155 research outputs found

    Detection of Spine curvature using wireless sensors

    Get PDF
    Ankylosing spondylitis (AS) is a progressive disease of the spine where the spine slowly stiffens and can eventually become completely inflexible. It can be difficult to diagnose in primary care, and thus there is often a 10-year delay in diagnosis. Within this study an intelligent wearable system is designed and developed to detect the displacement of the spine and provide the subject with a continuous posture monitoring and feedback signals when an incorrect posture is detected using accelerometer and gyroscope sensors. This wearable system can be used both to diagnose AS in early stages and to prevent subjects from lower back and neck pain caused by incorrect posture. We outline here the system which detects the curvature of the spine by using Shimmer sensors placed on the back and provides relevant exercises based on the user’s pain records

    Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions

    Get PDF
    Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects

    Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation

    Get PDF
    BACKGROUND: Monitoring body kinematics has fundamental relevance in several biological and technical disciplines. In particular the possibility to exactly know the posture may furnish a main aid in rehabilitation topics. In the present work an innovative and unobtrusive garment able to detect the posture and the movement of the upper limb has been introduced, with particular care to its application in post stroke rehabilitation field by describing the integration of the prototype in a healthcare service. METHODS: This paper deals with the design, the development and implementation of a sensing garment, from the characterization of innovative comfortable and diffuse sensors we used to the methodologies employed to gather information on the posture and movement which derive from the entire garments. Several new algorithms devoted to the signal acquisition, the treatment and posture and gesture reconstruction are introduced and tested. RESULTS: Data obtained by means of the sensing garment are analyzed and compared with the ones recorded using a traditional movement tracking system. CONCLUSION: The main results treated in this work are summarized and remarked. The system was compared with a commercial movement tracking system (a set of electrogoniometers) and it performed the same accuracy in detecting upper limb postures and movements

    New generation of wearable goniometers for motion capture systems

    Get PDF
    Background Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient's home. A new generation of wearable goniometers based on knitted piezoresistive fabric (KPF) technology is presented. Methods KPF single-and double-layer devices were designed and characterized under stretching and bending to work as strain sensors and goniometers. The theoretical working principle and the derived electromechanical model, previously proved for carbon elastomer sensors, were generalized to KPF. The devices were used to correlate angles and piezoresistive fabric behaviour, to highlight the differences in terms of performance between the single layer and the double layer sensors. A fast calibration procedure is also proposed. Results The proposed device was tested both in static and dynamic conditions in comparison with standard electrogoniometers and inertial measurement units respectively. KPF goniometer capabilities in angle detection were experimentally proved and a discussion of the device measurement errors of is provided. The paper concludes with an analysis of sensor accuracy and hysteresis reduction in particular configurations. Conclusions Double layer KPF goniometers showed a promising performance in terms of angle measurements both in quasi-static and dynamic working mode for velocities typical of human movement. A further approach consisting of a combination of multiple sensors to increase accuracy via sensor fusion technique has been presented

    Daily-Life Monitoring of Stroke Survivors Motor Performance: The INTERACTION Sensing System

    Get PDF
    The objective of the INTERACTION Eu project is to develop and validate an unobtrusive and modular system for monitoring daily life activities, physical interactions with the environment and for training upper and lower extremity motor function in stroke subjects. This paper describes the development and preliminary testing of the project sensing platform made of sensing shirt, trousers, gloves and shoes. Modular prototypes were designed and built considering the minimal set of inertial, force and textile sensors that may enable an efficient monitoring of stroke patients. The single sensing elements are described and the results of their preliminary lab-level testing are reported

    A System for Monitoring Stroke Patients in a Home Environment

    Get PDF
    Currently, the changes of functional capacity and performance of stroke patients after returning home from a rehabilitation hospital is unknown for a physician, having no objective information about the intensity and quality of a patient's daily-life activities. Therefore, there is a need to develop and validate an unobtrusive and modular system for objectively monitoring the stroke patient's upper and lower extremity motor function in daily-life activities and in home training. This is the main goal of the European FP7 project named “INTERACTION‿. A complete sensing system is developed, whereby Inertial Measurement Units (IMU), Knitted Piezoresistive Fabric (KPF) goniometers, KPF strain sensors, EMG electrodes and force sensors are integrated into a modular sensor suit designed for stroke patients. In this paper, we describe the systems architecture. Data from the sensors are captured wirelessly and stored in a remote secure database for later access and processing via portal technology. In collaboration with clinicians and engineers, clinical outcome measures were defined and the question of how to present the data on the web portal was addressed. The first implementation of the complete system includes a basic version of all components and is currently being extended to include all sensors within the INTERACTION system

    Towards the development of an EIT-based stretchable sensor for multi-touch industrial human-computer interaction systems

    Get PDF
    In human-computer interaction studies, an interaction is often considered as a kind of information or discrete internal states of an individual that can be transmitted in a loss-free manner from people to computing interfaces (or robotic interfaces) and vice-versa. This project aims to investigate processes capable of communicating and cooperating by adjusting their schedules to match the evolving execution circumstances, in a way that maximise the quality of their joint activities. By enabling human-computer interactions, the process will emerge as a framework based on the concept of expectancy, demand, and need of the human and computer together, for understanding the interplay between people and computers. The idea of this work is to utilise touch feedback from humans as a channel for communication thanks to an artificial sensitive skin made of a thin, flexible, and stretchable material acting as transducer. As a proof of concept, we demonstrate that the first prototype of our artificial sensitive skin can detect surface contacts and show their locations with an image reconstructing the internal electrical conductivity of the sensor

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

    Effect of mechanical preconditioning on the electrical properties of knitted conductive textiles during cyclic loading

    Get PDF
    This paper presents, for the first time, the electrical response of knitted conductive fabrics to a considerable number of cycles of deformation in view of their use as wearable sensors. The changes in the electrical properties of four knitted conductive textiles, made of 20% stainless steel and 80% polyester fibers, were studied during unidirectional elongation in an Instron machine. Two tests sessions of 250 stretch–recovery cycles were conducted for each sample at two elongation rates (9.6 and 12 mm/s) and at three constant currents (1, 3 and 6 mA). The first session assessed the effects of an extended cyclic mechanical loading (preconditioning) on the electrical properties, especially on the electrical stabilization. The second session, which followed after a 5 minute interval under identical conditions, investigated whether the stabilization and repeatability of the electrical features were maintained after rest. The influence of current and elongation rate on the resistance measurements was also analyzed. In particular, the presence of a semiconducting behavior of the stainless steel fibers was proved by means of different test currents. Lastly, the article shows the time-dependence of the fabrics by means of hysteresis graphs and their non-linear behavior thanks to a time–frequency analysis. All knit patterns exhibited interesting changes in electrical properties as a result of mechanical preconditioning and extended use. For instance, the gauge factor, which indicates the sensitivity of the fabric sensor, varied considerably with the number of cycles, being up to 20 times smaller than that measured using low cycle number protocols

    INTERACTION, Training and monitoring of daily-life physical interaction with the environment after stroke

    Get PDF
    The objective of the recently started EU project INTERACTION is to develop an unobtrusive and modular system for monitoring the quality of daily-life activities of stroke subjects involving the upper and lower limbs
    • …
    corecore