392 research outputs found

    Towards an automated polishing system: capturing manual polishing operations

    Get PDF
    Advancements in robotic and automation industries have influenced many manual manufacturing operations. With a great level of success, robots have taken over from man in many processes such as part manufacturing, transfer and assembly. However, in other traditionally manual operations such as polishing, automation has only partially been successful, typically limited to parts with simple geometry and low accuracy. Automated polishing systems using robots have been attempted already by a number of industrial and research groups; however, there are few examples of deploying such a system as a part of a routine production process in high-technology industries, such as aerospace. This is due to limitations in flexibility, speed of operation, and inspection processes, when compared with manual polishing processes. The need for automated polishing processes is discussed in this article and the problem with the existing system was explained to be a lack of understanding and the disconnect from manual operations. In collaboration with industrial partners, a mechatronic based data capturing device was developed to accurately capture and analyze operational variables such as force, torque, vibration, polishing pattern, and feed rates. Also reported in this article is a set of experiments carried out to identify the polishing parameters that a manual operator controls through tactile and visual sensing. The captured data is interpreted to the operators’ preferences and polishing methods and should then be included in the design of an automated polishing system. The research results reported in this article are fed back to an ongoing research project on developing an integrated robotic polishing system

    Development of an intelligent automated polishing system

    Get PDF
    In high-value manufacturing sectors, many manufacturing processes are still performed manually, such as polishing operations for small metallic parts. Increasing volume, the need for consistency in quality, and health and safety issues are some of the reasons for industry to search urgently for alternative solutions for manual polishing processes. This article reports the development of an intelligent automated polishing system to achieve consistent surface quality and removal of superficial defects from high-value components, such as those used in aerospace industry. The article reports an innovative method to capture manual polishing processes by skilled operators. The captured polishing parameters are then used to develop and control a robotic polishing system that can adopt various polishing patterns. A brief summary of existing fully and semi-automated polishing systems and their inadequacy for industrial applications are discussed. The need for building automation system based on manual operations are explained and a systematic data capturing process for a specific aerospace-based component is defined. The development of the process capturing device is explained, the data analysis and interpretations are discussed and the migration from manual operation to an automated polishing system is reported. Further detailed information is given in relation with combining data from various sensors and building of an automated system based on learning from manual operations. The research results are also briefly discussed and conclusions are drawn regarding applicability of automated systems for highly skilled manual operations

    Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback

    Full text link
    [EN] This work presents a hybrid position-force control of robots in order to apply surface treatments such as polishing, grinding, finishing, deburring, etc. The robot force control is designed using sliding mode concepts to benefit from robustness. In particular, the sliding mode force task is defined using equality constraints to attain the desired tool pressure on the surface, as well as to keep the tool orientation perpendicular to the surface. In order to deal with sudden changes in material stiffness, which are ultimately transferred to the polishing tool and can produce instability and compromise polishing performance, several adaptive switching gain laws are considered and compared. Moreover, a lower priority tracking controller is defined to follow the desired reference trajectory on the surface being polished. Hence, deviations from the reference trajectory are allowed if such deviations are required to satisfy the constraints mentioned above. Finally, a third-level task is also considered for the case of redundant robots in order to use the remaining degrees of freedom to keep the manipulator close to the home configuration with safety in mind. The main advantages of the method are increased robustness and low computational cost. The applicability and effectiveness of the proposed approach are substantiated by experimental results using a redundant 7R manipulator: the Rethink Robotics Sawyer collaborative robot.This work was supported in part by the Spanish Government under the project DPI2017-87656-C2-1-R and the Generalitat Valenciana under Grants VALi + d APOSTD/2016/044 and BEST/2017/029.Gracia Calandin, LI.; Solanes Galbis, JE.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero Montserrat, J. (2018). Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics. 52:102-118. https://doi.org/10.1016/j.mechatronics.2018.04.008S1021185

    Propuesta de inclusión de esfuerzos en el control de un brazo robot para asegurar el cumplimiento de la rugosidad superficial durante operaciones de lijado en diferentes materiales

    Full text link
    Tesis por compendio[ES] El mecanizado con brazos robots ha sido estudiado aproximadamente desde los años 90, durante este tiempo se han llevado a cabo importantes avances y descubrimientos en cuanto a su campo de aplicación. En general, los robots manipuladores tienen muchos beneficios y ventajas al ser usados en operaciones de mecanizado, tales como, flexibilidad, gran área de trabajo y facilidad de programación, entre otras, frente a las Máquinas Herramientas de Control numérico (MHCN) que necesitan de una gran inversión para trabajar piezas muy grandes o incrementar sus grados de libertad. Como desventajas, frente a las MHCN, los brazos robóticos poseen menor rigidez, lo que combinado con las altas fuerzas producidas en los procesos de mecanizado hace que aparezcan errores de precisión, desviaciones en las trayectorias, vibraciones y, por consiguiente, una mala calidad en las piezas fabricadas. Entre los brazos robots, los brazos colaborativos están en auge debido a su programación intuitiva y a sus medidas de seguridad, que les permiten trabajar en el mismo espacio que los operadores sin que estos corran riesgos. Como desventaja añadida de los robots colaborativos se encuentra la mayor flexibilidad que estos tienen en sus articulaciones, debido a que incluyen reductores del tipo Harmonic drive. El uso de un control de fuerza en procesos de mecanizado con brazos robots permite controlar y corregir en tiempo real las desviaciones generadas por la flexibilidad en las articulaciones del robot. Utilizar este método de control es beneficioso en cualquier brazo robot; sin embargo, el control interno que incluyen los robots colaborativos presenta ventajas que permiten que el control de fuerza pueda ser aplicado de una manera más eficiente. En el presente trabajo se desarrolla una propuesta real para la inclusión del control de esfuerzos en el brazo robot, así como también, se evalúa y cuantifica la capacidad de los robots industriales y colaborativos en tareas de mecanizado. La propuesta plantea cómo mejorar la utilización de un control de fuerza por bucle interior/exterior aplicado en un brazo colaborativo cuando se desconocen los pares reales de los motores del robot, así como otros parámetros internos que los fabricantes no dan a conocer. Este bucle de control interior/exterior ha sido utilizado en aplicaciones de pulido y lijado sobre diferentes materiales. Los resultados indican que el robot colaborativo es factible para realizar tales operaciones de mecanizado. Sus mejores resultados se obtienen cuando se utiliza un bucle de control interno por velocidad y un bucle de control externo de fuerza con algoritmos, Proporcional-Integral-Derivativo o Proporcional más Pre-Alimentación de la Fuerza.[CA] El mecanitzat amb braços robots ha estat estudiat aproximadament des dels anys 90, durant aquest temps s'han dut a terme importants avanços i descobriments en el que fa al seu camp d'aplicació. En general, els robots manipuladors tenen molts beneficis i avantatges al ser usats en operacions de mecanitzat, com ara, flexibilitat, gran àrea de treball i facilitat de programació, entre d'altres, davant de Màquines Eines de Control Numèric (MECN) que necessiten d'una gran inversió per treballar peces molt grans o incrementar els seus graus de llibertat. Com a desavantatges, enfront de les MECN, els braços robòtics posseeixen menor rigidesa, el que combinat amb les altes forces produïdes en els processos de mecanitzat fa que apareguin errors de precisió, desviacions en les trajectòries, vibracions i, per tant, una mala qualitat en les peces fabricades. Entre els braços robots, els braços col·laboratius estan en auge a causa de la seva programació intuïtiva i a les seves mesures de seguretat, que els permeten treballar en el mateix espai que els operadors sense que aquests corrin riscos. Com desavantatge afegida als robots col·laboratius es troba la major flexibilitat que aquests tenen en les seves articulacions, a causa de que inclouen reductors del tipus Harmonic drive. L'ús d'un control de força en processos de mecanitzat amb braços robots permet controlar, i corregir, en temps real les desviacions generades per la flexibilitat en les articulacions del robot. Utilitzar aquest mètode de control és beneficiós en qualsevol braç robot, però, el control intern que inclouen els robots col·laboratius presenta avantatges que permeten que el control de força es puga aplicar d'una manera més eficient. En el present treball es desenvolupa una proposta real per a la inclusió del control d'esforços en el braç robot, així com s'avalua i quantifica la capacitat dels robots industrials i col·laboratius en tasques de mecanitzat. La proposta planteja com millorar la utilització d'un control de força per bucle interior/exterior aplicat en un braç col·laboratiu, quan es desconeixen els parells reals dels motors del robot, així com altres paràmetres interns que els fabricants no donen a conèixer. Aquest bucle de control interior/exterior ha estat utilitzat en aplicacions de polit sobre diferents materials. Els resultats indiquen que el robot col·laboratiu és factible de realitzar aquestes operacions de mecanitzat. Els seus millors resultats s'obtenen quan s'utilitza un bucle de control intern per velocitat i un bucle de control extern de força amb els algoritmes Proporcional-Integral-Derivatiu o Proporcional més Pre-alimentació de la Força.[EN] Machining with robot arms has been studied approximately since the 90s; during this time, important advances and discoveries have been made in its field of application. In general, manipulative robots have many benefits and advantages when they are used in machining operations, such as flexibility, large work area, and ease of programming, among others, compared to Numerical Control Machine Tools (NCMT) that need a great investment to work very large pieces or increase their degrees of freedom. As for disadvantages, compared to NCMT, robotic arms have lower rigidity, which, combined with the high forces produced in machining processes, causes precision errors, path deviations, vibrations, and, consequently, poor quality in the manufactured parts. Among robot arms, collaborative arms are on the rise due to their intuitive programming and safety measures, which allow them to work in the same space without risk for the operators. An added disadvantage of collaborative robots is their flexibility in their joints because they include Harmonic drive type reducers. The use of force control in machining processes with robot arms makes possible to control and correct, in real-time, the deviations generated by the flexibility in the robot's joints. The use of this control method is beneficial for any robot arm. However, the internal control included in collaborative robots has advantages that allow the force control to be applied more efficiently. In this work, a real proposal is developed to include effort control in the robot arm. The capacity of industrial and collaborative robots in machining tasks is evaluated and quantified. The proposal recommends how to improve the use of an inner/outer force control loop applied in a collaborative arm, when the real torques of the robot's motors are unknown and other internal parameters that manufacturers do not disclose. This inner/outer control loop has been used in polishing and sanding applications on different materials. The results indicate that the collaborative robot is feasible to perform such machining operations. Best results are obtained using an internal velocity control loop and external force control loop with Proportional-Integral-Derivative or Proportional plus Feed Forward.The authors are grateful for the financial support of the Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE). This work was funded by the CONICYT PFCHA/DOCTORADO BECAS CHILE/2017 – 72180157.Pérez Ubeda, RA. (2022). Propuesta de inclusión de esfuerzos en el control de un brazo robot para asegurar el cumplimiento de la rugosidad superficial durante operaciones de lijado en diferentes materiales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182000TESISCompendi

    Development of an integrated robotic polishing system

    Get PDF
    This thesis presents research carried out as part of a project undertaken in fulfilment of the requirements of Loughborough University for the award of Philosophical Doctorate. The main focus of this research is to investigate and develop an appropriate level of automation to the existing manual finishing operations of small metallic components to achieve required surface quality and to remove superficial defects. In the manufacturing industries, polishing processes play a vital role in the development of high precision products, to give a desired surface finish, remove defects, break sharp edges, extend the working life cycle, and meet mechanical specification. The polishing operation is generally done at the final stage of the manufacturing process and can represent up to a third of the production time. Despite the growth automated technology in industry, polishing processes are still mainly carried out manually, due to the complexity and constraints of the process. Manual polishing involves a highly qualified worker polishing the workpiece by hand. These processes are very labour intensive, highly skill dependent, costly, error-prone, environmentally hazardous due to abrasive dust, and - in some cases - inefficient with long process times. In addition, the quality of the finishing is dependent on the training, experience, fatigue, physical ability, and expertise of the operator. Therefore, industries are seeking alternative solutions to be implemented within their current processes. These solutions are mainly aimed at replacing the human operator to improve the health and safety of their workforce and improve their competitiveness. Some automated solutions have already been proposed to assist or replace manual polishing processes. These solutions provide limited capabilities for specific processes or components, and a lack of flexibility and dexterity. One of the reasons for their lack of success is identified as neglecting the study and implementing the manual operations. This research initially hypothesised that for an effective development, an automated polishing system should be designed based on the manual polishing operations. Therefore, a successful implementation of an automated polishing system requires a thorough understanding of the polishing process and their operational parameters. This study began by collaborating with an industrial polishing company. The research was focused on polishing complex small components, similar to the parts typically used in the aerospace industry. The high level business processes of the polishing company were capture through several visits to the site. The low level operational parameters and the understanding of the manual operations were also captured through development of a devices that was used by the expert operators. A number of sensors were embedded to the device to facilitate recording the manual operations. For instance, the device captured the force applied by the operator (avg. 10 N) and the cycle time (e.g. 1 pass every 5 sec.). The capture data was then interpreted to manual techniques and polishing approaches that were used in developing a proof-of-concept Integrated Robotic Polishing System (IRPS). The IRPS was tested successfully through several laboratory based experiments by expert operators. The experiment results proved the capability of the proposed system in polishing a variety of part profiles, without pre-existing geometrical information about the parts. One of the main contributions made by this research is to propose a novel approach for automated polishing operations. The development of an integrated robotic polishing system, based on the research findings, uses a set of smart sensors and a force-position-by-increment control algorithm, and transpose the way that skilled workers carry out polishing processes

    Robots in machining

    Get PDF
    Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task

    George C. Marshall Space Flight Center Research and Technology Report 2014

    Get PDF
    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery
    • …
    corecore