321 research outputs found

    Nonaxisymmetric mathematical model of the cardiac left ventricle anatomy

    Get PDF
    We describe a mathematical model of the shape and fibre direction field of the cardiac left ventricle. The ventricle is composed of surfaces which model myocardial sheets. On each surface, we construct a set of curves corresponding to myocardial fibres. Tangents to these curves form the myofibres direction field. The fibres are made as images of semicircle chords parallel to its diameter. To specify the left ventricle shape, we use a special coordinate system where the left ventricle boundaries are coordinate surfaces. We propose an analytic mapping from the semicircle to the special coordinate system. The model is correlated with Torrent-Guasp’s concept of the unique muscular band and with Pettigrew’s idea of nested surfaces. Subsequently, two models of concrete normal canine and human left ventricles are constructed based on experimental Diffusion Tensor Magnetic Resonance Imaging data. The input data for the models is only the left ventricle shape. In a local coordinate system connected with the left ventricle meridional section, we calculate two fibre inclination angles, i.e. true fibre angle and helix angle. We obtained the angles found from the Diffusion Tensor Magnetic Resonance Imaging data and compared them with the model angles. We give the angle plots and show that the model adequately reproduces the fibre architecture in the majority of the left ventricle wall. Based on the mathematical model proposed, one can construct a numerical mesh that makes it possible to solve electrophysiological and mechanical left ventricle activity problems in norm and pathology. In the special coordinate system mentioned, the numerical scheme is written in a rectangular area and the boundary conditions can simply be written. By changing the model parameters, one can set a general or regional ventricular wall thickening or the left ventricle shape change, which is typical for certain cardiac pathologies

    Mathematical modelling of structure and function of the cardiac left ventricle

    Get PDF

    The maximum depth of shower with E sub 0 larger than 10(17) eV on average characteristics of EAS different components

    Get PDF
    The extensive air shower (EAS) development model independent method of the determination of a maximum depth of shower (X sub m) is considered. X sub m values obtained on various EAS parameters are in a good agreement

    A Mathematical Spline-Based Model of Cardiac Left Ventricle Anatomy and Morphology

    Full text link
    Computer simulation of normal and diseased human heart activity requires a 3D anatomical model of the myocardium, including myofibers. For clinical applications, such a model has to be constructed based on routine methods of cardiac visualization, such as sonography. Symmetrical models are shown to be too rigid, so an analytical non-symmetrical model with enough flexibility is necessary. Based on previously-made anatomical models of the left ventricle, we propose a new, much more flexible spline-based analytical model. The model is fully described and verified against DT-MRI data. We show a way to construct it on the basis of sonography data. To use this model in further physiological simulations, we propose a numerical method to utilize finite differences in solving the reaction-diffusion problem together with an example of scroll wave dynamics simulation

    Drift of scroll wave filaments in an anisotropic model of the left ventricle of the human heart

    Get PDF
    Scroll waves are three-dimensional vortices which occur in excitable media. Their formation in the heart results in the onset of cardiac arrhythmias, and the dynamics of their filaments determine the arrhythmia type. Most studies of filament dynamics were performed in domains with simple geometries and generic description of the anisotropy of cardiac tissue. Recently, we developed an analytical model of fibre structure and anatomy of the left ventricle (LV) of the human heart. Here, we perform a systematic study of the dynamics of scroll wave filaments for the cases of positive and negative tension in this anatomical model. We study the various possible shapes of LV and different degree of anisotropy of cardiac tissue. We show that, for positive filament tension, the final position of scroll wave filament is mainly determined by the thickness of the myocardial wall but, however, anisotropy attracts the filament to the LV apex. For negative filament tension, the filament buckles, and for most cases, tends to the apex of the heart with no or slight dependency on the thickness of the LV. We discuss the mechanisms of the observed phenomena and their implications for cardiac arrhythmias
    corecore