779 research outputs found

    Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets

    Get PDF
    Flow structure oscillations and tone generation mechanisms in an underexpanded round jet impinging on a flat plate normally have been investigated using compressible large-eddy simulations. At the exit of a pipe nozzle of diameter D, the jet is characterized by a nozzle pressure ratio of 4.03, an exit Mach number of 1, a fully expanded Mach number of 1.56, and a Reynolds number of 60000. Four distances between the nozzle and the plate are considered. Snapshots of vorticity, density, pressure, and mean velocity flowfields are first presented. The latter results compare well with data of the literature. In three cases, in particular, a Mach disk appears to form just upstream from the plate. The convection velocity of flow structures between the nozzle and the plate, and its dependence on the nozzle-to-plate distance, are then examined. The properties of the jet near pressure fields are subsequently described using Fourier analysis. Tones emerge in the spectra at frequencies consistent with those expected for an aeroacoustic feedback loop between the nozzle and the plate as well as with measurements. Their amplitudes are particularly high in the presence of a near-wall Mach disk. The axisymmetric or helical natures of the jet oscillations at the tone frequencies are determined. The motions of the Mach disk found just upstream from the plate for certain nozzle-to-plate distances are then explored. As noted for the jet oscillations, axially pulsing and helical motions are observed, in agreement with experiments. Finally, the intermittency of the tone intensities is studied. They significantly vary in time, except for the two cases where the near-wall Mach disk has a nearly periodic motion at the dominant tone frequency

    Flow Features near Plate Impinged by Ideally Expanded and Underexpanded Round Jets

    Get PDF
    The properties of the flow near the plate and in the wall jets have been investigated from large-eddy simulation data of round impinging jets. Four jets are underexpanded and four jets are ideally expanded, which allowed examination of the influence of the presence of shock-cell structures. The underexpanded jets are characterized by a fully expanded Mach number of 1.56 and an exit Mach number of 1. The ideally expanded jets have a Mach number of 1.5. The Reynolds number of the eight jets is equal to 6 × 104. The jets impinge normally on a flat plate located from 4.16r0 to 12r0 downstream of the nozzle and generate acoustic tones due to an aeroacoustic feedback mechanism. In this paper, the near pressure and density fields of the jets are characterized using Fourier transform on the nozzle exit plane, the plate, and an azimuthal plane. First, mean and rms radial velocities of the wall jets are examined. The impact of the shock-cell structure on the wall jet is discussed. The pressure spectra on the plate are then shown as a function of the radial coordinate. The tone frequencies are all visible where the jet shear layers impinge the plate, but only some of them emerge in the wall jet created after the impact. For the ideally expanded jets, the temporal organization of the wall jet along the frequencies of the feedback mechanism decreases with the nozzle-to-plate distance, but for the non-ideally expanded jets, this organization is linked to the oscillation of the Mach disk located just upstream of the plate. Consecutively, the amplitude and the phase fields at the tone frequencies are represented on the three planes mentioned earlier. Similar spatial organizations of the turbulent structures are found in the jet shear layers and in the wall jets. Thus, axisymmetric and helical arrangements of the structures in the jet shear layers lead to concentric and spiral distributions of the structures on the plate, respectively. In particular, for one of the underexpanded jets, a spiral shape and concentric rings, associated with two tone frequencies generated simultaneously, are observed on the flat plate in the pressure and density phase fields. Finally, the convection velocity of the turbulent structures at the tone frequencies in the wall jets are evaluated based on phase fields, and the mean convection velocity is computed using cross correlations of radial velocity. The results are in good agreement with those from a recent experimental study of ideally expanded impinging jets

    Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets

    Get PDF
    The aeroacoustic feedback loop establishing in a supersonic round jet impinging on a flat plate normally has been investigated by combining compressible large-eddy simulations and modelling of that loop. At the exit of a straight pipe nozzle of radius r0, the jet is ideally expanded, and has a Mach number of 1.5 and a Reynolds number of 60000. Four distances between the nozzle exit and the flat plate, equal to 6r0, 8r0, 10r0 and 12r0, have been considered. In this way, the variations of the convection velocity of the shear-layer turbulent structures according to the nozzle-to-plate distance are shown. In the spectra obtained inside and outside of the flow near the nozzle, several tones emerge at Strouhal numbers in agreement with measurements in the literature. At these frequencies, by applying Fourier decomposition to the pressure fields, hydrodynamic-acoustic standing waves containing a whole number of cells between the nozzle and the plate and axisymmetric or helical jet oscillations are found. The tone frequencies and the mode numbers inferred from the standing-wave patterns are in line with the classical feedback-loop model, in which the loop is closed by acoustic waves outside the jet. The axisymmetric or helical nature of the jet oscillations at the tone frequencies is also consistent with a wave analysis using a jet vortex-sheet model, providing the allowable frequency ranges for the upstream-propagating acoustic wave modes of the jet. In particular, the tones are located on the part of the dispersion relations of the modes where these waves have phase and group velocities close to the ambient speed of sound. Based on the observation of the pressure fields and on frequency–wavenumber spectra on the jet axis and in the shear layers, such waves are identified inside the present jets, for the first time to the best of our knowledge, for a supersonic jet flow. This study thus suggests that the feedback loop in ideally expanded impinging jets is completed by these waves

    Numerical study of the flow and the near acoustic fields of an underexpanded round free jet generating two screech tones

    Get PDF
    The flow and near acoustic fields of a supersonic round free jet are explored using a compressible large eddy simulation. At the exit of a straight pipe nozzle, the jet is underexpanded, and is characterized by a Nozzle Pressure Ratio of 4.03 and a Temperature Ratio of 1. It has a fully expanded Mach number of 1.56, an exit Mach number of 1, and a Reynolds number of 60000. Flow snapshots, mean flow fields and convection velocity in the jet shear layers are consistent with experimental data and theoretical results. Furthermore, two screech tones are found to emerge in the pressure spectrum calculated close to the nozzle. Using a Fourier decomposition of the pressure fields, the two screech tones are found to be associated with anticlockwise helical oscillation modes. Besides, the frequencies of the screech tones and the associated oscillation modes both agree with theoretical predictions and measurements. Moreover, pressure fields filtered at the screech frequencies reveal the presence of hydrodynamic-acoustic standing waves. In those waves, the regions of highest amplitude in the jet are located in the fifth and the sixth cells of the shock cell structure. The two screech tones therefore seem to be linked to two different loops established between the nozzle and the fifth and sixth shock cells, respectively. In the pressure fields, three other acoustic components, namely the low-frequency mixing noise, the high-frequency mixing noise and the broadband shock-associated noise, are noted. The directivity and frequency of the mixing noise are in line with numerical and experimental studies. A production mechanism of the mixing noise consisting of sudden intrusions of turbulent structures into the potential core is discussed. Then, the broadband shock-associated noise is studied. This noise component is due to the interactions between the turbulent structure in the shear layers and the shocks in the jet. By analyzing the near pressure fields, this noise component is found to be produced mainly in the sixth shock cell. Finally, using the size of this shock cell in the classical theoretical model of this noise component, a good agreement is found with the simulation results

    Flow and sound fields of low-Reynolds-number temporal jets at Mach numbers from 0.3 to 2

    Get PDF
    International audienceFive temporally-developing isothermal round jets at a diameter-based Reynolds number ReD of 3,125 and Mach numbers M of 0.3, 0.6, 0.9, 1.3 and 2 have been computed using direct numerical simulation. The flow and near acoustic fields of the jets are described in detail, and cross-correlations between the two fields are presented in order to identify noise generation mechanisms, and especially that associated with the jet potential-core closing. That closing is found to occur later at a higher Mach number. Apart from that, the jet flow properties, including velocity spectra, are similar, and even nearly identical for M ≤ 1.3. The jets appear to radiate acoustic waves mainly in the downstream direction, with amplitude increasing and wavelength decreasing with the Mach number. More quantitatively, the noise spectra nearly collapse when they are plotted as as a function of kzr0M −1 , where kz is the axial wavenumber and r0 is the initial jet radius, and scaled in amplitude using a M 8 power law. The angle of sound emission is noted to decrease monotonically as time passes, except for the jet at M = 2 for which it is close to the angle expected for Mach waves over a long time period. Finally, significant values of correlations are obtained between the pressure waves propagating downstream in the jet near field and the flow fluctuations on the jet axis near the time of potential-core closing for M ≥ 0.6, with levels strengthening with the Mach number. The correlations calculated from the flow fluctuations at r = r0 are much weaker. For the jet at M = 2, however, they suggest the generation of Mach waves in the mixing layers. These results are comparable to those reported for spatially-developing jets

    The Beam Position System of the CERN Neutrino to Gran Sasso Proton Beam Line

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) experiment uses 400GeV protons extracted from the SPS, which travel along 825 meters of beam line before reaching the CNGS target. This beam line is equipped with 23 BPMs capable of measuring both the horizontal and vertical position of the beam. The final BPM is linked to the target station and due to radiation constraints has been designed to work in air. This contribution will give an overview of the BPMs used in the transfer line. It will also provide a detailed explanation of their logarithmic amplifier based acquisition electronics, which consists of an autotriggered sequencer controlling an integrator, the A/D conversion and the Manchester encoded transmission of the digital data to the surface. At the surface the digital data is acquired using the Digital Acquisition Board (DAB) developed by TRIUMF (Canada) for the LHC BPM system. Results from both laboratory measurements and beam measurements during the 2006 CNGS run will also be presented

    Large-eddy simulations of round jets: effects of initial conditions on self-similarity region

    Get PDF
    Round jets are computed using large-eddy simulations based on low-dissipation schemes to investigate the influence of initial conditions on their self-similarity regions. Three jets with the same initial parameters except for the diameters yielding Reynolds numbers of 11000, 3600 and 1800 are first considered, then two additional jets at Reynolds number 3600 but with modified initial shear-layer thickness and forcing are calculated. The properties of the mean and turbulent flows are compared

    Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation

    Get PDF
    The generation of tones in a supersonic planar jet impinging on a flat plate normally has been investigated by performing compressible large-eddy simulations using low-dissipation and low-dispersion finite differences. At the exit of a straight nozzle of height hh , the jet is ideally expanded, and has a Mach number of 1.28 and a Reynolds number of 50000. Four distances between the nozzle and the plate between 3.94h and 9.1h have been considered. Flow snapshots and mean velocity fields are first presented. The variations of turbulence intensities and of the convection velocity in the jet shear layers are then examined. The properties of the jet near fields are subsequently described, in particular by applying Fourier decomposition to the pressure fields. Several coexisting tones appear to be generated by aeroacoustic feedback loops establishing between the nozzle lip and the flat plate, which also lead to the presence of hydrodynamic–acoustic standing waves. The tone frequencies are consistent with those given by the aeroacoustic feedback model and with measurements for high-aspect-ratio rectangular jets. The jet oscillation modes at these frequencies are characterized, and found to agree with experimental data. Their symmetric or antisymmetric natures are shown to be well predicted by a wave analysis carried out using a vortex sheet model of the jet, providing the allowable frequency ranges for the upstream-propagating acoustic waves. Thus, it is possible, for an ideally expanded impinging planar jet to predict both the frequencies of the tones and the symmetric or antisymmetric nature of the corresponding oscillation modes by combining the aeroacoustic feedback model and the wave analysis

    An investigation of the mechanisms of sound generation in initially laminar subsonic jets using the Goldstein acoustic analogy

    Get PDF
    This version has been accepted for publication.Published in Journal of Fluid Mechanics / Volume 714 / January 2013, pp 24 - 57 Copyright © Cambridge University Press 2013 DOI: http://dx.doi.org/10.1017/jfm.2012.448, Published online: 02 January 201

    Numerical study of screech generation in a planar supersonic jet

    Get PDF
    International audienceThe generation of screech tones in an underexpanded jet is investigated by means of compressible large eddy simulation Í‘LESÍ’. A three-dimensional planar geometry is considered with the aim of studying screech radiation in a simple jet configuration, whose physics nevertheless remains similar to that of large-aspect-ratio rectangular jets encountered in experimental surveys. The jet operates at fully expanded Mach number M j = 1.55, with Reynolds number Re h =6Ï« 10 4. The LES strategy is based on explicit selective filtering with spectral-like resolution, and low-dispersion and low-dissipation numerical algorithms are implemented to allow the direct noise computation of the phenomenon. The numerical results are first set against experimental data to establish the consistency of the simulation. It is shown that the flow development and the shock-cell structure are in agreement with experiments of the literature. Furthermore, the upstream acoustic field exhibit harmonic tones that compare correctly to screech tones observed on rectangular jets in terms of frequency, amplitude, and phase shift on either side of the jet. The extrapolation of the LES near-field data to the far field demonstrates that the radiated noise includes the three characteristic noise sources of supersonic shock-containing jets: screech tones, shock-associated noise, and mixing noise, with frequencies and directivities in agreement with experimental observations. Flow visualization of shock/vortex interactions near the third shock-cell finally provides evidences that screech sound sources can be interpreted using the shock-leakage theory. It is shown in particular that the third compression shock within the jet can leak outside through regions of the shear layer with low level of vorticity and results in the production of upstream-propagating sound waves contributing to screech tone radiation
    • …
    corecore