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Abstract 

Statistical traffic data analysis is a hot topic in traffic management and control. In this 

field, current research progresses focus on analyzing traffic flows of individual links 

or local regions in a transportation network. Less attention are paid to the global view 

of traffic states over the entire network, which is important for modeling large-scale 

traffic scenes. Our aim is precisely to propose a new methodology for extracting 

spatio-temporal traffic patterns, ultimately for modeling large-scale traffic dynamics, 

and long-term traffic forecasting. We attack this issue by utilizing Locality-Preserving 

Non-negative Matrix Factorization (LPNMF) to derive low-dimensional representation 

of network-level traffic states. Clustering is performed on the compact LPNMF 

projections to unveil typical spatial patterns and temporal dynamics of network-level 

traffic states. We have tested the proposed method on simulated traffic data 

generated for a large-scale road network, and reported experimental results validate 

the ability of our approach for extracting meaningful large-scale space-time traffic 

patterns. Furthermore, the derived clustering results provide an intuitive 

understanding of spatial-temporal characteristics of traffic flows in the large-scale 

network, and a basis for potential long-term forecasting. 

Keywords: LPNMF, Statistical Analysis, Network-level Traffic State 
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1. Introduction 

Most traffic information systems make use of floating-car data collected from 

distributed probing vehicles [1][2][3] as a major data feed for quantitative traffic state 

evaluation. Acquired floating-car data are aggregated over small time periods (5-15 

mn) to estimate traveling time of vehicles, in order to identify traffic states 

(congestion or free-flowing) for each link. For urban transportation network of decent 

scale, the traffic management department processes real-time traffic information from 

thousands of links simultaneously, which is an overwhelming task. Therefore, 

automatic analysis of traffic information, e.g. unveiling characteristics of traffic flow 

variations [4][5][6][7][8] is necessary for efficient management strategies and 

adjusting demands of traffic sources.  

Most published works on traffic data analysis focus on modeling temporal dynamics 

for individual links (either in arterial networks or highways) using model-driven 

[9][10][11][12][13] or data-driven methods [14][15][16][17][18][19][20][21][22][23][24]. 

The model-driven methods, like Cellular Automata [12] and other underlying physical 

models [9][10][11][13], are usually equipped with parameters that are calibrated with 

structural assumptions to simulate temporal evolution of traffic states.  Excellent and 

as they are for modeling free way or arterial links, the model-driven methods present 

less efficiency in modeling urban traffics. The velocity flow field of urban 

transportation is easily subject to the fluctuations induced by intersections of links, 

traffic signals at the crossings and so on. These fluctuations lead to spatio-temporal 

traffic events. It is thus difficult to find a local stationary regime for the velocity using 

the physical models. In contrast, data driven approaches describe statistical 

dependencies using the block-box machine learning methodologies. They are more 

popular due to relaxation of prior assumptions during modeling traffic dynamics. 

Kalman filter [25] and ARMA (Autoregressive Moving Average) [26], originated from 
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state space theory, are used to predict temporal variations of traffic flows 

[14][15][16][17][18]. It is an extension of these linear models from sequential signal 

processing to traffic domain. Efficient as they are for short-term temporal prediction, 

they can not track nonlinear fluctuations of traffic flows. In [19][20][21][22], neural 

networks [27] and hybrid non-linear dynamic systems are used to approximate short-

term non-linear variations of traffic states. Due to the intrinsic multiple-input and 

multiple-output (MIMO) structures, neural networks can integrate spatial-temporal 

correlations between local links into a computational framework. In [23][24], spatial 

correlations between local links are considered in Markov Random Field [28] and 

Multi-Agent System [29] based traffic models. These inspiring works concatenate 

global structural information of transportation networks to improve descriptive power 

of traffic flow models.  

Extending both the model-driven and data-driven methods to large-scale urban 

network, we need to tackle curse-of-dimensionality caused by enlarged scale of the 

modeling target. Increasingly more parameters are needed to capture details about 

temporal dynamics of thousands of links, which increases intrinsic complexity of the 

built traffic model. Therefore, it is necessary to introduce regularization terms, 

providing prior knowledge about global configuration of traffic states over the entire 

network and serve as consistency constraints of the spatio-temporal congestion 

structure, e.g. co-occurrence of congestion in the network during specific time 

intervals. Furthermore, local regions with independent traffic flow behaviors can be 

treated separately in a divide-and-conquer manner. Therefore, mining the spatial 

configuration patterns of congestion and large-scale macroscopic traffic dynamics 

over the entire network is highly informative for constructing the computationally 

tractable models to describe local fringes of large-scale traffic scenes. Such 

macroscopic view of traffic flow configurations can be also used to identify bottleneck 

of transportation networks, in order to improve traffic management strategies. 

Besides, drivers can make use of the global traffic state information to optimize their 
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traveling plan ever before they leave their own garage. Nevertheless, little progress 

has been reported on analyzing global congestion configurations of large networks. 

We attack this issue by performing clustering analysis of traffic configurations over 

the entire large-scale network simultaneously. We define the network-level traffic 

state as a multi-dimensional vector containing traffic states of all local links. A matrix 

factorization based dimension reduction method named as Locality-Preserving Non-

negative Matrix Factorization (LPNMF) [39], is adopted to derive a compact 

representation of high-dimensional network-level traffic states. K-means clustering 

[48] performed on the derived compact LPNMF representation provides intuitive 

understanding of typical spatial configuration patterns of global traffic states and 

large-scale traffic dynamics of network-level traffic states contained in the data. The 

flowchart of this work is illustrated in Figure 1.  

 

              Figure 1. The flow chart of the proposed clustering methodology 

This article is organized as follows. Section 2 introduces LPNMF employed in the 

analysis. Section 3 presents the simulated traffic data of a large-scale urban network, 

used as data source in the following analysis. In Section 4, we illustrate detailed 

clustering results of spatial configuration patterns obtained through the LPNMF 

projection. Based on the LPNMF based representation, Section 5 further performs a 

clustering analysis on temporal behaviors of network-level traffic states. Section 6 

draws some conclusions and discusses our future work. 

 

2. Traffic data mining with Locality-Preserving Non-negative 

Matrix Factorization 
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2.1. Basic scheme of Non-negative Matrix Factorization (NMF) 

LPNMF is an extension of basic NMF [30][31][32][33] by introducing constraints on 

topological structures of the derived projection subspace. In this section, we 

introduce basic principles of extracting a flexible representation from original 

network-level traffic states using the NMF-like scheme. NMF is a particular matrix 

factorization algorithm, which is in the same family of techniques as the well-known 

PCA (Principle Component Analysis) [34]. As mentioned in Section 1, i-th entry of a 

network-level traffic state corresponds to the traffic state on i-th link of the network. In 

urban traffic sequences, the number of links in any network of decent scale is often 

over one thousand. Thus, the network-level traffic state has a rather dense data 

structure. Assuming m samples of n-dimensional network-level states are stored into 

the column space of a  n ! mmatrix X , NMF factorizes X  as a product of a n ! s 

non-negative loading matrix M and a s ! m non-negative scoring matrix V, in order to 

minimize the Frobenius norm [35] of the reconstruction error between X and the 

product of M and V: 

                                            (M,V ) = argmin
M !0,V !0

X "MV
F
                                           (1) 

Each column of V is the NMF projection of the corresponding network-level traffic 

states. s is the dimensionality of the NMF projection subspace that is spanned by 

columns of M. Normally, s is set to be much less than the row length of X, thus V 

forms a low-dimensional representation of network-level traffic states. The specificity 

of NMF is the non-negativity constraint on M and V. Each network-level traffic state 

X j !R
n

 is approximated by an additive linear superposition of the column space of 

M in NMF [31][32] as in Eq.2: 

                                                      X j = M i

i=1

s

! Vi, j                                                      (2) 

where X jand  M
i
is the j-th column of X and the i-th column of M respectively.Vi, j  is 

the element located at the j-th column and i-th row of V. Treating columns of M as the 
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learned base for reconstructing the network-level traffic states, they represent typical 

structural patterns of traffic configurations. Vi, j  represents to which degree the j-th 

network-level traffic state vector is associated with the spatial configuration pattern of 

local traffic states represented by M
i
. For example, if M

i
 can better represent the j-

th network-level traffic state, Vi, jwill take the largest value in the j-th column of V [36]. 

The row-wise average 
1

m
Vi, j

j=1

m

! evaluates the importance of the corresponding NMF 

basis vectors M
i
 in representing the spatial congestion configuration. In this sense, 

the additive combination shown in Eq.2 leads to a part-based decomposition of the 

network-level traffic states. Localized groups of entries in each basis vector M
i
 with 

distinctively large magnitudes indicate typical patterns or important components of 

the original data representation. Benefited from the property, NMF is usually used for 

extracting semantic components of objects from images [30][32] and latent topics 

from text documents [36][39]. Motivated by the sounding properties of NMF, we use it 

rather than PCA to investigate spatial patterns and dynamic properties of network-

level traffic states. 

An iterative procedure, named as MU (Multiplicative Update) [30][33], is used to 

solve NMF optimization. In each iteration of MU, either of M or V is fixed alternatively, 

the other one is then updated by solving a non-negativity constrained least square 

problem based on KKT theorem [30][31]. Given the dimensionality of NMF projection 

as s, each iteration of MU has a computation cost in O(nsm) . As reported in [30], MU 

converges to the optimum solution with definite iterations. In our work, MU generally 

takes 600 iterations before its convergence, much less than the number of samples 

contained in the data matrix. Therefore, MU has better computational efficiency than 

SVD in our case. With finer tuning of matrix multiplication using Strassen’s algorithm 

or Coppersmith-Winograd approach [30] [33], computational efficiency of MU can be 

improved in a further step.    
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For clustering analysis, we want that geometrical structure of the projection space is 

consistent with the intrinsic characteristics of the traffic data. In particular, we need 

that projections of network-level traffic states are close to each other, if they are 

similar in the original high-dimensional space. The consistence of geometrical 

structures (distance measures between data points) is of utter importance for 

clustering analysis and dynamic modeling [37][38]. Any artifacts introduced into 

distance measures in the projection space could change cluster assignments or 

temporal dynamic patterns. Motivated by this idea, we propose to use a regularized 

NMF [39][40] to derive the representation of network-level traffic states, named as 

LPNMF. It aims to minimize the following objective function O, as shown in Eq.3: 

                                              O = X !MV
F

2
+ "Tr(VLV

T
)                                      (3) 

                                                            L = D !W                                                      (4) 

                                                           Di,i = W i, j

j

!                                                    (5)   

where Tr is the trace of a matrix and !  is the regularization parameter. The first term 

is the Frobenius reconstruction error as illustrated in Eq.1, while the second one is 

the structural regularization of NMF projections. In this term, L is called Graph 

Laplacian [41][42] as defined in Eq.4. In the matrix W, the element W i, j  located at i-

th row and j-th column, is the pair-wise similarity measure matrix between the i-th 

and j-th network-level traffic state vectors, corresponding to the i-th and j-th column 

of X. According to Eq.5, D is a diagonal matrix whose entries are column sums of W. 

Graph Laplacian originates from spectral graph theory [43][44][45]. By adding the 

Graph Laplacian based constraints, the obtained low-dimensional representation V is 

calibrated to have similar geometrical structures as the original data X without 
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increasing further computation cost. Based on this property, we can unveil the 

characteristics of global traffic states more efficiently in the low-dimensional manifold 

V without loss of intrinsic data distribution information.  

-  

To perform LPNMF, we need to define a similarity measure between network-level 

traffic states that evaluates differences between spatial configurations of local traffic 

states. The traffic state of one link is usually closely correlated with its up-stream or 

downstream nearest neighbors with the same orientation of traffic flows. For 

example, the links ui
j
 and d

i

m
 are upstream and down-steam nearest neighbors of 

the link i respectively. Assuming the link i fell into heavy traffic congestion, the links 

ui
j
 and d

i

m
  are more likely to be congested than those far from the link i. Motivated 

by the property, we propose a weighted fusion scheme among traffic states of 

geometrical neighborhoods to derive the similarity measure. We firstly calculate link-

wise differences of traffic states between corresponding links. For each link i, we 

then obtain a weighted sum of the link-wise difference values with respect to the link i 

and its neighbors, which is defined to be local variation v
i
 of traffic states around the 

current link, as denoted in Eq.6: 

                                         v i = w j

u

j

! a(ui
j
) + wm

d

m

! a(di
m
) + w

i
a(i)                               (6) 

a  is the link-wise difference of traffic states between the corresponding link. w j

u
, w

m

d
 

and w
i
are the weights respectively attached to up-stream neighbors, downstream 

neighbors and the current link i. After that, we map {v
i
} into [0,1] using a Gaussian 

kernel in Eq.7 as the similarity measure between two network-level traffic states: 

                                                           S = e
!

v
i

i

"

2#
2

                                                       (7) 

To normalize range of the weighted sum, the sum of all weights is required to be 1. 
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The weight w
i
 corresponding to the link i should be the largest one. Weights of the 

neighboring links can be designed to be proportional to degrees of traffic state 

correlation between one specific neighboring link and the current link i. In this article, 

all neighboring links are evaluated with the same weight value. By performing 

weighted fusion of local neighborhoods in the network, the derived similarity measure 

not only represents traffic state variations between corresponding links but also 

indicates the spatial correlations between local neighborhoods. We feed this 

similarity measure into the matrix W in Eq.4 and derive the regularized low-

dimensional representation of the network-level traffic states. 

 

3. Metropolis simulation and IAURIF database 

3.1 Metropolis traffic simulation software 

The benchmark IAURIF database used to verify the validity of the proposed LPNMF 

based method is generated by simulating real-traffic sequences of a large-scale 

traffic network using Metropolis [46][47]. Metropolis is a planning software designed 

to model urban transportation systems. It allows the user to study impacts of 

transportation management policies for metropolitan areas and their fringes in a time-

dependent framework. Metropolis simulates commuters’ traveling behaviors and 

congestion in urban areas. The core of the simulation system is a dynamic simulator 

that integrates joint commuters’ departure time and their choices of routes in the 

transportation network [46]. During simulation of traffic sequences, each commuter is 

characterized by specific parameter values individually [46][47]. At any moment, 

locations of all commuters are known. Given traveling plans in Origin-Destination (O-

D) matrix, commuters choose the shortest path dynamically from their current 

locations to destination. Traveling time of each commuter on a specific link is 

estimated based on queuing theory, by minimizing a cost function that achieves 

trade-off between arriving close to the desired arrival time to incur congestion and 
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arriving early/late compared with the desired arrival time to avoid congestion [46]. 

Congestion in the network is modeled at a macroscopic level. The congestion laws 

deciding travel delays of each link depend on the setting of incoming traffic flow 

during a time period and average rate of occupancy [46][47]. To launch simulation, 

METROPOLIS requires the geometrical structures of the network with static 

congestion laws and the O-D matrix of all commuters as static simulation settings. By 

calibrating them, it is easy to introduce traffic events into the network, e.g. congestion 

of specific spatio-temporal structures.  

 

3.2 Settings of IAURIF database  

The network that we focus in IAURIF database covers totally 13627 links in Paris and 

its suburb region, as shown in Figure 2(a). There are totally 146 simulated traffic 

sequences in the data set. Each simulated traffic sequence covers 8 hours of traffic 

data observations, involving congestion in peak hour. Total 48 time sampling steps 

within each simulation divide the whole 8 hours into 15-minute bins over which the 

network traffic flows are aggregated. To represent local traffic states, we use traffic 

index [46][47] in Eq.8: 

                                                           x pq =
!tp

0

!tpq
"[0,1]                                            (8) 

The denominator is the observed traveling time of link p at the time interval q. It is 

calculated by averaging all observed traveling time of commuters on the link p within 

the specific time interval. The numerator is the minimum traveling time among all 

commuters on this link within the given time interval. According to Eq.8, the traffic 

index belongs to [0,1]. As the value of the traffic index decreases, the corresponding 

link becomes more congested. We store the traffic index of each link at each time 

sampling step in matrix X containing 13627 rows and 7008 columns. Each column is 

the network-level traffic state observed at the same time interval, represented as a 

13627 dimensional vector. 
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The simulated traffic sequences involve three different configurations of O-D matrix 

of all 3000 commuters in the network. They start their travel from outskirts of Paris 

into the central area within 8 hours in each simulation. With this setting, we aim to 

describe traffic behaviors during morning peak hour of the Paris transportation 

network. Different configurations of O-D matrix result in variations of global 

congestion level and different spatial distribution of congestion during peak hour. In 

the first setting, traffic demands are distributed relatively evenly in the outskirt area 

near the central Paris, leading to light isotropic congestion inside and around the 

central Paris. For the second case, we set more travel plans from the northern 

outskirt area to the central Paris, which produces local congestion patterns in both 

the northern outskirt and central region. Furthermore, we add random variance to the 

total amount of travel plans contained in the O-D matrix, covering both globally light 

and heavy congestion sharing the specific spatial congestion patterns in the network. 

In the third case, we increase travel paths inside the central and northern area to 

cause extremely heavy traffic burden in the corresponding areas. As a result, the 

derived traffic sequences suffer from global congestion ever since the beginning of 

simulation. They are used to simulate occurrence of extreme accidents in the 

network. We name the three settings as “Isotropic Traffic Demand” (ITD), 

“Anisotropic Traffic Demand” (ATD) and “Extreme Traffic Demand” (ETD). Following 

the three settings, we generate 37, 91, 18 simulations respectively.  
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Figure 2. (a) Traffic network of Paris and suburb regions; (b) A three-views diagram of 

network-level traffic states in 3 dimensional PCA space; (c) Three typical trajectories 
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corresponding to the three settings of traffic demands   

 

To visualize distribution of the network-level traffic states, we project all 13627 

dimensional vectors into 3 dimensional PCA space, as shown in three different 

viewpoints in Figure 2(b). In our work, figures illustrating data distribution and 

clustering results in the PCA space, as Figure 2(b), 2(c), Figure 4, Figure 6 and 

Figure 8, the three axes correspond to the top three principal components that keep 

most variances of the original data. The observations of the global free flowing states 

are distributed within a small region compactly. In contrast, those of medium or 

severe congestion are distributed sparsely and biased from the region of the free 

flowing state. Spatial configurations of local traffic states keep the same if the whole 

network is global free flowing. On the contrary, congestion occurred at different parts 

of the network changes the spatial configurations in different ways, increasing 

variations of global traffic patterns. In Figure 2(c), we link network-level traffic states 

of the same simulated sequences following their temporal orders. The resultant 

trajectory represents temporal evolution of network-level traffic states. Different 

markers on trajectories are used to indicate different traffic demand settings. In each 

trajectory, color legends are used to indicate successive time intervals. The typical 

trajectories of the ITD and ATD setting have distinctively different orientations in the 

PCA space, consistent with difference of spatial congestion patterns. All trajectories 

start from global free flowing state, as we initialize all simulations with global free 

flowing state. Trajectories of the ITD and ATD settings converge to the free flowing 

state, indicating the network restores its fluidity after peak hour. In contrast, the ETD 

setting leads to much server congestion in the network, with some links congested 

even at the end of simulations. Thus the corresponding trajectory is quite different 

from the other two, and converges to the area located far from the free flowing state. 

Our clustering analysis involves two subjects. Firstly, we perform clustering on 

network-level traffic states, in order to unveil typical spatial configurations of network-
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level traffic states, as described in Section 4. After that, we adopt clustering on 

temporal trajectories of network-level traffic states in Section 5, based on which we 

could study large-scale traffic dynamics. 

4. Spatial configurations of network-level traffic states 

 

 

            Figure 3 Frobenius norm based reconstruction errors of different s  

In our work, each LPNMF projection is considered as s dimensional signature feature 

of global traffic configuration. To choose proper dimensionality of LPNMF projection 

for clustering, we evaluate the Frobenius norm based reconstruction error of the 

factorization results (shown in Eq.1) with different s ranging from 3 to 15, as shown in 

Figure 3. The reconstruction error declines much slower with s larger than 7, 

indicating 7 dimensional LPNMF projection is competent for describing network-level 

spatial congestion patterns. Therefore, we set s to be 7 in the followings.   

In our clustering scheme, the number of the clusters K in K-means is decided by 

following a statistical compactness evaluation of the clusters. Given p derived 

clusters, the compactness c  of the clusters is evaluated using the average of sample 
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variances of each cluster, as defined in Eq. 9: 

                                     c =
1

p
(
1

N i !1
(nd j !

1

N i

nd j

j=1

N i

" )
j=1

N i

" )
i=1

p

"                                    (9) 

N
i
 is the number of samples assigned into the i-th cluster. {nd j} are the network-

level traffic observations of the i-th cluster. This criterion has been used in ward-

linkage hierarchical clustering [49]. The average sample variance represents general 

level of compactness of clusters, which is used as the stopping criterion of 

hierarchical division of the cluster structure. The lower average sample variance is, 

the more compact clusters we obtain. In our case, we expect network-level traffic 

states sharing similar spatial configurations of congestion to present a compact 

cluster structure. To achieve this goal, for each K ranging from 3 to 7, we evaluate 

the compactness measure. Further larger K results in cluttered clustering structure, 

which is difficult to explain the correspondence between the derived clusters and 

underlying global traffic state patterns. According to Table 1, the compactness 

measure declines when K increases from 3 to 5. K larger than 5 introduces little 

change. It indicates that K equaling to 5 is a suitable setting to unveil typical network-

level traffic state patterns.  

        Table 1. Compactness measure of clustering results based on LPNMF and PCA 

Algorithm 3 4 5 6 7 

LPNMF 182.0142 179.0684 171.7805 173.9921 175.6909 

PCA 197.1148 182.7953 156.6382 154.2231 152.9623 

 

Figure 4 illustrates the cluster structures in the PCA space. Figure 4(a) illustrates 

clustering results when K equals to 3. The cluster of green legends contains network-

level traffic data between the 1st and 20th time sampling step of all 146 simulations, 

which counts 76% of all samples in the cluster. The left 24% of the cluster come from 

the interval ranging from the 35th to 48th time sampling step of 97 simulations. All data 
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of the cluster are distributed within the region of the global free flowing state. We 

therefore name it as “Free Flowing Cluster” (FFC).  The cluster of blue legends is 

composed mainly of traffic state observations collected between the 18th  to 40th  time 

sampling step from all 37 simulations of the ITD simulation setting. The cluster of the 

red legends consists of traffic data between the 20th  and 48th  time sampling step 

from the 105 simulations of the ATD and ETD setting. We thus name these two 

clusters as “Light Isotropic Congestion Cluster” (LICC) and “Anisotropic Congestion 

Cluster” (ACC) respectively. Both of them cover peak hour ranging from the 20th until 

40th time sampling step. The corresponding three exemplars in the figure indicate 

typical spatial congestion patterns of the three clusters. In our work, we use the 

average spatial configuration of traffic indexes as the exemplar of the corresponding 

cluster, which is calculated by taking link-wise average over the 30% most congested 

network-level traffic state observations in each cluster. The congested links with 

traffic indexes lower than 0.79 are labeled using red legends, in order to make the 

spatial congestion pattern of each cluster visually distinctive. The LICC exemplar 

contains evenly distributed congestion around the outskirt and central region of Paris. 

In contrast, congestion concentrates in the central region and the northern outskirt in 

the ACC exemplar, which is consistent with characteristics of the ATD and ETD 

setting. In the figure, spatial traffic configurations of the ITD and ATD settings are 

separated perfectly in the clustering result. By increasing the number of clusters to 5 

in Figure 4(b), we can find more details about spatial traffic configurations. The ACC 

cluster is split into three sub-clusters labeled by pink, purple and black legends 

respectively. Figure 5 illustrates exemplars of the obtained sub-clusters following the 

setting in Figure 4(a).  Over 90% of the black-labeled cluster are collected between 

the 10th and 48th step of all 18 simulations of ETD setting. Due to the extremely 

heavy traffic demands of the ETD setting, congestion appears since the 10th step 

until the end. The traffic configuration of this cluster presents severe congestion in 

the network. Consistently, the exemplar of this cluster shown in Figure 4(a) illustrated 
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much severer congestion over the central region and its surroundings than the 

others. Therefore, we name it as “Heavy Congestion Cluster” (HCC). The pink-

labeled cluster corresponds to the peak hour period ranging from the 15th to 35th time 

sampling step of 88 simulations following the ATD setting. In the purple-labeled 

cluster, data samples come from the time interval after peak congestion (from the 

30th time sampling step to the 48th time sampling step) of 95 simulations. 75 of them 

are shared with the pink-labeled cluster. It means that the 75 sequences evolve from 

the pink-labeled cluster to the purple-labeled cluster successively during the peak 

hour period. Among the left 20 simulations, 3 of them correspond to the ATD setting 

but with heavier congestion. The other 17 simulations are derived based on the ETD 

setting and shared with the HCC cluster. The purple-labeled cluster covers the tails 

of the 17 simulated sequences after the peak of congestion, while the HCC cluster 

involves the peak hour interval. Therefore, we name the sub-clusters labeled by pink 

and purple legends as “Peak Congestion Cluster” (PCC) and “After-peak Congestion 

Cluster” (APCC) respectively. Figures 5(b) and 5(c) illustrate the exemplar of the two 

sub-clusters. The general congestion level of the PCC exemplar is heavier than the 

APCC exemplar. Both of them have similar congestion pattern inside the central 

Paris, while the PCC exemplar contains more congested links in the northern 

outskirt. The two sub-clusters indicate gradually restoration of traffic conditions 

during peak hour, representing a spatio-temporal traffic pattern in the network. 
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Figure 4. (a) Three clusters and exemplars of network-level traffic states; (b) Division of 

clusters after increasing the number of clusters to 5. 
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Figure 5. Exemplars of the sub-clusters: (a) the exemplar of the HCC cluster; (b) the 

exemplar of the PCC cluster; (c) the exemplar of the APCC cluster. 

 

To verify capability of LPNMF in unveiling global traffic patterns, we perform K-

means on PCA projections of the network-level traffic states and compare the 

derived clustering results. PCA is known as a baseline algorithm in manifold learning. 

For clustering, we keep the first 15 principal components that contain over 50% 

variance of the original data. The obtained 15 dimensional PCA projections are then 

used for clustering. For comparison, we vary K in K-means from 3 to 7. According to 

Table 1. PCA based clustering leads to higher average sample variances when K is 

3 and 4. Figure 6 shows the derived clustering structures. As shown in the figure, 

with K to be 3, the PCA based clustering only indicates variations of average 

congestion level over the whole network, ignoring differences between spatial 

congestion patterns of the ITD and ATD settings. It results in high variances of the 

cluster structure. By increasing the number of clusters to 5, the PCA based clustering 

separates global traffic states of the two different simulation setting, thus obtains 

more compact clusters in statistical sense. However, the derived clusters of pink and 

purple legends in Figure 6 fail to identify the spatio-temporal structure of traffic 
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patterns as shown in Figure 4(b). Compared with PCA, LPNMF is not only a 

dimension reduction tool, but also a feature extraction procedure to construct an 

informative representation of global traffic states.  

 

  Figure 6. Clustering results derived by performing K-means on PCA projections. 
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Figure 7. (a) and (b) are LPNMF basis vectors corresponding to the two highest row-wise 

average values in V;  (c) and (d) are LPNMF basis vectors corresponding to the two smallest 

row-wise average values in V 

 

Besides clustering on the reduced LPNMF representation, we propose to investigate 

spatial layouts of LPNMF basis vectors that represent important components of 

global traffic configurations. We calculate the row-wise average 
1

m
Vi, j

j=1

m

!  and sort 
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the s average values. The LPNMF basis vectors corresponding to the two largest  

and two smallest row-wise average values are selected.  We analyze the physical 

significance of the selected basis vectors in the followings.  The localized links with 

the top 20% largest entries (2725 entries) in each basis vector are labeled and their 

spatial locations are illustrated with red legends. We choose two LPNMF basis 

vectors corresponding to the two largest row-wise average in V and show their 

spatial layouts in Figures 7(a) and 7(b). Furthermore, Figures 7(c) and 7(d) show the 

spatial layouts of the basis vectors corresponding to the two lowest row-wise average 

values. The links with distinctively large LPNMF magnitudes correspond to the local 

regions that are highly correlated in forming the spatial traffic configurations. 

According to Section.2, the LPNMF basis vector with higher row-wise average value 

of V contributes more in representing the spatial congestion patterns. Following this 

idea, as shown in Figures 7(a) and 7(b), links in central Paris play the most critical 

role in constituting typical spatial distribution patterns of congestion. Compared with 

the central region, the outskirt area, especially the northern outskirt, has less but still 

important contribution in global traffic configurations. Since most travel paths are 

oriented to the central region in the simulations, Paris center plus its surroundings is 

expected to be the area that is more likely to be congested during peak hour. 

Therefore, congestion patterns in this region are the most important factors of global 

traffic configurations. On the contrary, the circular outskirt regions located far from 

the central area are free flowing at most times. They contribute the least in global 

traffic configurations, as shown consistently in Figures 7(c) and 7(d). The spatial 

layouts of the LPNMF basis vectors represent segmentation of the geographical 

structure of the network. Different separated regions have effects to different extents 

on yielding the global traffic state configurations. Links within the same region have 

homogeneous traffic characteristics. By looking into the basis vectors, we can 

identify traffic bottleneck of the whole network and extract spatial correlation patterns 

of the links. Such structural information provides a prior knowledge about how links 



! #&!

are correlated with each other when we describe traffic dynamics of the network 

using graph models [50][51]. 

 

-  

In this section, we analyze typical temporal dynamic patterns of network-level traffic 

states by performing clustering of large-scale traffic temporal behaviors in the 7 

dimensional LPNMF projection space. This analysis is important in understanding 

how the global configuration of traffic states varies throughout a large time period. 

We also aim to investigate correspondences between the obtained typical temporal 

dynamic patterns and the underlined simulation settings, which further verifies ability 

of the LPNMF based method in analyzing global traffic dynamics. 
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Figure 8. (a) Three clusters of the temporal trajectories in 3 dimensional PCA space; (b) 

Four clusters of the temporal trajectories; (c) Comparison of average temporal dynamic 

patterns of the four trajectory clusters. 
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For each studied traffic sequence, we represent the trajectory of network-level traffic 

states in the LPNMF space as{seqi}(i =1,2...48), with each seqi  as a 7 dimensional 

LPNMF projection. To measure similarity between trajectories {seqi
a
} and {seqi

b
}, 

we compute cosine distance [52] between the LPNMF projections of the 

corresponding time sampling steps and sum the distances derived in the whole time 

period, as defined in Eq.10: 

                                                     D =
seqi

a
! seqi

b

seqi
a
seqi

b

i=1

48

"                                             (10) 

The cosine distance measures the cosine value of the angle between two 

corresponding LPNMF projection. It is well normalized into [0,1], which is easy to 

manipulate in computation. We perform K-means clustering on the temporal 

trajectories using the distance measure. We set K to be 3 firstly, in order to find 

correspondence between the trajectory clusters and the underlying simulation 

settings. Figure 8(a) illustrates the derived three clusters of the trajectories. The 

cluster labeled by blue legends consists of all 37 traffic sequences of the ITD setting, 

The black-labeled cluster consists of total 11 of 18 trajectories of the ETD setting. 

The left 7 of 18 ETD simulations are absorbed into the green-labeled cluster. 91 of 

total 98 trajectories in the green-labeled cluster correspond to the simulated 

sequences generated following the ATD setting. The obtained three trajectory 

clusters categorize trajectories of different traffic demand settings accurately. We 

name them henceforth by “Isotropic Congestion Trajectory” (ICT) and “Anisotropic 

Congestion Trajectory” (ACT) and “Heavy Congestion Trajectory” (HCT) respectively. 

By increasing the cluster number from 3 to 4, we can find the ACT cluster is divided 

further into two sub-clusters, corresponding to different general congestion level 

during peak hour, named as “Light Anisotropic Congestion Trajectory” (LACT) and 

“Heavy Anisotropic Congestion Trajectory” (HACT). Figure 8(b) shows the clustering 
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results. For each time sampling step, we treat mean traffic index value (averaged 

over all 13627 links in the network) as a crude measure of global traffic state at the 

current time, the sequence of totally 48 mean index values in one simulation form a 

general evaluation of large-scale traffic dynamics of the simulation. We further take 

average of all the 48-D sequences of mean index values in each trajectory cluster. 

The resultant average sequence represents the general dynamic pattern of the 

corresponding cluster. Figure 8(c) illustrates average sequences of mean index 

values corresponding to the trajectory clusters.  According to the figure, ICT, LACT 

and HACT have similar general traffic dynamics with differences in duration of 

congestion and peak congestion level. In HCT, the network starts to suffer from 

congestion since the beginning of simulations, which is much different from the 

others and consistent with the ETD simulation setting.  Temporal clustering analysis 

provides a divide-and-conquer solution to describe underlined large-scale traffic 

dynamic patterns. Sequences in the same cluster share a common statistical 

dynamic characteristic of global traffic configurations. By extracting and modeling the 

typical dynamic process of each cluster using the feasible dynamical models, we are 

able to improve the controllability and observability of the large-scale traffic dynamic 

process.  

 

6. Conclusions and perspectives 

In this article, we propose and present a new traffic mining methodology for unveiling 

spatio-temporal traffic patterns, with large-scale modeling and long term forecasting 

as ultimate goals. Our experiments on large-scale simulated traffic data shows ability 

of our approach to unveil meaningful congestion patterns and typology of time 

evolutions; also illustrated is the clear advantage compared to using classical 

dimension reduction methods such as PCA. 

In applications of traffic data analysis, there is still an open issue about developing 
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the on-line NMF training scheme. Since traffic state observations arrive successively 

in the form of sequences. It is necessary to update the NMF based model after 

accumulating a certain number of traffic state observations, which makes the derived 

model consistent with time-varying traffic configurations of the network. More 

important from the application point of view, one of our main focuses for future work 

is exploiting LPNMF low-dimension representation for long-term traffic forecasting. 
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