feedback received, objective measurements with these types of
system can become the standard for motor function evaluation.

4.2. Strength and Limitations

As a main limitation of this pilot study, the small sample size of the study needs to be considered
as a factor that suppresses the robustness and degree of reliance of the findings and results presented.
However, the investigated sample was homogenic with respect to a limited upper limb capacity, as
determined by Hoonhorst et al., 2014, and allowed exploration of the applicability of the multisensory
wearable system in the target population at an early device development stage [37]. The study
sample included was intended to be able to perform reach-to-grasp and displace movements, which
excludes more severely affected subjects. Nevertheless, besides the similar overall upper limb
impairments, the included subjects showed reasonable variation in terms of the deficit distribution in
the corresponding limb segments, as depicted in Table 2.

The principal idea of combining multiple sensing modalities, such as inertial sensing and other
signal quantities, in a wearable system for upper limb kinematic motion analysis was considered as a
strength of the device used, as this allows both for simplification or extension of the measurement
modalities and enables the conduction of neurophysiological and biomechanical experiments on
post-stroke upper limb movements in relatively unrestricted measurement surroundings. The wearable
measurement system presented here combined complete kinematic motion analysis of the main DOFs
of the upper limb kinematic chain and interaction force measurements at the fingertip, that have shown
to be a powerful tool in reach-to-grasp detection and could further inform through measurements of
grasp control. Although, we could confirm the application for assessing upper limb movements in
chronic stroke subjects in this pilot study, the usability in clinical practice, including set-up, running
and analyzing and the selected outcomes, would need to be addressed in future research.

Unfortunately, the force-sensitive resistor sensors used in this study showed limitations in
capturing low forces per area and diminished flexibility to adapt to the shape of the finger pad and
the grasped object. Therefore, grasp force could not be quantified as an outcome measure apart from
the phase segmentation detection. An advanced version of flexible fingerprint sensors, as described
in Wolterink et al. [45] is intended to be incorporated in the next generation of this multisensory
measurement device. Detecting normal and shear force during grasp can provide further insights into
movement control and effectiveness [46]. The combination of kinetic and kinematic measurements
would allow to further study grasp control and stroke-related deficits, such as force limitation due to
weakness or findings on force overshoot [2]. Effective grasping is undertaken by placing single fingers
perpendicularly to the object surface [47]. This could be further explored in subjects after stroke with
more adequate kinetic measurements.

Another considerable limitation relates to the systems’ measurement accuracy. Similar to
other IMU sensors, the systems’ measurement accuracy depends on a successful sensor and
sensor-to-segment calibration, appropriate filtering and fusion algorithms and reliable segment
and joint angle definitions [25]. The accuracy of measurements was assured by updates of the global
frame orientation definition and the avoidance of unnecessary extra movements prior to each task
execution, which lasted not longer than nine seconds.

The detection of phases related to the movement primitives of reaching, object transport and
return was feasible by a set of automatic detection algorithms in 47.8% of the affected upper limb
data and 52.2% of the non-affected movement data. The observer-based validation of the points
for phase discrimination and manual correction of defective time points to differentiate movement
phases remain limited to subjective decision-making and time-consuming in processing. The grasping
and release point, defined by an increase and decrease of the force profile and/or angular velocity in
flexion-extension of the index finger, could show deviations due to inconsistent finger motion and force
signals. In particular, the point of object release was difficult to detect when no distal signal peaks were
detectable and could be affected by a systematic error if, for example, only maximum elbow extension
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is used to determine object release, which has to be considered rather as an indirect assumption than a
proof of object release. Additionally, periods of transition or “dead time” between the phases need to
be considered, as for example at movement start and end, where indifferent minor motions could affect
the threshold detection. The application of improved flexible fingertip force sensors would reasonably
improve the accuracy and reliability of time-points for phase detection of reach, displacement and
return that are in alignment with studies on comparable movement analysis [2,41]. The accurate and
time-efficient detection of motion primitive phases of reach-to-grasp activities is a relevant requirement
for comparable and repeatable motion analysis of upper limb function.

Finally, we acknowledge that beside movement time and joint range of motion, several other
kinematic parameters could have been investigated, such as hand trajectories or smoothness measures
to complement the picture of movement quality and impairments. Based on the fact that signal
information for the parameter calculation is provided by the system, this could be addressed in future
studies using this multisensory measurement device. The data acquired in this study was publically
made available for transparent reporting and re-evaluation and extension of the results [48]. To realize
the long-term goal of upper limb kinematic assessments in clinical practice, this pilot study investigated
metrics that were appropriate to detect and quantify impaired movement behavior after stroke by use
of a wearable inertial measurement system. Even though the suggested metrics were derived from
well-defined movement tasks, it is reasonable to include these metrics in existing analysis, that have
been proven to be useful in the evaluation of non-structured daily-life activities [49,50]. Additionally,
considering movement task characteristics and factors influencing the movement behavior were p to
enable the evaluation of subject-specific motion aspects and assessing the dynamics of the impairments.

5. Conclusions

This pilot study demonstrates the applicability of sensor-based kinematic motion analysis of
functional reach-to-grasp and displacement movements in chronic stroke subjects with limited upper
limb capacity by use of a wearable inertial sensing system. Relevant features to determine upper limb
upper limb movement quality were suggested and examined for influences caused by the tested arm,
object weight, target height factors and with respect to clinically measured impairment level. Range
of motion in trunk displacement, elbow, wrist, and finger flexion-extension showed considerable
differences between the AF and the NAF. Effects on metrics for interjoint coordination, as defined
by the features, trunk compensation, elbow, wrist, and finger flexion-extension during displacement
were found for the factors of an increase in object weight and target height. Hence, the factor’s object
weight and target height were suggested to study expressions of the pathological flexor synergy
in functional reach-to-grasp movements with different task conditions. The significant correlations
between elbow flexion/extension and trunk compensation detected in the affected upper limb support
the appearance of pathological joint coupling during object displacement. Range of motion in elbow
flexion-extension tended to be lower in the affected side when compared to the non-affected. The finger
flexion-extension ROM showed significant differences between the AF and NAF and between the
target heights, supporting further evaluation of this feature to quantify distally pronounced aspects
of the pathological flexor synergy. These findings support the assessment of kinematic features of
reach-to-grasp and displacement movements by use of IMUs and, therefore, help in paving the path
towards clinically meaningful and feasible upper limb kinematic assessments in stroke research and
clinical practice. The additional investigations on the effect of additional arm load and target height
revealed relevant findings in the field of neurophysiology with respect to pathological joint coupling
after stroke and highlight important considerations for upper limb kinematic assessments and possible
treatment strategies to restore quality of movement in order to regain functionality in activities of
daily life.
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Appendix A

As a proof of concept validation, differences between the affected and non-affected sides in
movement time and range of motion of the main DOFs were tested for statistically significant
differences between the dependent groups by use of the Wilcoxon signed rank test, as illustrated
in Figure A1 and Table A1. For movement time, all trial of the affected and non-affected sides
were considered, whereas range of motion was compared between affected and non-affected sides,
evaluation all trials separately for each target location.

Figure A1. Movement time in seconds represented for the phases of reach, displacement and return
and the total movement time. Data include all trials, object weights and target positions for the affected
side (AF) and non-affected side (NAF).
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Abstract: The main purpose of the present study was to compare the smoothness of gait in older
adults with and without cognitive impairments, using the harmonic ratio (HR), a metric derived from
trunk accelerations. Ninety older adults aged over 65 (age: 78.9 ± 4.8 years; 62% female) underwent
instrumental gait analysis, performed using a wearable inertial sensor and cognitive assessment with
the Mini Mental State Examination (MMSE) and Addenbrooke’s Cognitive Examination Revised
(ACE-R). They were stratified into three groups based on their MMSE performance: healthy controls
(HC), early and advanced cognitive decline (ECD, ACD). The spatio-temporal and smoothness of gait
parameters, the latter expressed through HR in anteroposterior (AP), vertical (V) and mediolateral
(ML) directions, were derived from trunk acceleration data. The existence of a relationship between
gait parameters and degree of cognitive impairment was also explored. The results show that
individuals with ECD and ACD exhibited significantly slower speed and shorter stride length, as well
as reduced values of HR in the AP and V directions compared to HC, while no significant differences
were found between ECD and ACD in any of the investigated parameters. Gait speed, stride length
and HR in all directions were found to be moderately correlated with both MMSE and ACE-R scores.
Such findings suggest that, in addition to the known changes in gait speed and stride length, important
reductions in smoothness of gait are likely to occur in older adults, owing to early/prodromal stages
of cognitive impairment. Given the peculiar nature of these metrics, which refers to overall body
stability during gait, the calculation of HR may result in being useful in improving the characterization
of gait patterns in older adults with cognitive impairments.

Keywords: gait; smoothness; older adults; accelerometer; inertial measurement unit (IMU)

1. Introduction

Optimal locomotion capabilities represent a critical element in ensuring successful aging. Mobility
is not only an important co-factor that influences life expectancy [1,2], but also plays a relevant role in
the self-perception of aging [3], social participation [4], independence and overall quality of life [5].

The physiologic decline in quality and the effectiveness of sensory, vestibular and proprioceptive
inputs, associated with the loss of muscle strength [6–8], alter several main features of gait pattern.

Sensors 2020, 20, 3577; doi:10.3390/s20123577 www.mdpi.com/journal/sensors
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Elderly individuals present reduced gait speed, stride length and cadence, as well as increased stance
and double support phase duration [9]. Taken together, these features indicate the adoption of cautious
gait, a strategy necessary to counteract the loss of stability and, thus, reduce the risk of falls [10].

Although gait has long been considered mostly an automatic task, in the last decades, it has been
postulated that cognitive performances (mainly executive functions) provide an essential contribution,
especially through the regulation of postural control (strongly implicated during walking), owing
to their role in the management of axial musculature and in the integration of visual, vestibular,
proprioceptive and sensory feedback. The sum of required cognitive resources becomes even more
relevant when environmental conditions tend to reduce the automaticity of the task, as occurs in
the case of uneven terrain and in the presence of concurrent motor/cognitive tasks (i.e., dual-task).
Instability thus increases and overall gait performance may be compromised as a result [11]. It has also
been observed that early disturbances in cognitive processes, such as attention, executive functions and
working memory, often coexist with slower gait speed, increased stride time variability and greater
instability [12–14].

Owing to its essentiality for most activities of daily living and considering that a walking test
can easily be performed even by an individual with severe cognitive impairment, gait is probably the
most thoroughly investigated motor task in describing the impact of cognitive performance on overall
mobility. While basic information on speed can be obtained from simple timed tests carried out using a
stopwatch (like the 10-m walking test), fine details on the kinematics and kinetics of gait require more
complex equipment, such as motion capture systems, force platforms and surface electromyography.
In this scenario, for more than a decade, interest in the possibility of employing accelerometers and
inertial measurement units (IMUs i.e., devices composed of tri-axial accelerometer, gyroscope and
magnetometer) in human movement analysis has been increasing [15]. To date, low-cost, wearable
and miniaturized IMUs featuring high reliability and easiness of use are available. Their performance
is increasingly close to those of more expensive and complex equipment. Such devices have been
successfully employed to perform several tests on balance, gait and functional mobility under ecological
conditions in older adults, with and without cognitive impairments [16–21]. Particularly attractive
for daily clinical routines is the use of a simple setup consisting of a single unit [22], since the
analysis can be performed by a non-specialized person (e.g., nurse, physical therapist, physician) in a
clinical/ambulatory setting, and under very ecologic conditions in a relatively short time.

A gait analysis assisted by IMUs can provide a large set of parameters, which includes the main
spatio-temporal parameters (i.e., speed, cadence, step/stride length and duration of stance, swing and
double support phases), as well as indicators of variability, regularity and symmetry (see the review
by Jarchi et al. [23] for details). In particular, the specific processing of trunk accelerations allows the
extraction of less conventional metrics which, in some cases, are able to reveal subtle changes in gait that
might occur, well before they become detectable in terms of conventional spatio-temporal parameters.
Among them, great interest has been raised by the so-called “smoothness” of gait [24] (also defined as
“step-to-step” symmetry [25]). Such a feature, quantitatively identified by a parameter called harmonic
ratio (HR), provides information about overall body movement during gait, in particular with regards
to its stability [26], which is different from the typical spatio-temporal parameters, which are rather
focused on lower-limb movement at the distal level. The study of HR has aroused significant interest
among researchers of human movement, as it allows the detecting of gait alterations in individuals with
neurologic and orthopedic conditions and characterizes the changes associated with aging [27–29].

Use of Accelerometers and IMU to Analyze Gait in Elderly with and without Cognitive Impairment

Accelerometers (alone or as part of IMU) have been used for almost three decades to investigate
a wide range of aspects correlated with mobility and posture in older adults. In particular,
early applications were focused on the analysis of trunk accelerations during gait, to obtain information
on stability and smoothness [30,31], but with the advancement of the hardware’s technology, as well
as with the refinement of the signal processing techniques, even other movement features were
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explored. To date, gait analysis represents the most widespread example of application for such class
of devices. In the elderly population, gait analysis is typically employed to assess spatio-temporal
parameters which are useful to estimate, for example, the risk of falls, or to assess the extent of
functional limitations associated with orthopedic and neurologic conditions [20]. Given the simplicity
of use and the fact that no special preparation of the individual to test is needed, IMU are gaining
increasing popularity in the clinical testing of elderly with mild cognitive impairments, Alzheimer’s
disease, or other types of dementia [17,21]. As a result, these studies allowed one to detect the existence
of peculiar gait alterations (i.e., reduction of walking speed and stride length, increased variability
and asymmetry, etc.), which reflect the modifications in brain structure and functions associated with
cognitive deficit [17,18,21,32]. Moreover, gait data obtained from wearable accelerometers were able to
discriminate different subtypes of dementia [21], thus suggesting that such devices might represent a
useful tool for supporting the clinical diagnosis.

Several studies also attempted to correlate trunk accelerations features, acquired during walking
tests, with clinical characteristics of older adults with cognitive impairments. Their main findings can
be summarized as follows: in comparison with unaffected individuals, older adults with cognitive
impairments exhibit significant reduced value of the root mean square (RMS) and structure variability
of the medio-lateral trunk acceleration [33], significant association of trunk stability measures with
the white matter lesions [34] and with cognitive performance [35]. In particular, the study of Ijmker
and Lamoth [35] showed that the presence of a cognitive impairment is accompanied by a decrease in
smoothness of gait along the walking direction (anteroposterior, AP), as indicated by the significantly
reduced value of the corresponding HR. Moreover, HR AP was found to be significantly correlated
with cognitive status, as expressed by the Mini Mental State Examination (MMSE) score. However,
although innovative and interesting, such findings require further verification and extension, firstly
owing to the limited size of the tested sample, as well as its unbalanced composition in terms of the
men to women ratio (75 to 85% of the tested individuals were men). It is also noticeable that the role
of HR in the ML direction has not been clarified, being found to increase in cognitively impaired
individuals, contrary to expectations. Finally, HR in the V direction was not even considered.

Based on the aforementioned considerations, the main purpose of the present study was to analyze
the spatio-temporal and smoothness of gait parameters for a cohort of older adults, with and without
cognitive impairments. The main hypothesis to verify was if individuals with impaired cognitive
performance are characterized by altered gait patterns and reduced smoothness of gait. As a secondary
goal, the existence of possible relationships between the degree of cognitive impairment and the gait
parameters investigated will also be explored.

2. Materials and Methods

2.1. Participants

In the period January 2020–February 2020, 90 elderly adults aged over 65, consecutively examined
at the Center for Cognitive Disorders and Dementia (in collaboration with the Geriatric Unit, “SS. Trinità”
General Hospital, Cagliari, Italy), were recruited for the study. All participants were free from other
neurologic conditions (e.g., Parkinson’s disease, multiple sclerosis and stroke), excluding cognitive
decline. They were also free from orthopedic conditions able to interfere in mobility, and could
walk independently without the need of any support, such as canes, walking frames, crutches etc.
After a detailed explanation of the purposes and methodology of the study, they (or their family
members/caregivers when necessary) signed an informed consent form. The study was conducted
in accordance with the ethical standards of the institutional research committee, and with the 1964
Helsinki declaration and its later amendments.
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2.2. Neuropsychologic Assessment

After an overall clinical and geriatric assessment, participants underwent a screening of their
cognitive status carried out by means of: (1) the Italian version of the Mini Mental State Examination
(MMSE, [36,37]) and (2) Addenbrooke’s Cognitive Examination Revised (ACE-R, [38,39]). ACE-R is
articulated across five cognitive domains, namely attention and orientation, memory, verbal fluency
(related to cognitive abilities of executive function), visuospatial, and language. The overall ACE-R
score ranges from 0 to 100, lower scores being indicative of greater cognitive impairment. We decided to
employ both tests, because although MMSE is probably the most widespread rapid cognitive screening
instrument and, as such, has a large amount of reference data available, it also suffers from several
drawbacks which are partly overcome by ACE-R.

Participants were stratified into 3 groups, according to their MMSE score, based on the cut-offs
proposed by Isella et al. [40], as follows:

• Healthy controls (HC): MMSE score ≥ 24 (n = 34)
• Early cognitive decline (ECD): 18 ≤MMSE score < 24 (n = 37);
• Advanced cognitive decline (ACD): MMSE score < 18 (n = 19);

Their anthropometric and clinical features are reported in Table 1.

Table 1. Anthropometric and clinical features of participants. Values are expressed as mean ± SD.

Healthy Controls
(HC)

Early
Cognitive Decline (ECD)

Advanced
Cognitive Decline (ACD)

Participants # (F, M) 34 (22 F, 12 M) 37 (22 F, 15 M) 19 (12 F, 7 M)
Female/Male Ratio F 65%, M 35% F 60%, M 40% F 63%, M 37%
Age (years) 79.1 ± 3.9 78.8 ± 5.8 78.9 ± 4.6
Body Mass (kg) 64.1 ± 13.5 62.5 ± 12.9 62.6 ± 17.1
Height (cm) 159.9 ± 8.6 159.3 ± 8.8 158.1 ± 9.7
Mini Mental State
Examination (MMSE)

27.6 ± 1.7 22.0 ± 1.5 11.8 ± 5.1

Addenbrooke’s
Cognitive Examination
Revised (ACE-R)

77.8 ± 11.1 55.5 ± 9.7 25.0 ± 15.4

2.3. Instrumental Gait Analysis

Gait patterns were investigated based on trunk accelerations collected using a miniaturized
wearable inertial sensor (G-Sensor®, BTS Bioengineering, Italy), previously employed in studies
involving the elderly [41,42]. The sensor was attached to participants’ lower back, at approximately the
S1 vertebrae level, using a dedicated semi-elastic belt. After a brief familiarization phase, participants
were requested to walk along a 30-m hallway following a straight trajectory at a self-selected
speed, and in the most natural manner. During the trial, the sensor acquired, at 100 Hz frequency,
the accelerations along three orthogonal axes, namely: antero-posterior (AP) corresponding to the
walking direction, medio-lateral (ML), and supero-inferior (V). In order to reduce the error possibly
introduced by the initial misalignment of the sensor (particularly with regards to the V direction),
the participants were asked to stand still for 10 s before starting the walking trial, and the local
reference system of the device was rotated in such a way as to align its vertical axis with the gravity
vector [43]. Acquired data were sent in real-time via Bluetooth to a Personal Computer, where they
were subsequently processed with a custom Matlab® routine to calculate:

• spatio-temporal parameters of gait (namely gait speed, stride length, cadence, duration of stance,
swing and double support phase expressed as a percentage of the gait cycle). The identification of
the gait cycle and the subsequent extraction of such parameters was carried out by means of a
peak-detection algorithm, according to the procedure described by Zijlstra [44];
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• HRs for AP, ML and V directions.

The calculation of the HRs was carried out according to the procedure proposed by Menz,
Lord and Fitzpatrick [31]. In short, the raw accelerometric signal is processed in the frequency domain
using a finite Fourier series, and the HRs for the AP and V directions (see Equation (1)) are calculated as
the ratio between the sum of the amplitudes (A) of the first ten even harmonics (which are representative
of the in-phase components of the signal) and the sum of the amplitudes of the first ten odd harmonics
(associated with the out-of-phase components), the latter being minimized as gait symmetry improves.
Instead, the HR in the ML direction (see Equation (2)) is obtained by dividing the sum of the amplitudes
of the odd harmonics by the sum of the amplitudes of the even harmonics, since the acceleration pattern
exhibits one peak per stride, thus resulting in the dominance of the first harmonic and subsequent
odd harmonics.

HRAP−V =

∑
Aeven harmonics∑
Aodd harmonics

(1)

HRML =

∑
Aodd harmonics∑
Aeven harmonics

(2)

The interpretation of the HR values is quite straightforward, as lower values indicate a less
smooth/symmetrical gait. Reference values for healthy older adults lie in the range 3–4 (for AP and V
directions) and 2.1–2.6 for the ML direction [26,45–48].

2.4. Statistical Analysis

The existence of possible differences introduced in spatio-temporal parameters and HRs by
participants’ cognitive status was assessed using a one-way multivariate analysis of variance
(MANOVA) and a one-way multivariate analysis of covariance (MANCOVA), respectively. In the
latter case, gait speed was included in the analysis as a covariate, given its influence on HR values [46].
The independent variable was the participant’s status (e.g., HC, ECD or ACD) and the dependent
variables were the 6 spatio-temporal parameters and the 3 HRs. In both cases, the level of significance
was set at p = 0.05, and the effect sizes were assessed using the eta-squared (η2) coefficient. Univariate
ANOVA was carried out as a post-hoc test, by reducing the level of significance to p = 0.008 (0.05/6)
for spatio-temporal parameters and p = 0.016 (0.05/3) for HRs, after a Bonferroni correction for
multiple comparisons. The relationship between spatio-temporal gait parameters and cognitive status
(as indicated by both MMSE and ACE-R scores) was explored using Spearman’s rank correlation
coefficient rho, by setting the level of significance at p < 0.05. Rho values of 0.1, 0.3, and 0.5 were
assumed to be representative of small, moderate, and large correlations respectively, according to
Cohen’s guidelines [49]. In the case of HR, we used partial correlation coefficients, checking for
gait speed. All analyses were carried out using the IBM SPSS Statistics v.23 software (IBM, Armonk,
NY, USA).

3. Results

3.1. Spatio-Temporal Parameters of Gait and Harmonic Ratio

The results of the experimental test are summarized in Table 2 (comparison of the spatio-temporal
and HR values across the three groups) and in Table 3 (correlation analysis between gait parameters
and MMSE/ACE-R scores).
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Table 2. Spatio-temporal and smoothness-of-gait parameters calculated for the three groups of elderly.
Values are expressed as mean ± SD.

Gait Parameter
Healthy Controls

(HC)
Early

Cognitive Decline (ECD)
Advanced

Cognitive Decline (ACD)

Gait speed (m s−1) 0.92 ± 0.23 0.68 ± 0.30 a 0.63 ± 0.25 a

Stride length (m) 1.03 ± 0.23 0.81 ± 0.32 a 0.73 ± 0.23 a

Cadence (steps min−1) 107.3 ± 8.5 100.6 ± 12.6 101.7 ± 11.8
Stance phase (% GC) 61.3 ± 2.0 61.9 ± 2.3 62.0 ± 1.6
Swing phase (% GC) 38.8 ± 1.9 38.1 ± 2.3 37.4 ± 2.8
Double support phase
(% GC)

22.3 ± 2.0 23.8 ± 2.3 24.0 ± 1.7

Harmonic ratio (HR)
anteroposterior (AP)
direction *

3.37 ± 0.69 2.49 ± 0.88 a 2.31 ± 0.76 a

HR mediolateral (ML)
direction *

2.40 ± 0.72 2.03 ± 0.53 2.05 ± 0.55

HR vertical (V)
direction *

3.70 ± 0.93 2.60 ± 0.87 a 2.60 ± 0.88 a

a significant difference vs. HC after Bonferroni correction; * controlled for gait speed; GC: Gait Cycle.

Table 3. Spearman’s coefficients for correlations between spatial-temporal and smoothness of gait
parameters and scores obtained from the neuropsychological assessment.

Gait Variables MMSE ACE-R

Spatial-temporal
parameters

Gait speed 0.449 †† 0.430 ††
Stride length 0.446 †† 0.422 ††
Cadence 0.199 0.191
Stance phase −0.156 −0.143
Swing phase 0.192 0.182
Double support phase −0.153 −0.149

Harmonic Ratio

HR AP direction * 0.323 †† 0.303 ††
HR ML direction * 0.213 † 0.251†
HR V direction * 0.259 † 0.207 †

† p < 0.05; †† p < 0.01; * controlled for gait speed; ACE-R: Addenbrooke’s Cognitive Examination (Revised); MMSE:
Mini Mental State Examination; AP: antero-posterior; ML: medio-lateral; V: vertical.

MANOVA detected a significant main effect of group on the spatio-temporal parameters of gait
[F(12, 164) = 2.17, p = 0.016, Wilks λ = 0.74, η2 = 0.14 ], but the post-hoc analysis revealed that only gait
speed and stride length actually differed across the tested groups. In particular, individuals with both
ECD and ACD exhibited a significant reduced gait speed (0.68 and 0.63 m/s respectively vs. 0.92 m/s of
HC, p = 0.001 in both cases) and stride length (0.81 and 0.73 m vs. 1.03 m of HC, p < 0.01 in both cases)
with respect to unaffected participants.

Trends of the HR, calculated using the two methods previously described, are reported in Figure 1.
After controlling for gait speed, MANCOVA detected a significant main effect of individuals’

status on HR values [F(6168) = 3.42, p = 0.003, Wilks λ = 0.79, η2 = 0.11], and the post-hoc analysis
revealed that HR in the AP and V directions differed significantly across the tested groups. For both
directions in particular, individuals of the ECD and ACD groups exhibited HR values that were
significantly lower that healthy controls, while no differences were found between the two groups of
cognitively impaired elderly.
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Figure 1. Trend of HR values for the three groups of tested elderly. The symbol * denotes a statistically
significant difference after Bonferroni correction (p < 0.016)

3.2. Correlation between Gait Parameters and Cognitive Impairment

Gait speed and stride length were positively correlated with both measures of cognitive status
with coefficients similar in magnitude, while no correlations were found with the remaining gait
parameters. When we checked speed on the relationship between MMSE scores and HRs, we found a
significant positive partial correlation, with rho ranging from 0.21 (ML direction) to 0.32 (AP direction).
Similar results were obtained in the case of ACE-R, where the coefficients varied between 0.21 (HR V
direction) and 0.30 (HR in AP direction).

4. Discussion

4.1. General Considerations

The aim of this study was to quantitatively investigate the alterations of gait patterns consequent
to the presence of a cognitive impairment of different severity, using a wearable inertial sensor in a
clinical setting, and to explore the existence of possible relationships between gait parameters and
the degree of impairment. To this end, we employed the typical spatio-temporal parameters of gait,
and trunk acceleration-based measures such as HR, which provide a different point of the view of gait
alterations associated with overall body stability. In particular, we attempted to extend the previous
limited findings by calculating HR for all three directions (AP, ML and V), enlarging the tested sample
and analyzing the correlations of HR with two different measures of cognitive performance, namely
MMSE and ACE-R.

At first, consistent with most existing studies, our data confirm that the existence of cognitive
impairment, even mild, is associated with significant reductions in gait speed and stride length, while
cadence and phase subdivision of the gait cycle appear to be less altered. The speed reductions of
individuals with cognitive impairments with respect to unaffected controls is clinically meaningful
and, particularly in the case of ECD, in very good agreement with the values recently reported
by Peel et al. [50], in a meta-analysis, summarizing the results of 36 studies, involving more than
29,000 participants. Participants with more advanced impairment showed slower speed (−8%) and
shorter stride length (−11%) with respect to individuals with ECD, but such a change was not found to
be significant and, as such, should rather be considered as a trend. Taken together, the reduction in gait
speed and stride length indicate that cognitive decline influences gait strategy, through the adoption of
a cautious approach that probably reflects the diminished efficiency of sensory and motor systems and
attempts to achieve a more stable locomotion to reduce the risk of falls [51].
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4.2. Smoothness of Gait

Firstly, it is to be noted that the HR values calculated in the present study for our reference group
of healthy older adults are consistent, even from a quantitative point of view, with those reported in
previous studies involving individuals of the same age range [45–48]. This demonstrates that, despite
the variability in terms of equipment and measurement protocols, the approach based on HR analysis
is reliable and robust. As regards the values observed in individuals with cognitive impairment,
even after checking for gait speed (which is known to have a direct influence on HR) our data show a
substantial significant decrease in smoothness for all three directions considered, although only in the
case of the AP and V directions were the variations statistically significant.

In the last two decades, several studies have employed HR to investigate gait performance in older
adults for different purposes, such as characterizing the changes associated with either aging [27,45] or
the presence of neurological diseases [26], assessing the risk of falls [41,44] and verifying the differences
between overground and treadmill walking [43]. In short, their main findings indicate that older
adults feature lower HR values with respect to young individuals. Moreover, further reductions
have been observed in those suffering either from recurrent falls or in the presence of neurologic
conditions known to affect balance and stability, such as Parkinson’s disease [26], stroke [28] and
multiple sclerosis [29]. However, only in the study by Ijmker and Lamoth [35] was the analysis of
smoothness of gait applied to a small cohort of individuals with cognitive impairments, and it thus
represents the only term of comparison for the findings derived by the present study. Consistently with
our results, they observed a significant lower value for HR in the AP direction in cognitively impaired
individuals, with respect to the unaffected elderly. In contrast, individuals with dementia exhibited
higher values of HR ML with respect to both unaffected elderly and young subjects. This is contrary to
the findings of our study, as participants in the ECD and ACD groups had significantly lower HR ML
values than unaffected controls. The findings by Imjker and Lamoth [35] are actually quite surprising,
as higher HR values indicate better smoothness of gait and stability, while most literature reports that
dementia is accompanied by poor stability, especially in the ML direction [33,52,53]. Nevertheless,
since this result was not discussed in detail by the authors, we can only speculate that factors such as a
different composition of the sample (i.e., presence/different proportion of individuals with Alzheimer’s
disease or vascular cognitive impairment and a different woman/man ratio), as well as environmental
and socio-economic backgrounds of the countries in which the studies were performed, might partly
explain such a discrepancy. Generally speaking, the reduction of smoothness of gait can be attributed
to alterations in limb dynamics and overall function, which can be present even in the early stages of
cognitive impairment [26,54], as well as in trunk stability, especially in the presence of brain structural
changes such as severe white matter lesions [34]. Moreover, individuals at increased risk of falls, such
as those with cognitive impairment [55,56], have difficulties in controlling the rhythmic displacements
of the trunk during gait [45], which is thus another factor able to worsen the overall smoothness of gait.

Interestingly, the most relevant changes in HR are evident already from the early stages of
cognitive decline, which is the case of ECD, while further worsening appears not to be accompanied
by a corresponding deterioration in gait smoothness. This suggests that the impact of cognitive
decline on gait performance is already relevant during its early or even prodromal stages, a fact that
is consistent with previous observations that pointed out how the deterioration of walking abilities
precedes cognitive decline and the presence of dementia [57].

4.3. Correlation between Cognitive Status and Gait Parameters

The results of the correlation analysis between cognitive status and spatio-temporal parameters of
gait confirm its relevant role in mobility performance [58,59]. In particular, the significant moderate
correlations found between cognitive scores and gait speed (0.43 for ACE-R and 0.45 for MMSE) and
stride length (0.42 for ACE-R and 0.45 for MMSE) are consistent with the findings of previous studies
which reported coefficient values from 0.36 to 0.60 for gait speed (vs. ACE-R [60]; vs. MMSE [17]) and
0.59 for stride length (vs. MMSE, [17]).

218



Sensors 2020, 20, 3577

There is instead a scarcity of data regarding the relationship between HR and cognitive measures,
even though a number of studies have investigated the alterations of trunk accelerations in cognitively
impaired people using a variety of metrics, including some quite similar in principle to HR [33–57],
concluding that gait outcomes related to speed, regularity, predictability, and stability of trunk
accelerations may suitably integrate other physical, cognitive, and behavioral measures, to better
identify the extent of a cognitive impairment in the elderly. To the best of our knowledge, only Ijmker
and Lamoth [35] attempted to investigate the existence of a possible relationship between HRs and
MMSE score. They found a moderate positive correlation between HR AP and MMSE, similar to
the observations of the present study, although slightly larger in magnitude (rho = 0.48 vs. 0.32).
In contrast, Ijmker and Lamoth [35] found no significant correlation for the ML direction and did
not consider the V direction. Possible reasons for the discrepancies with our findings are: (1) the
fact that they did not consider the effect of gait speed, which may have some effect on HR values,
as demonstrated by Lowry et al. [46]; (2) the different number of participants, which was less than a half
with respect to our sample; (3) the unbalanced composition of the groups, which were predominantly
composed of men.

Overall, our data suggest that gait parameters (both spatio-temporal and smoothness) are similarly
influenced by the cognitive status, regardless of the way in which it is assessed, since the coefficients of
correlation did not differ greatly. This would imply that while ACE-R, given its superior sensitivity, may
be beneficial in better identifying the presence of dementia with respect to the MMSE, the latter appears
to have sufficient capabilities for detecting the cognitive impairments associated with alterations
in mobility.

What are the clinical implications of the findings obtained in the present study? Previous research
demonstrated that HR is a metric more sensitive to subtle alterations in locomotor mechanisms,
with respect to spatio-temporal parameters like speed or stride length [25]. Some examples of this
phenomenon were observed in individuals in the early stages of Parkinson’s disease [26] and multiple
sclerosis [29]. In aging, recent research demonstrated that reductions in gait speed predicts incident
dementia and cognitive decline [60], thus it is likely that the regular monitoring of trunk accelerations
would probably allow the detection of changes in HR that are likely to occur earlier, with respect
to those of walking speed. If such hypothesis would be confirmed by further longitudinal studies,
the information provided by HR would support clinicians in the diagnosis of suspected cognitive
impairment, allowing the planning of timely interventions.

4.4. Possible Issues Associated with the Use of IMU to Assess Gait Parameters and HR

As previously mentioned, IMU is a very appealing tool to perform the quick and inexpensive
assessment of gait in a clinical setting, especially to test people with cognitive impairment, because,
unlike more sophisticated equipment like optoelectronic motion capture system (which represents the
gold-standard for the quantitative analysis of human movement), the test does not require a specific
preparation of the individual for marker positioning and can be performed having him/her fully
dressed. However, it must be noted that the validity and reliability of gait data obtained by IMU are
influenced by several factors which should be considered. At first, the estimation of gait parameters
could be affected by changes in sensor orientation, which may change during walking. Therefore,
vertical acceleration may exhibit components in the remaining two axes which alter their actual value.

Specific issues are also associated with the calculation of the HR, which in some cases has been
criticized for poor reliability, which is not associated with the methodology by itself, but rather with
a poor standardization of the measurement protocols [43]. In particular, the approach proposed by
Menz et al. [31] used in the present study (which is probably the most widespread) considers the
first 20 harmonics of the accelerometric signal in the frequency domain. However, as pointed out by
Bellanca et al. [25], such value is justified and adequate for “regular” cadences (i.e., approximately in the
range 80–135 steps/min), because very slow walking may cut a significant part of the power spectrum,
thus altering the HR value. Although, in our sample, all participants satisfied this criterion, in studies
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involving older adults with more severe cognitive decline, who also usually exhibit significantly
reduced gait speed, such an aspect should be carefully considered.

4.5. Limitations of the Study

Some limitations of the study are to be acknowledged, beside the technical issues previously
mentioned. Although it significantly extends the amount of available data, in terms of participants
tested, the number of HRs considered, and the neuropsychologic tools used to explore the relationship
between gait and cognitive status, some important factors have not been included in our analysis.
Firstly, we did not consider education, wealth and occupational status, which are all known to have
some influence on mobility performance [61–63]. Thus, the generalization of the results presented
here considering different socio-economic contexts should be performed cautiously. Secondly, since a
non-negligible percentage of the participants were overweight or obese (31% and 13% respectively),
such conditions may have introduced alterations in gait parameters, especially for their HR values [64].

5. Conclusions

In the present study, we have attempted to clarify the relationship between smoothness of gait and
cognitive performance in a cohort of the Italian elderly, using trunk acceleration-based data acquired
in a clinical setting by means of a wearable inertial sensor. The results confirm the existence of gait
pattern alterations in terms of slower speed and shorter stride length, as well as a decrease of HR in all
the directions investigated, which were already evident in individuals with ECD. Instead, no further
worsening of smoothness of gait was detected in the presence of a more severe cognitive impairment.
All the aforementioned alterations were found to be moderately correlated with the extent of the
cognitive impairment in a similar way, regardless of the use of different neuropsychologic screening
tools such as MMSE and ACE-R.

Based on these findings, it is possible to state that the smoothness of gait parameters may represent
a metric potentially useful in detecting subtle changes in gait possibly present in prodromal stages
of dementia, but not evident from the analysis of spatio-temporal parameters alone. Such data
might support the clinician in performing a more accurate diagnosis of cognitive impairment as well,
in verifying the effectiveness of all those interventions targeted to overcome any possible mobility
limitations in cognitively impaired individuals.
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Abstract: In clinical practice, only a few reliable measurement instruments are available for monitor-
ing knee joint rehabilitation. Advances to replace motion capturing with sensor data measurement
have been made in the last years. Thus, a systematic review of the literature was performed, focusing
on the implementation, diagnostic accuracy, and facilitators and barriers of integrating wearable
sensor technology in clinical practices based on a Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement. For critical appraisal, the COSMIN Risk of Bias tool for reli-
ability and measurement of error was used. PUBMED, Prospero, Cochrane database, and EMBASE
were searched for eligible studies. Six studies reporting reliability aspects in using wearable sensor
technology at any point after knee surgery in humans were included. All studies reported excellent
results with high reliability coefficients, high limits of agreement, or a few detectable errors. They
used different or partly inappropriate methods for estimating reliability or missed reporting essential
information. Therefore, a moderate risk of bias must be considered. Further quality criterion studies
in clinical settings are needed to synthesize the evidence for providing transparent recommendations
for the clinical use of wearable movement sensors in knee joint rehabilitation.

Keywords: wearable movement sensor; IMU; motion capture; reliability; clinical; orthopedic

1. Introduction

Knee joint problems are widespread and may occur throughout a patient’s lifespan.
Given the high incidence across the age continuum and the frequent need for surgical
repair and long-term rehabilitation, knee injuries present one of the highest clinical and
public health injury-related burdens [1,2]. Ligament damage to the knee, including the
most frequently injured anterior cruciate ligament (ACL), is more common than any other
type of knee injury pathology [3,4]. Additionally, knee osteoarthritis (KOA), with its global
prevalence, amounts to almost 23% in individuals aged 40 and over [3], and accounts
for nearly four-fifths of OA burden worldwide [5]. The incidence of KOA is 203 per
100,000 person-years in individuals aged 20 and over, and it increases with age to peak at
70–79 years old [6]. Although end-stage KOA can be effectively treated with total knee
arthroplasty (TKA), the procedure is related to substantial health costs [7,8].

Patients with knee disorders of different natures require a dedicated follow-up in-
volving physicians, nurses, physical therapists, and other medical staff. Therefore, the
healthcare sector is facing challenges regarding the rapidly growing elderly population,
rising cost pressure, and limited temporal resources of medical staff. New postoperative
protocols are well established and have significantly reduced the time of hospitalization.

Sensors 2021, 21, 8221. https://doi.org/10.3390/s21248221 https://www.mdpi.com/journal/sensors
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Cost explosion has induced an increasingly shorter inpatient care of surgical patients,
which often induces restrictions in rehabilitation and follow-up quality.

Sensing technology is widely used in orthopedics nowadays. Most commonly it is
established in intraoperative care and basic science on human movement [9–12]. Since
wearable technology nowadays possesses the capacity for monitoring and diagnostic
functionality, this technology might help solve some of the challenges the healthcare sector
faces. Current research has indicated that wearable sensing technology can benefit patients’
care. This device helps physiotherapists and orthopedic surgeons detect movement pattern
problems, such as asymmetrical limb loading after anterior cruciate ligament reconstruction
(ACLR) [13,14] and quantification of varus thrust in patients with KOA [15]. For patients
with total knee replacement, some parameters were used to describe the progress of
certain selected parameters relevant for rehabilitation, even if not evaluated for this setting.
General gait analysis [16], stance and swing phase development [17], range of motion [18],
and knee instability before [19] and after [20] were evaluated before and after total knee
arthroplasty (TKA).

So far, no wearable sensing technology system has been successfully incorporated into
everyday clinical practice or in a hospital or rehabilitative setting. The feasibility of clinical
implementation and the possibility of reimbursement by health insurance companies
largely depend on usability, cost-effectiveness, availability, and, most important, diagnostic
accuracy. To account for this current gap in knowledge, reviews that focus on these aspects
would be helpful.

To date, reviews that have tackled the topic of sensor technology in the medical
field have investigated the issue from a broader view. A review from 2012 by Patel et al.
focused on wearable sensors and systems with applications in rehabilitation [21]. This
review provided an overview of different sensing technologies, such as built-in smartphone
sensors, ambient home sensory sensors, fabric electrodes, and various types of wearable
devices, to measure blood glucose levels, respiratory rate, ECG, etc. Additionally, potential
use cases of telemonitoring in the aging population were discussed. Sensing technology
and biomedical markers are commonly used nowadays in various fields of medicine, such
as stroke rehabilitation [22] or ankle joint power [23], and rehabilitation issues, such as
hand-finger orientation, have already been considered [24].

In 2018, Porciuncula et al. provided what they called a “focused discussion” about
current sensor technologies and their clinical applications [25]. They did not provide a
comprehensive systematic review but provided an overview of clinical applications used
in patients with neurological and musculoskeletal diagnoses, which could potentially
benefit from wearable sensors during their rehabilitation. They included different sorts
of sensors, such as phone-based sensors or those included in shoes or wristbands for
activity recognition, identification of pathologic motor features, falls management, and
other clinical applications. The most recent scoping review from 2019 provided by Small
assessed the current methodology and clinical application of accelerometers and inertial
measurement units (IMUs) to evaluate a patient’s activity and functional recovery after
knee arthroplasty [26].

The reviews mentioned above provide a broad scope of the topic. However, apart
from the review by Small et al. (2019), the issues of patients with knee pathologies have
only been covered to a limited extent. Therefore, the current review focuses on diagnostic
accuracy and the different approaches of wearable sensing technology used for monitoring
knee and lower limb motion in clinical practice.

Highlights:

• Promising IMU quality criterion data exist for describing knee joint status
• No wearable sensing technology assessing knee joint rehabilitation issues has been

incorporated successfully into clinical practice
• No consensus about added value from IMUs and quality criterion parameter statistics

to be reported
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• IMUs are currently used to raise the efficiency of established tests but have high
potentials for new parameters with higher validity for function

2. Materials and Methods

A systematic review was conducted using Preferred Items for Systematic Review
and Meta-Analysis (PRISMA) and accordance with recently published author guidelines
for Systematic Reviews and Meta-Analyses [27]. The protocol was preregistered at the
open science framework: 10.17605/OSF.IO/DQEAX. To be included in this review, papers
must report on the use of at least one IMU for assessing knee joint kinematics, knee
stability, or gait analysis. Optimally, studies include validation against a gold standard.
Included studies were conducted either in a hospital, ambulatory, or gait laboratory setting.
The study population underwent either TKA or ACLR as some of the most commonly
performed knee surgeries. Wearable sensing technology has become smaller, more efficient,
less obtrusive, and increasingly affordable due to advanced technology. This also leads
to an increased number of scientific studies in the field in the last months and years.
Nevertheless, to capture all potentially relevant research for this very specific systematic
research, PUBMED, Prospero, Cochrane database, and EMBASE were screened for papers
from 1980 to 13 March 2021. For identification of relevant studies in the English language,
a literature search with the keywords “knee” AND “sensors” OR “IMU” OR “inertial
measurement unit” in those electronic databases was conducted.

Due to various methodologies among different journals, a comprehensible guideline
for inclusion or exclusion criteria was required, as provided in Table 1. Review articles were
excluded but examined for potentially relevant research articles. Exclusion criteria included
the use of intraoperative sensor technology to enhance surgical outcomes, app-based
intervention, and telerehabilitation studies that did not use wearable sensor technology.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Studies including patients with knee
osteoarthritis, total knee arthroplasty, or
anterior cruciate ligament reconstruction

Studies including intraoperative sensors for
enhancing surgical outcomes, such as using
pressure sensors for total knee replacement

Studies including patients investigated with at
least one IMU

Studies that perform postoperative digital
interventions or telerehabilitation without

using wearable sensing technology
Studies including body-mounted sensors Cadaveric studies

Some form of quality measurement of the data
needs to be provided

Studies including patients with neurological or
rheumatic diseases that impaired balance or

ability to walk
Study protocols

Two independent reviewers screened the manuscript titles and abstracts. Exclusion
and inclusion criteria, as presented in Table 1, were discussed among reviewers before
the title and abstract screening. After searching and title screening the online database
resources, duplicates were removed. For the manuscripts that both reviewers included,
a full-text search was performed to decide upon inclusion for the review. Exclusion and
inclusion criteria were discussed among reviewers before the title and abstract screening.
The full-text screening was performed accordingly.

Following the relevant items of the STARD for reliability checklist, data from the
included papers were summarized in a data extraction spreadsheet independently by both
reviewers. Disagreements were solved via discussion. Data extraction was grouped by
patients’ demographics, type of sensing technology, outcome variables, and diagnostic
accuracy criteria. An overview of the different testing protocols was included. A COSMIN
Risk of Bias tool was used to examine the quality in a systematic and transparent man-
ner [28]. No ethical approval was required since only existing peer-reviewed literature
sources were accepted for evaluation. No data registration plan was needed.
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3. Results

The initial database research with the previously defined search string yielded
2368 results. After the title and abstract search, 84 manuscripts remained and underwent
full-text assessment, of which 78 were excluded according to the criteria specified in Table 1.
Therefore, six manuscripts remained for inclusion in the qualitative synthesis. Figure 1
shows a PRISMA flow diagram detailing the results of the literature search and review.

Figure 1. PRISMA flow diagram detailing the results of the literature search and review.

Promising study protocols that assess the practical clinical usability of sensing technol-
ogy have been registered in the last two years. Still, since no results have been published
yet, they were excluded from this review. Comparability of studies was limited since
various methodological approaches existed. Due to a lack of standardization and an abun-
dance of proprietary solutions, the studies differed regarding sensing technology, dedicated
analysis software, sensor placement, testing protocols, and measured outcome variables.
Three studies investigated patients who received TKA surgery, and the other three focused
on patients after ACLR. The most widely used reference system was the optoelectronic
motion capturing system, often not reported in detail, and sometimes complemented with
additional force plates.

Different outcome variables were used for patient evaluation after TKA. Temporospa-
tial parameters of gait were measured (cycle time, stance time, and swing time) by De Vroey
et al. [29] and knee flexion angles by Roberts et al. [20]. For leg swings, joint instability
acceleration-based parameters were measured by Huang et al. [30]. Outcome measures for
the ACLR population included gait analysis in one study [14] and knee loading asymme-
tries with a single limb loading (SLL) task in two other studies [13,31]. Table 2 presents the
baseline characteristics of the included studies.
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Table 2. Baseline characteristics.
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Huang 8 75 16 50
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√ √ √ √

Pratt b 21 57
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Roberts 27 59 18 61
√ √

Sigward 19 74
√ √ √ √

ACLR, anterior cruciate ligament reconstruction; n, number of individuals in a given sample; TKA, total knee arthroplasty.

De Vroey et al. [29] used wearable sensing technology to analyze the temporal parame-
ters of gait in a TKA population. The objective was to investigate the agreement between an
IMU and a camera-based motion capturing system. Sixteen patients included one year after
TKA were asked to perform three gait trials with a self-selected speed along a six-meter
walkway. The sensors were placed at the anteromedial facet of the tibia at the left and right
lower leg, approximately 5 cm below the knee joint line. Inertial measurement sensor data
and optoelectronic camera motion data were collected simultaneously during the gait trials.
Custom-made software was used to identify gait events from the gyroscope data. From
these data, cycle time, stance time, and swing time were derived. The kinematic data from
the camera system were analyzed based on a coordinate-based algorithm. Both sets of
temporal variables were compared by calculating intra-class correlation coefficients (ICCs),
mean errors, and root mean squared errors. De Vroey et al. found very good to excellent
ICC values (0.826–0.972) between the sensor-based and optoelectric motion-based method.
The root mean squared errors between both methods ranged from 0.036 to 0.055. Overall,
all observed variables showed high levels of agreement. The findings of De Vroey et al.
indicated that IMUs can be used in clinical settings to assess temporal gait parameters in
the knee arthroplasty population. However, no studies have been published so far proving
the usage of the sensors in daily clinical practice.

In a study on monitoring knee flexion angles for rehabilitation purposes in a total
knee replacement population, Huang et al. used wearable sensing technology. They
compared the measured range of motion between inertial measurement sensors and the
Cybex® isokinetic dynamometer (Cybex NORM; Lumex, Inc., Ronkonkoma, NY, USA). The
sensor comprised an ATMEGA328 microcontroller, a MPU6050 triaxial accelerometer and
gyroscope module, an Arduino Bluetooth module, a lithium battery (9 V, 650 mAh), and
a smartphone. The smartphone was used to receive signals transmitted by the Bluetooth
module from the accelerometer and gyroscope. The two sensor devices were worn on
the thigh and ankle. Thirty-five subjects were enrolled in the experiments, comprising
16 healthy controls and eight patients post total knee replacement. The testing protocol
of Huang et al. comprised three indices used as metrics to measure knee rehabilitation
progress: number of swings, maximum knee flexion angle, and duration of practice each
time. Each subject wore one sensor device on the right shank, and angular speeds of 25,
60, and 180◦/s were used, while the swing phase was driven by the Cybex®. The system’s
accuracy was calculated based on the difference between the detected angle of the sensors
and the ROM of Cybex. Huang et al. found that the correlation coefficients between the
two measurements at the three angular speeds mentioned above were 0.975, 0.969, and
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0.967, respectively. The results indicated high consistency between the sensor-based system
and the Cybex reference standard. Correlation coefficients for the TKA subjects, under the
same measurement conditions, were calculated to be 0.993, 0.982, and 0.986, again based on
three different angular speeds of 25, 60, and 180◦/s. Again, this implies a high correlation
between the sensor-based system and Cybex. They also found that the average absolute
swing errors for the TKA patients were between 1.65◦ and 3.27◦, resulting in accuracies
between 96.16% and 98.09%, depending on angular speeds, while accuracies decreased
with higher angular speeds of Cybex. Huang et al. concluded that inertial measurement
sensors are comparable with professional equipment and, therefore, can be deployed in a
clinical setting [30].

Roberts et al. attached a single IMU at the level of the tibial tubercle in patients after
TKA and healthy controls. They measured the linear acceleration of the knee joint during
several activities of daily living. A direct tibia-mounted accelerometer was compared with
a rubber skin-mounted accelerometer in a cadaveric study to ensure skin-mounted devices
accuracy. Bland-Altman analysis of acceleration profiles indicated limits of agreement
of −0.600 to 1.252 between the two methods. The healthy controls and the TKA cohort
were analyzed for statistically significant differences regarding their general activity level,
pain for each activity, and instability for each activity. They developed a testing protocol
that included five activities of daily living, which were then evaluated with the IMUs and
compared against self-reported instability levels. Controls and patients with TKA were
found to be comparable regarding general activity scores. Twenty-four out of 38 patients
with TKA reported instability during the exercises, with instability depending significantly
on the activity performed (p = 0.015). Stepping up and down was the most prone to
experiencing instability. Furthermore, this was the only activity in which any patient
reported severe instability. None of the parameters concerning pain or instability were
clinically relevant. Parameters in the y-plane seem most promising, showing extremes in
movement [20].

Pratt et al. used wearable sensing technology following ACLR to detect knee power
deficits. Their objective was to determine the diagnostic accuracy of inertial sensor thigh
angular velocities to detect asymmetrical knee loading. Pratt et al. used two inertial sensors
equipped with triaxial accelerometers, gyroscopes, and magnetometers (manufactured by
Opal brand, APDM Inc., Portland, OR, USA). The sensors were placed bilaterally on the
mid-lateral thighs. Twenty-one individuals following ACLR performed three trials of SLL
tasks on each leg while being recorded with a wearable sensor system. Concurrently, the
subjects were monitored using an optoelectronic motion capturing system with additional
force plates. Pratt et al. calculated between limb ratios for knee power in ACL-reconstructed
and contralateral legs based on motion-capturing data. Furthermore, thigh angular velocity
was extracted from the inertial sensors, and their ratio was used to diagnose asymmetrical
knee loading with receiver operating characteristic curve (ROC) analysis. Asymmetrical
knee loading was defined as knee power deficits exceeding 15%. Thigh angular velocity
symmetry ratio was discriminated between asymmetrical and symmetrical knee power
with high specificity (100%) and sensitivity (81.2%). The study’s findings underlined the
feasibility of thigh angular velocities extracted from inertial sensors for clinical detection of
knee power asymmetries in individuals following ACLR, allowing for clinical quantifica-
tion of dynamic knee loading deficits [13]. Furthermore, the authors aimed to prove that
knee loading deficits can be identified more easily and with less clinical expenditure using
inertial sensor technology. They tried to deduce information about knee moment/knee
power (KMom/KPow) during dynamic tasks based on angular velocity measurements
with inertial sensors in a cohort of post-ACLR patients. ICCs exceeded 0.947 (p < 0.001) for
all variables [31].

Sigward et al. explored knee loading asymmetries in individuals after unilateral ACLR
using sensor technology too. The authors analyzed the relationship between shank angular
velocity and knee extensor moment during a gait trial using an IMU, while validating
against a motion-capturing system with force plates. Sigward et al. used two calibrated
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and synchronized inertial sensors equipped with tri-axial accelerometers, gyroscopes, and
magnetometers manufactured by Mobility Lab software, APDM Inc., Portland, Oregon,
USA. The inertial sensors were placed bilaterally on the lateral shanks. If the IMU position
coincided with that of the MOCAP tracking marker cluster, the IMUs were fixed firmly
on top with adhesive tape. Nineteen individuals were instructed to walk 10 m at a self-
selected speed. Three trials for each limb were collected. The symmetry between the
limbs was calculated using the ratio of peak knee extensor moments of the surgical knee
relative to the non-surgical knee. Three trials were averaged for analysis. Sigward et al.
found no differences between the limbs regarding stance (p = 0.132) and swing (p = 0.840)
times. However, the peak knee extensor moment and peak shank angular velocity in the
ACL-reconstructed knee markedly exceeded those of the contralateral knee (p < 0.001).
The authors found a strong positive correlation between knee extensor moment and shank
angular velocity. Shank angular velocities measured by wearable IMUs can therefore be
used to calculate knee extensor moments, while the in-between limb ratios were identified
as indicators of knee extensor moment deficits. These findings make wearable IMUs
feasible for detecting gait impairment after ACLR. It was concluded that spatiotemporal gait
parameters, such as stance and swing time, in an ACLR population normalize sooner than
knee loading deficits. What is more, the study indicates that observation of gait deviations
by clinicians may not be sufficient to detect rehabilitation progress in subjects following
ACLR. Wearable IMUs can account for this gap in rehabilitation progress detection [14].
The extracted data are presented in Table 3.

Table 3. Data extraction, sensor information, and results.

Sensor Information and
Application

Knee-Joint Measurement
Method

Results

De Vroey (2018)
Gyroscope data: Shank worn ICC = 0.826–0.972
Three gait trials IMUs RMSE = 0.036–0.055

6 m walk; TKA patients

Huang (2020)

Three axial accelerometer and
gyroscope data: Number

of swings,

MPU6050,
ATMEGA328 Measurement error = 1.65◦–3.27◦

ROM knee flex, duration, TKA
patients, and controls Cybex

Pratt (2018a)

Shank gyroscope, maker-based
motion and force plate data:

Sagittal plane peak knee power

Opal APDM,
Qualisis AB,

AMTI

81%, Specificity 100% for
asymmetrical knee loading

absorption, ACLR patients

Pratt (2018b)

Shank gyroscope, knee moments,
knee power (angular velocity):

single limb loading tasks,
ACLR patients

OPAL APDM,
Qualisis

ICCs (>0.947); r = 0.81 for thigh
and r = 0.54 for knee velocity

Roberts (2013)

Tibial tuberositas IMU; joint
acceleration, Jerk: Joint stability,
5 activities on one leg and the

other, TKA patients and controls

Motion Nod,
gyroscope

Differences (p > 0.05) in 22 IMU
parameters between patients

and controls

Sigwards (2016) Shank angular velocity and knee
extensors movement during gait

Opal APDM
gyroscope, Qualisis, AMTI

Peak velocity and knee extensor
movement correlate with r = 0.75

ICC = intraclass correlation, RMSE = root mean square errors, ROM = range of motion.

The risk of bias assessment using the COSMIN Risk of Bias tool is presented in Table 4,
showing, on average, a moderate risk of bias for included studies.
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Table 4. Risk of bias assessment (consensus results).
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4. Discussion

All the analyzed studies used commercially available sensor technology, apart from
Huang et al., who developed a proprietary solution based on Arduino technology [30]. For
data analysis, commercial software was complemented with proprietary solutions, often
based on MATLAB, for data analysis purposes. Findings from the studies indicate that
IMU usage in rehabilitating the knee surgery population provides reliable data compared
to the motion capturing gold standard. Due to various study designs and the resulting
methodological differences, a synthesis of evidence is not possible. In Table 5, additionally
a summary of sensor issues is provided.

Table 5. Sensor summary.

N
u

m
b

e
r

o
f

W
e

a
ra

b
le

S
e

n
so

rs

A
cc

e
le

ro
m

e
te

r

G
y

ro
sc

o
p

e

M
a

g
n

e
to

m
e

te
r

A
d

d
it

io
n

a
l

F
o

rc
e

P
la

tf
o

rm

N
o

t
R

e
p

o
rt

e
d

1
0

0
–

2
0

0
H

z

5
0

–
1

0
0

H
z

C
o

m
m

e
rc

ia
l

S
o

ft
w

a
re

P
ro

p
ri

e
ta

ry
S

o
lu

ti
o

n

N
o

t
D

e
sc

ri
b

e
d

L
e

g

H
ip

N
o

t
D

e
sc

ri
b

e
d

C
o

m
m

e
rc

ia
l

S
e

n
so

r

P
ro

p
ri

e
ta

ry
S

e
n

so
r

De Vroey 2
√ √ √ √

Huang 2
√ √ √ √ √ √

Pratt a 2
√ √ √ √ √ √ √ √ √

Pratt b 4
√ √ √ √ √ √ √ √

Roberts 1
√ √ √ √ √ √ √

Sigward 2
√ √ √ √ √ √ √ √ √

232



Sensors 2021, 21, 8221

Usability: Experience from De Vroey et al. showed that using IMUs drastically
reduces the time needed for data collection and processing. Placement of motion capture
(MOCAP) markers took them, on average, 20 min, while sensor placement took 3 min
only. Data processing from MOCAP markers took, on average, 40 min per subject and
trial. Concurrently, computing gait events from IMU data (with the proposed algorithm)
required another 10 min per subject and trial [29]. Huang et al. found that IMUs were well
usable since they can be worn without spatiotemporal constraints; they can reduce the
frequency of patients needing to return to the hospital for inpatient services and thus save
medical expenses. Furthermore, they provide accuracy in monitoring the rehabilitation
progress. The sensor devices presented in the study can be easily worn on the thigh and
ankle with Velcro and an elastic band, and the number of swings and ROM from each
rehabilitation course can be recorded and tracked by users or potentially shared with other
medical staff [30]. Roberts et al. underlined the advantages of IMU portability and ease
of adaptation to space limitations inherent in clinical follow-up visits after TKA surgery.
Furthermore, IMUs are less expensive than other diagnostic tools, such as gait analysis
systems and fluoroscopy [20]. According to Pratt et al., IMU utilization should be limited.
Although they are less expensive than gold-standard motion capturing systems, they still
require a computer and expertise to operate and analyze the data accordingly, leaving the
need to develop clinician-friendly technology, especially for placement and calibration [13].

Resolving shortcomings in current rehabilitation practice with IMUs: IMUs offer the
potential to extend the existing range of rehabilitation measurements. Knee joint instability
after TKA is one of the leading causes of further surgical intervention. Quantification of
knee joint instability still lacks objectively quantifiable parameters and is evaluated instead
through patient history and physical examination [32]. Roberts et al. identified activities
of daily life that can help quantify self-perceived instability in the TKR population using
a single tibial-worn IMU and supported Khan et al. [33]. Furthermore, according to a
systematic review by Barber-Westin et al., in patients after ACLR, the timing of return to
unrestricted sports activities still lacks objective assessment [34]. General recommendations
are based on the quantification of muscle strength, stability, neuromuscular control, and
general function. Furthermore, there is evidence that, in individuals following ACLR,
unilateral deficits may be masked during double-limb performance activities and therefore
be overseen in conventional clinical assessments. Isolation of the involved limb with
unilateral tasks, such as hopping, should be used to identify deficits in performance [35,36].
Unilateral limb monitoring is hard to accomplish in a clinical context without using MOCAP
technology. A possible solution is presented with the IMU-assisted detection of knee
loading impairment proposed by Sigward et al. The surgical limb can be separately
monitored and, therefore, may offer a new criterion for returning to sporting activities in
the ACLR population.

Influencing factors and confounders: Joint angle calculation based on inertial measure-
ment data for human motion analysis remains challenging. In IMU-based human motion
analysis, the common problem is that the IMU’s local coordinate axes are not aligned
with any physiologically meaningful axis. Within the scope of this review, the decision
about the optimal sensor set and sensor position remains unclear [37]. Data from the
review showed that sensor placement between the studies varied significantly. Some gave
detailed instructions for placement regarding specific anatomical landmarks, while others
just vaguely mentioned the body part to which the sensor was attached to. Sometimes addi-
tional pictures clarify the sensor placement, but reproducibility is not necessarily provided.
Previous studies have shown that the placement of sensors is critical for detecting temporal
gait events [37,38]. DeVroey et al. mounted the sensor on the anteromedial surface of
the tibia to reduce the chance of soft-tissue artifacts. Compared to other studies, where
sensors were mounted to the foot or waist, three authors reported it beneficial for gait event
detection when the sensor is placed on the shank since gyroscopic data from shank-worn
IMUs show a very distinctive pattern. However, single IMUs attached to the pelvis were
shown to miss gait events [29]. Pratt et al. placed IMU sensors on top of MOCAP marker
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clusters, which provided some standardization concerning their placement. They stated
that if their findings are translated to the clinical setting, there will be a need to develop a
placement protocol to reproduce sensor placement without these marker cluster plates [13].
Suggestions regarding sensor placement have been made before. Rueterbories et al. pub-
lished a meta-analysis of sensors and sensor combinations capable of analyzing gait in
ambulatory settings and showed a comprehensive overview of sensor devices at different
body parts [37]. Furthermore, Storm et al. proposed methods that avoid assuming specific
orientations in which the sensors are mounted regarding body segments [38]. To achieve
comparability of results, in future research, the standardization of sensor placement should
be considered carefully.

Testing protocols contained in this review included different activities, such as gait,
ROM measurements, SLL tasks, alongside the performance of various activities of daily
life, and therefore impaired comparability as well. Roberts et al. found their testing
protocol best suited to detecting significant differences between patients and controls in the
sagittal plane since most movement parameters of their tested activities projected to this
plane [20]. Sigward et al., who detected impaired knee loading in the ACLR population,
used between-limb ratios for their assessment—a widely used method for comparing gait
mechanics after surgery. They stated that this is feasible assuming that the non-surgical
limb demonstrates normal gait mechanics, which may not be accurate. Nevertheless, this
provides the best available frame of reference. Furthermore, Sigward et al. noted that gait
mechanics are related to walking velocity and likely influenced by other factors, such as
shoe wear or walking surface, which might provide further potential for standardization of
testing protocols [14]. Testing protocols, population characteristics, and intervention times
differed, leading to a lack of comparability of results, although all the studies induced
higher accuracy of sensing devices than the standard measurement methods.

Accuracy issues were verified by Huang et al., especially the accuracy of the sensor
devices regarding Cybex when detecting lower limb flexion, and they identified potential
reasons for inaccuracies during measurements. Sensor data reception issues arose due
to sensors not being worn tightly enough to the leg and, therefore, slide during swings.
Another reason is the possible inadequacies of the sampling rate. Their sensor device trans-
mitted their measurements with a frequency of 100 Hz to the connected smartphone, which
might induce missed capturing of swing angle and overhead of the smartphone memory
due to the trade-off between sampling rate and overhead of the smartphone memory. As a
second reason, they discussed vibration from the participant’s leg in cases where they tried
to resist their leg being passively swung by the Cybex device. This can induce errors in
sensor devices [30]. De Vroey et al., who assessed the temporal gait parameters in the TKA
population, traced back measurement deviations to the algorithm used to analyze IMU
data. The algorithm showed some variability in detecting gait events compared to actual
kinetic detection, likely a consequence of flexion and extension of the metatarsal-phalangeal
joints [29]. Nevertheless, these errors in timing estimations were small enough not to be
of clinical relevance. Adding to the choice of sensing equipment and placement, different
algorithms exist to extract gait events from kinematic IMU data. While most algorithms
show good accuracy in normal gait, care has to be taken in the gait-impaired population,
where the selection of the appropriate algorithm makes a difference [37]. Bruening et al.
compared different algorithms for detecting gait events from kinematic data. They sug-
gested that algorithm choice depended on whether the foot’s motion in terminal swing
was more horizontal or vertical for foot strike events. They concluded that algorithms
match actual gait events best when selected according to visually distinct gait patterns [39].
Their findings can be applied to routine clinical practice since they identified the most
appropriate algorithm for each specific gait pattern. Nevertheless, within this review, only a
few authors mention their choice of applied algorithm. Huge varieties of IMU gait analysis
algorithms and the lack of consensus for their validation make it difficult for researchers to
assess the algorithms’ reliability for specific use cases [40].
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The following parameters would help to raise acceptance and facilitate IMU imple-
mentation in clinical practice: comparable algorithms, bigger sample sizes for powering the
conclusions, strong methods for bias reduction, such as standardized marker application,
test–retest designs, the inclusion of more testers and different settings in different stages,
and, consequently, reporting Intra Class Correlations and Limits of Agreement.

One of the key problems not solved so far is a valid description and detection of the
most relevant parameters for measurement to collect from IMUs for describing rehabilita-
tion after knee surgery. Most benefits from the IMU data will be provided for describing the
domain “function”. The gold standard for this domain is the use patient-reported outcome
measurements (PROMs) and performance based measures so far, but with few correlation
in the early rehabilitation [41]. According to Bolink (2015), PROMs and performance-based
outcome measures are, for example, only moderately correlated one year after TKA, prob-
ably due to capturing a different dimension of function [42]. As shown in this review,
there is widespread usage of sensors for detecting changes in knee joint rehabilitation. Still,
many of them were only partly evaluated for quality criteria, probably caused by a lack of
consensus on relevant parameters for describing the function of the knee joint and related
rehabilitation progress. It seems obvious that, in clinical practice, sensors have mostly been
used to express existing tests and parameters in an easier or faster way. Bigger advantage
from implementing sensors will probably be given when developing new parameters. It
might be of value to expand the scope of potentially relevant parameters first, highlighting
the value of wearable sensing technology unlike standard performance-based measures
in the past. New parameters such as “whole day knee joint angle movement”, “all day
stairs used”, or “average limb loading while walking” are currently not reported and might
provide higher correlation to patient-reported function and, therefore, broader acceptance
among stakeholders, thereby inducing more explicit quality criteria studies in the field.
This might lead to consensus discussions and the establishment of core domain sets for
this field in addition to existing outcome sets for total knee arthroplasty [43].

5. Limitations

Although the studies included in this review showed a wide variety in their ap-
proaches, test protocols, and study population, some valuable information can be derived
from them. Multiple studies mentioned limited applicability due to the relatively small
sample size [13,31]. Furthermore, Pratt et al. emphasized restricted applicability of results
since their established testing paradigm can only be applied to individuals four to six
months post-surgery who are progressing back to running. Other phases of rehabilitation
remain unexplored. Translation of Pratt’s findings cannot be assumed to be widely trans-
latable to different tasks than SLL, which leaves the need to assess other dynamic tasks,
such as running. Roberts et al. drew limitations regarding the assessment of tibia and
femur motion, respectively, and proposed using two IMUs for better characterization of
the relative motion between the two bones to assess the movement of the knee implant
parts. They stated that these dynamics might differ in patients with bilateral TKA, unlike
those with unilateral one [20]. Meta-analysis was inappropriate because studies were not
similar enough from a methodological and clinical viewpoint. No grading of evidence for
a specific outcome was possible because of the different topics covered in the included
studies. From our point of view, many studies close to the topic had to be excluded, caused
by strict inclusion criteria. Reviews on similar topic especially on new potential parameters
should be performed.

6. Conclusions

The present review shows that IMUs offer sufficient accuracy to replace, combine, and
extend the existing range of rehabilitation devices. IMUs can subsume different measures
for rehabilitation by assessing outcomes that would typically be measured individually,
such as ROM, gait analysis, and detection of asymmetric knee loading, while adding
new rehabilitation hallmarks, such as quantification of instability. IMUs can replace time-
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consuming equipment such as motion-capturing systems and force platforms in the knee
surgery population. Developing clinician-friendly, standardized applications of IMUs
for clinical practice is imperative. However, all the data provided were collected in a
laboratory environment. Furthermore, studies regarding sensing technology utilization in
clinical practice remain lacking. Since this technology provides evidence to benefit patients
and healthcare providers, its translation into clinical rehabilitation practice is imperative.
Some interesting work was done to clarify the diagnostic accuracy of wearable movement
sensors for knee joint rehabilitation. Still, in the current stage, comparable quality criterion
studies are lacking for an evidence summary of potential measurement bias and clear
recommendations for using wearable movement technology in quantifying knee injuries
in clinical settings. Developing a core measurement set for quality criterion studies on
IMUs for medical use might help harmonize research in knee joint rehabilitation. Generally,
within the scope of this review, although there are distinct limitations of sensor usage in
rehabilitating knee surgery populations, the potential of these devices is obvious.
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