174 research outputs found

    Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization

    Get PDF
    Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to propose a new methodology for extracting spatio-temporal traffic patterns, ultimately for modeling large-scale traffic dynamics, and long-term traffic forecasting. We attack this issue by utilizing Locality-Preserving Non-negative Matrix Factorization (LPNMF) to derive low-dimensional representation of network-level traffic states. Clustering is performed on the compact LPNMF projections to unveil typical spatial patterns and temporal dynamics of network-level traffic states. We have tested the proposed method on simulated traffic data generated for a large-scale road network, and reported experimental results validate the ability of our approach for extracting meaningful large-scale space-time traffic patterns. Furthermore, the derived clustering results provide an intuitive understanding of spatial-temporal characteristics of traffic flows in the large-scale network, and a basis for potential long-term forecasting.Comment: IET Intelligent Transport Systems (2013

    Sustaining Glasgow's Urban Networks: the Link Communities of Complex Urban Systems

    Get PDF
    As cities grow in population size and became more crowded (UN DESA, 2018), the main future challenges around the world will remain to be accommodating the growing urban population while drastically reducing environmental pressure. Contemporary urban agglomerations (large or small) constantly impose burden on the natural environment by conveying ecosystem services to close and distant places, through coupled human nature [infrastructure] systems (CHANS). Tobler’s first law in geography (1970) that states that “everything is related to everything else, but near things are more related than distant things” is now challenged by globalization. When this law was first established, the hypothesis referred to geological processes (Campbell and Shin, 2012, p.194) that were predominantly observed in pre-globalized economy, where freight was costly and mainly localized (Zhang et al., 2018). With the recent advances and modernisation made in transport technologies, most of them in the sea and air transportation (Zhang et al., 2018) and the growth of cities in population, natural resources and bi-products now travel great distances to infiltrate cities (Neuman, 2006) and satisfy human demands. Technical modernisation and the global hyperconnectivity of human interactions and trading, in the last thirty years alone resulted with staggering 94 per cent growth of resource extraction and consumption (Giljum et al., 2015). Local geographies (Kennedy, Cuddihy and Engel-Yan, 2007) will remain affected by global urbanisation (Giljum et al., 2015), and as a corollary, the operational inefficiencies of their local infrastructure networks, will contribute even more to the issues of environmental unsustainability on a global scale. Another challenge for future city-regions is the equity of public infrastructure services and policy creation that promote the same (Neuman and Hull, 2009). Public infrastructure services refer to services provisioned by networked infrastructure, which are subject to both public obligation and market rules. Therefore, their accessibility to all citizens needs to be safeguarded. The disparity of growth between networked infrastructure and socio-economic dynamics affects the sustainable assimilation and equal access to infrastructure in various districts in cities, rendering it as a privilege. Yet, the empirical evidence of whether the place of residence acts as a disadvantage to public service access and use, remains rather scarce (Clifton et al., 2016). The European Union recognized (EU, 2011) the issue of equality in accessibility (i.e. equity) critical for territorial cohesion and sustainable development across districts, municipalities and regions with diverse economic performance. Territorial cohesion, formally incorporated into the Treaty of Lisbon, now steers the policy frameworks of territorial development within the Union. Subsequently, the European Union developed a policy paradigm guided by equal access (Clifton et al., 2016) to public infrastructure services, considering their accessibility as instrumental aspect in achieving territorial cohesion across and within its member states. A corollary of increasing the equity to public infrastructure services among growing global population is the potential increase in environmental pressure they can impose, especially if this pressure is not decentralised and surges at unsustainable rate (Neuman, 2006). This danger varies across countries and continents, and is directly linked to the increase of urban population due to; [1] improved quality of life and increased life expectancy and/or [2] urban in-migration of rural population and/or [3] global political or economic immigration. These three rising urban trends demand new approaches to reimagine planning and design practices that foster infrastructure equity, whilst delivering environmental justice. Therefore, this research explores in depth the nature of growth of networked infrastructure (Graham and Marvin, 2001) as a complex system and its disparity from the socio-economic growth (or decline) of Glasgow and Clyde Valley city-region. The results of this research gain new understanding in the potential of using emerging tools from network science for developing optimization strategy that supports more cecentralized, efficient, fair and (as an outcome) sustainable enlargement of urban infrastructure, to accommodate new and empower current residents of the city. Applying the novel link clustering community detection algorithm (Ahn et al., 2010) in this thesis I have presented the potential for better understanding the complexity behind the urban system of networked infrastructure, through discovering their overlapping communities. As I will show in the literature review (Chapter 2), the long standing tradition of centralised planning practice relying on zoning and infiltrating infrastructure, left us with urban settlements which are failing to respond to the environmental pressure and the socio-economic inequalities. Building on the myriad of knowledge from planners, geographers, sociologists and computer scientists, I developed a new element (i.e. link communities) within the theory of urban studies that defines cities as complex systems. After, I applied a method borrowed from the study of complex networks to unpack their basic elements. Knowing the link (i.e. functional, or overlapping) communities of metropolitan Glasgow enabled me to evaluate the current level of communities interconnectedness and reveal the gaps as well as the potentials for improving the studied system’s performance. The complex urban system in metropolitan Glasgow was represented by its networked infrastructure, which essentially was a system of distinct sub-systems, one of them mapped by a physical and the other one by a social graph. The conceptual framework for this methodological approach was formalised from the extensively reviewed literature and methods utilising network science tools to detect community structure in complex networks. The literature review led to constructing a hypothesis claiming that the efficiency of the physical network’s topology is achieved through optimizing the number of nodes with high betweenness centrality, while the efficiency of the logical network’s topology is achieved by optimizing the number of links with high edge betweenness. The conclusion from the literature review presented through the discourse on to the primal problem in 7.4.1, led to modelling the two network topologies as separate graphs. The bipartite graph of their primal syntax was mirrored to be symmetrical and converted to dual. From the dual syntax I measured the complete accessibility (i.e. betweenness centrality) of the entire area and not only of the streets. Betweenness centrality of a node measures the number of shortest paths that pass through the node connecting pairs of nodes. The betweenness centrality is same as the integration of streets in space syntax, where the streets are analysed in their dual syntax representation. Street integration is the number of intersections the street shares with other streets and a high value means high accessibility. Edges with high betweenness are shared between strong communities. Based on the theoretical underpinnings of the network’s modularity and community structure analysed herein, it can be concluded that a complex network that is both robust and efficient (and in urban planning terminology ‘sustainable’) is consisted of numerous strong communities connected with each other by optimal number of links with high edge betweenness. To get this insight, the study detected the edge cut-set and vertex cut-set of the complex network. The outcome was a statistical model developed in the open source software R (Ihaka and Gentleman, 1996). The model empirical detects the network’s overlapping communities, determining the current sustainability of its physical and logical topologies. Initially, an assumption was that the number of communities within the infrastructure (physical) network layer were different from the one in the logical. They were detected using the Louvain method that performs graph partitioning on the hierarchical streets structure. Further, the number of communities in the relational network layer (i.e. accessibility to locations) was detected based on the OD accessibility matrix established from the functional dependency between the household locations and predefined points of interest. The communities from the graph of the ‘relational layer' were discovered with the single-link hierarchical clustering algorithm. The number of communities observed in the physical and the logical topologies of the eight shires significantly deviated

    Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization

    No full text
    International audienceIn this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the typical temporal patterns of the global traffic states and achieve long-term prediction of the large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint task using regularized Non-negative Tensor Factorization, which has been shown to be a useful analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data analysis method is shown on experiments using simulated realistic traffic data

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    • 

    corecore