6,849 research outputs found

    Light-sheet microscopy: a tutorial

    Get PDF
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer ReviewedPostprint (published version

    Superresolution Microscopy of the Volume Phase Transition of pNIPAM Microgels

    Get PDF
    Hierarchical polymer structures such as pNIPAM microgels have been extensively studied for their ability to undergo significant structural and physical transformations that can be controlled by external stimuli such as temperature, pH or solvent composition. However, direct three-dimensional visualization of individual particles in situ have so far been hindered by insufficient resolution, with optical microscopy, or contrast, with electron microscopy. In recent years superresolution microscopy techniques have emerged that in principle can provide nanoscopic optical resolution. Here we report on the in-situ superresolution microscopy of dye-labeled submicron sized pNIPAM microgels revealing the internal microstructure during swelling and collapse of individual particles. Using direct STochastic Optical Reconstruction Microscopy (dSTORM) we demonstrate a lateral optical resolution of 30nm and an axial resolution of 60nm.Comment: 7 pages, 5 figure

    Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: A brief review

    Full text link
    We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.Comment: AD, AC, OM, MB and SH wish to dedicate this brief review article to their co-author and colleague Yannick Sonnefraud who passed away in September 2014. Yannick initiated this research in 200

    Real-Time analysis and visualization for single-molecule based super-resolution microscopy

    Get PDF
    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy

    Cosmic Rays from the Knee to the Highest Energies

    Get PDF
    This review summarizes recent developments in the understanding of high-energy cosmic rays. It focuses on galactic and presumably extragalactic particles in the energy range from the knee (10^15 eV) up to the highest energies observed (>10^20 eV). Emphasis is put on observational results, their interpretation, and the global picture of cosmic rays that has emerged during the last decade.Comment: Invited review, submitted to Progress in Particle and Nuclear Physic

    Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)

    Full text link
    We present measurements of position and angular resolution of drift chambers operated with a Xe,CO2_2(15%) mixture. The results are compared to Monte Carlo simulations and important systematic effects, in particular the dispersive nature of the absorption of transition radiation and non-linearities, are discussed. The measurements were carried out with prototype drift chambers of the ALICE Transition Radiation Detector, but our findings can be generalized to other drift chambers with similar geometry, where the electron drift is perpendicular to the wire planes.Comment: 30 pages, 18 figure
    corecore