15 research outputs found

    Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback

    Full text link
    [EN] This work presents a hybrid position-force control of robots in order to apply surface treatments such as polishing, grinding, finishing, deburring, etc. The robot force control is designed using sliding mode concepts to benefit from robustness. In particular, the sliding mode force task is defined using equality constraints to attain the desired tool pressure on the surface, as well as to keep the tool orientation perpendicular to the surface. In order to deal with sudden changes in material stiffness, which are ultimately transferred to the polishing tool and can produce instability and compromise polishing performance, several adaptive switching gain laws are considered and compared. Moreover, a lower priority tracking controller is defined to follow the desired reference trajectory on the surface being polished. Hence, deviations from the reference trajectory are allowed if such deviations are required to satisfy the constraints mentioned above. Finally, a third-level task is also considered for the case of redundant robots in order to use the remaining degrees of freedom to keep the manipulator close to the home configuration with safety in mind. The main advantages of the method are increased robustness and low computational cost. The applicability and effectiveness of the proposed approach are substantiated by experimental results using a redundant 7R manipulator: the Rethink Robotics Sawyer collaborative robot.This work was supported in part by the Spanish Government under the project DPI2017-87656-C2-1-R and the Generalitat Valenciana under Grants VALi + d APOSTD/2016/044 and BEST/2017/029.Gracia Calandin, LI.; Solanes Galbis, JE.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero Montserrat, J. (2018). Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics. 52:102-118. https://doi.org/10.1016/j.mechatronics.2018.04.008S1021185

    Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback

    Get PDF
    There are some industrial tasks that are still mainly performed manually by human workers due to their complexity, which is the case of surface treatment operations (such as sanding, deburring, finishing, grinding, polishing, etc.) used to repair defects. This work develops an advanced teleoperation and control system for industrial robots in order to assist the human operator to perform the mentioned tasks. On the one hand, the controlled robotic system provides strength and accuracy, holding the tool, keeping the right tool orientation and guaranteeing a smooth approach to the workpiece. On the other hand, the advanced teleoperation provides security and comfort to the user when performing the task. In particular, the proposed teleoperation uses augmented virtuality (i.e., a virtual world that includes non-modeled real-world data) and haptic feedback to provide the user an immersive virtual experience when remotely teleoperating the tool of the robot system to treat arbitrary regions of the workpiece surface. The method is illustrated with a car body surface treatment operation, although it can be easily extended to other surface treatment applications or even to other industrial tasks where the human operator may benefit from robotic assistance. The effectiveness of the proposed approach is shown with several experiments using a 6R robotic arm. Moreover, a comparison of the performance obtained manually by an expert and that obtained with the proposed method has also been conducted in order to show the suitability of the proposed approach

    GENIS Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F96B455+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman

    Design of an Experimental Set-Up to Study the Behavior of a Flexible Surgical Instrument Inside an Endoscope

    Get PDF
    The success of flexible instruments in surgery requires high motion and force fidelity and controllability of the tip. However, the friction and the limited stiffness of such instruments limit the motion and force transmission of the instrument. In a previous study, we developed a flexible multibody model of a surgical instrument inside an endoscope in order to study the effect of the friction, bending and rotational stiffness of the instrument and clearance on the motion hysteresis and the force transmission. In this paper, we present the design and evaluation of an experimental setup for the validation of the flexible multibody model and the characterization of the instruments. A modular design was conceived based on three key functionalities: the actuation from the proximal end, the displacement measurement of the distal end, and the measurement of the interaction force. The exactly constrained actuation module achieves independent translation and rotation of the proximal end. The axial displacement and the rotation of the distal end are measured contactless via a specifically designed air bearing guided cam through laser displacement sensors. The errors in the static measurement are 15 μm in translation and 0.15 deg in rotation. Six 1-DOF load cell modules using flexures measure the interaction forces and moments with an error of 0.8% and 2.5%, respectively. The achieved specifications allow for the measurement of the characteristic behavior of the instrument inside a curved rigid tube and the validation of the flexible multibody model
    corecore