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Abstract

Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule
based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic
feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it
relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian
fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the
acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-
resolution microscopy.
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Introduction

Single-molecule localization and reconstruction techniques have

been instrumental in the recent boom of the application of super-

resolution microscopy to answer physiologically relevant questions

involving sub-diffraction molecular organization [1–3]. Generally,

the stochastic optical reconstruction is composed of three steps: (i)

the acquisition of several tens of thousands images of single

molecules from the sample; (ii) the precise localization of up to a

million isolated single emitters and (iii) the visualization of the final

super-resolved image reconstructed from the positions of detected

individual molecules. The sequential nature of these steps, together

with the high acquisition frame rate and the complexity of the

processing step, usually prevent the user from viewing the super-

resolution images during the acquisition in real time. As a result,

the user cannot evaluate the data prior to performing the post-

processing, leading to a tremendous loss of time and resources

since the overall acquisition pipeline has to be fragmented.

Additionally, localization-based super-resolution techniques re-

quire an optimal density of molecules to be performed in an

optimal way. This can ideally be achieved if it can be measured

and adjusted in real-time, involving streaming processing.

Since the emergence of single-molecule based super-resolution

microscopy, many efforts have been made to develop new

localization algorithms. Knowledge of the Point Spread Function

(PSF) is used to find the position and intensity of molecules. PSF

engineering, using for example astigmatic lenses, allows for the

retrieval of the axial position [4,5]. Practically, Gaussian fitting of

individual fluorescence spots is the most popular localization

method since it is the most precise [6]. It is also the most time-

consuming method, and the time required to reconstruct the final

image remains an obstacle to data production in routine. Recently,

various methods were proposed to address the issue of computa-

tion time such as RapidSTORM [7] (Neubeck& Van Gool

algorithm), QuickPALM [8] (classical Högbom ‘CLEAN’ algo-

rithm), LivePALM [9] (fluoroBancroft algorithm), radial symmetry

centers [10] or Maximum Likelihood Estimation (MLE) [11].

Most of these methods are based on massive parallel architecture,

using either multiprocessor hardware [7,8] or graphic processing

unit (GPU) [11] for speeding up the localization step. These

methods are very efficient in terms of computation time but are

either limited to off-line processing, 2D localization or by a

relatively slow acquisition rate. Though the compatibility of real-

time application is mentioned in the context of various methods,

the non-linearity provided by massively parallel processing,

combined with the acquisition hardware constrains, doesn’t ensure

this rule to be verified until it is effectively implemented on a

microscope setup. Indeed, a major constraint of real-time

processing is that it requires every single frame to be processed

separately in a very short amount of time. It does not permit

massively parallel approaches [7,8,11,12] to be performed, since

only tens of molecules have to be localized and visualized in only

few milliseconds (for example 10 ms at 100 images per second

acquisition frame rate). Therefore, the processing time usually

exceeds the readout rates of fast EM-CCD cameras. We

demonstrate a method for real-time reconstruction with automatic

feedback-loop control, without compromising the localization

accuracy. Compatible with high frame rates of EM-CCD cameras,

it relies on a wavelet segmentation algorithm [13], together with a

mix of CPU/GPU (Graphic Processing Unit) implementation.

The use of a watershed algorithm allows an efficient localization

rate, a key parameter for optimal acquisition and feedback control

[14]. A combination with Gaussian fitting enables a direct
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processing of 3D localization. This step is achieved by NLLS

(Non-Linear Least Square) minimization implemented on mas-

sively parallel GPU hardware architecture. With a similar

philosophy to previous report with MLE iterative minimization

[11], each GPU processor computes a single molecule fitting.

Real-time feedback control, only possible thank to online

processing, allows compensating for molecule density fluctuations,

enabling optimal molecule density during the whole acquisition

process. Fluctuations, mostly due to bleaching or photo-conversion

effects, are inherent to localization methods and reduce their

efficiency. We demonstrate that the presented method improves

the efficiency and feasibility of single-molecule based super-

resolution microscopy for routine biological investigations.

Materials and Methods

Immunocytochemistry
COS7 cells were plated on 18 mm coverslips and fixed using

4% paraformaldehyde and sucrose, washed with PBS and with

PBS containing 1% BSA. They were incubated with 50 mM

NH4Cl for 5 minutes prior to permeabilization. Cells were

permeabilized using 0.1% Triton and incubated with PBS

containing 1% BSA for 30 minutes. They were then incubated

with mouse-anti-beta-tubulin antibody (T4026, Clone2.1, Sigma)

for 30 minutes and washed several times with PBS containing 1%

BSA. The primary antibodies were then revealed by incubating

the cells with a secondary antibody, anti-mouse IgG secondary

labelled with Alexa Fluor 647 (A21245, Invitrogen), for 30 minutes

at room temperature.

Single-molecule Based Super-resolution Microscopy
Samples were imaged the next day at room temperature in a

closed chamber (Ludin Chamber, Life Imaging Services, Switzer-

land) mounted on an inverted motorized microscope (Nikon Ti,

Japan) equipped with a 10061.45NA PL-APO objective and a

perfect focus system, allowing long acquisition in oblique

illumination mode (Roper, France). Imaging was performed in

an extracellular solution containing reducing and oxygen scav-

enging system, according to the dSTORM protocol [15]. At the

beginning of the experiment, the ensemble fluorescence of Alexa

Fluor 647 was first converted in to dark state using a 640 nm laser

(Coherent, USA) at 30–50 kW/cm2 intensity. Once the ensemble

fluorescence was converted into the desired density of single

molecules per frame, the laser power was reduced to 7–15 kW/

cm2 and imaged continuously at 80 FPS for 20,000 frames. The

number of single molecules detected per frame was controlled by

using a 405 nm laser (Omicron, Germany). The laser powers were

adjusted to keep a specific level of stochastically activated

molecules which were well separated during the acquisition. Both

the ensemble and single molecule fluorescence was collected by the

combination of a dichroic and emission filter (D101–R561 and

F39–617 respectively, Chroma, USA and quad-band dichroic

filter (Di01-R405/488/561/635, Semrock, USA). The fluores-

cence was collected using a sensitive 5126512 EM-CCD (Evolve,

Photometric, USA). 3D localization was performed using the N-

STORM astigmatic lens located in front of the CCD camera. The

acquisition sequence was driven by Metamorph software (Molec-

ular Devices, USA) in streaming mode at 80 FPS (12 ms exposure

time) using an area equal to or less than 2566256 pixel as region

of interest. We used multicolour fluorescent microbeads (Tetra-

speck, Invitrogen) to register long-term acquisitions and to correct

for lateral drifts and chromatic shifts. A spatial resolution of 14 nm

was measured using centroid determination on 100 nm Tetra-

speck beads acquired with similar signal to noise ratio than single-

molecule images. Images were analyzed and reconstructed online

using the WaveTracer module integrated into Metamorph

software, running on a Intel Xeon E5645@2.4 GHz personal

computer (Dell) equipped with a Nvidia Quadro 4000 graphic

card.

Implementation Details
We have implemented an optimized framework for 2D real-

time, i.e. streaming, localization and reconstruction, followed, if

needed, by a post-acquisition 3D reconstruction. Statistics

extracted during real-time localization allow the automatic

feedback control on the microscope illumination device, in order

to optimize molecule density during the acquisition (Fig. 1.A).

The organizational chart of the method is detailed in Fig. 1.B.

First, the images are analysed in real-time using a wavelet based

algorithm [13] which we optimized for speed using a mix of CPU/

GPU implementation. If 3D computation is required, positions

and intensities of all localized molecules are stored into memory.

Second, astigmatism based 3D localization is performed sequen-

tially to the real-time reconstruction by 767 anisotropic Gaussian

fitting around the stored molecules’ positions. Gaussian fittings are

performed in parallel using GPU. The detailed implementation of

these 2 steps is described below.

a) 2D real-time localization. During the acquisition pro-

cess, images are temporarily stored in the CCD camera memory

buffer. In streaming mode, each image remains in this buffer

during a time period corresponding to the exposure time. After

this period of time, it is stored to the computer’s memory and

replaced by the next image frame. To perform real-time

processing, we only have this short time interval to access and

process this image and display the super-resolution reconstruction.

We here describe the key implementations of WaveTracer for real-

time localization and reconstruction (Fig. 2.A). First, this frame is

transferred to the GPU global memory. Second, the image in the

GPU memory space is then split into small 16616 pixel

overlapping regions to be processed in parallel. Third, the wavelet

filtering is performed in parallel on each sub-image. Since the fast

‘‘à trous’’ wavelet decomposition algorithm we use is based on

multiple 5 pixels line convolutions, each pixel can be computed

independently from each other. This filtering step is therefore well

suited with the massively parallel architecture of GPU. Fourth,

once the parallel filtering is done, the filtered image is stitched back

from the resulting individual sub-images, and transferred to the

CPU memory. Fifth, a thresholding and a watershed algorithm are

performed to identify single molecules and separate molecules in

close proximity one to each other. The localization coordinates of

each identified molecule are then extracted from their centroid.

Finally, the list of coordinates of the localized molecules is stored

into the memory, and is used for real-time 2D reconstruction of

super-resolution image. If needed, the list of coordinates is used at

the end of the acquisition process for post-acquisition 3D

reconstruction.

b) 3D post-acquisition reconstruction. For 3D extraction,

we perform anisotropic Gaussian fitting of astigmatic single-

molecule data followed by Z coordinate retrieval, sequentially with

the 2D real-time analysis (Fig. 2.B). In this manner, the level of

parallelization offered by GPU is optimal, since it is much more

efficient to process simultaneously the large amount of molecules

corresponding to the entire acquisition (Fig. 3.A). This procedure

also overcomes the constraints related to the speed of the camera

in streaming mode, which prevents real-time Gaussian fitting

based computation for fast acquisition frame rates (see Fig. 3.B).

Starting from the acquired images and the list of localization

coordinates, the images are divided into small 767 pixel regions
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centered on each coordinates. All the sub-images are transferred to

the GPU and processed in parallel by Gaussian fitting, using

NLLS minimization, in order to compute the width and height

(sw,sh) of the PSF. Then, the Z coordinate for each molecule is

retrieved by mean-square error minimization using the astigmatic

calibration curve Z(sw,sh) of the optical system. Finally, the 3D

super-resolution image is reconstructed from the (X, Y, Z, I) list of

coordinates. We used a maximum of ten iterations in the NLLS

minimization process, corresponding to the convergence plateau

(Fig. 3.C). Even if based on a different minimization method, off-

line implementation of Gaussian fitting is similar to the one

provided by the previous report [11]. It has the advantage to

provide over a million fitting steps in only a few seconds using a

standard non-expensive GPU hardware. In combination with our

real-time localization pipeline with intensity feedback control, it

provides an optimized online localization based super-resolution

solution, outperforming tested offline solutions.

c) Automatic feedback control. In order to ensure an

optimal molecule density all along the acquisition process, we

perform an automatic feedback control on the activation laser

power, based on the localization statistics computed in real-time.

For each frame, the average and maximal density of molecule

localization per 32632 pixels windows are computed. If during 20

frames, they both pass below or above a threshold set at +/215%

of the initial value, the intensity of the 405 nm laser is adjusted

accordingly. The automatic feedback control, possible thanks to

the real-time localization capability, allows to optimize the

acquisition process. Fig. 4.I-L illustrate such optimization

performed on the first 3,000 frames of a same sample.

Benchmarking and Comparison with Others Localization
Methods

We have benchmarked our method on simulation data, and

compared its performance with referenced open-source software

like QuickPALM [8] and RapidStorm [7]. They are both based on

multithreading implementation which consists in partitioning the

program into many tasks that can be processed in parallel, linking

Figure 1. Architecture of WaveTracer software. (A) Graph illustrating the automatic real-time control of the number of molecules detected per
frame. The number of localization (green line) fluctuates between a set maximum and minimum (red line). It is controlled by a 405 nm laser (blue
line). When the number of localized molecules falls outside the minimum and maximum thresholds, the laser power is automatically adjusted to keep
the density of molecules ideal for accurate localization. (B) Different computation steps for real-time super-resolution reconstruction. The 2D
localization algorithm and the visualization of the super-resolved image are performed in real-time with an automatic feed-back control based on the
statistic extraction. 3D coordinates extraction is performed at the end of the acquisition. If required, at the end of the acquisition process, the fitting
of the preliminary localized molecules is performed. If a fiduciary marker is present, it will be tracked for image registration.
doi:10.1371/journal.pone.0062918.g001

Real-Time Analysis for Localization Microscopy

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e62918



Real-Time Analysis for Localization Microscopy

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e62918



its performance to the number of available processors (five for this

benchmarking). The GPU based localization software reported

previously [11] was not explicitly tested since the available package

provides only the fitting step, not the preprocessing step. However,

this method was recently compared to RapidStorm [16]. Rapid-

Storm is based on a mixture of levenberg-Marquardt fitter and

MLE; QuickPALM relies on the Högbom ‘CLEAN’ algorithm for

spot finding, followed by a center of mass algorithm to compute

Figure 2. Implementation details of WaveTracer software. (A) 2D real-time localization steps: 1) During the acquisition process, images are
temporarily transferred to the CCD camera buffer. 2) The current image is transferred to the GPU memory for processing. 3) The image is split into
16616 overlapping sub-images and sent to different processors of the GPU. 4) Wavelet filtering is performed in parallel on each sub-image. 5) Sub-
images are stitched back to reconstruct the filtered image. 6) The filtered image is transferred to the CPU for thresholding, watershed processing and
centroid extraction. 7) The super-resolution image is then reconstructed and the localized molecule coordinates are saved into the memory for later
3D analysis. (B) 3D post-acquisition localization steps: 1) Images are split into 767 sub-images centered on localized molecule coordinates. 2)
Anisotropic Gaussian fitting is performed on each sub-image in parallel on GPU. 3) Axial coordinate retrieval of each localized molecule is performed
in parallel on GPU. 4) 3D reconstruction is made from the (X,Y,Z) coordinates of all the localized molecules.
doi:10.1371/journal.pone.0062918.g002

Figure 3. Benchmarking. (A) Performance of Gaussian fitting, with (full lines) or without (dashed lines) using GPU, for two different sizes of fitted
region. A speed-up factor of about 70 is obtained for the GPU implementation versus the CPU implementation. (B) Performance of the localization
algorithms in real-time mode. The 2D localization is performed frame by frame in real-time with CPU (green line) and GPU (blue line). Gaussian fitting
using CPU (red line) can only process few molecules in 50 ms. Both algorithms are benchmarked on an Intel Xeon E5645@2.4 GHz personal computer
equipped with a Nvidia Quadro 4000 graphic card. (C) Convergence of the NLLS minimization iterative process for anisotropic Gaussian fitting
performed on a 767 pixels ROI. Measurements were average from 1,000 molecules, simulated with 200 and 1000 photons per molecule.
doi:10.1371/journal.pone.0062918.g003
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the spot position and shape (i.e. width and height for 3D

localization).

For each software package, we have computed the localization

accuracy, the localization rates (i.e. the fractions of true positive,

false positive and false negative events) as well as the computing

speed in offline and real-time mode, in 2D and 3D. The detection

rate is the ability of the algorithm to detect individual molecules in

a noisy image. Given a total number of simulation particles (NS), a

true positive (TP) detection was defined as a molecule present in

the analyzed and simulated data set within a radius of one pixel.

When a particle present in the simulated data had no matching

detection in the analyzed data set within a radius of one pixel, it

was counted as a false negative (FN) detection. Similarly, a false

positive (FP) detection was defined as the identification of a

molecule in the analyzed data set that was not present in the

simulated data within a radius of one pixel. We used ratio, recall

and precision, three quantification rates defined as NTP/NS + NTP/

(NTP+NFN) and NTP/(NTP+NFP) respectively.

In order to qualitatively monitor the localization accuracy, we

generated 2D and 3D test patterns made of 40 sunburst

alternating black and white stripes (Fig. 5). For 2D simulations,

molecules were randomly positioned within the white stripes. For

3D simulations based on astigmatism, molecules were positioned

within the white stripes, each stripe being located at a different Z

position between 2500 nm to +500 nm around the focal plane.

Consecutive stripes are 50 nm apart in the axial direction

(Fig. 5.A). We performed simulations consisting of isolated single

point emitters located inside stripes convolved by 2D or 3D point

spread function (PSF) with isotropic and anisotropic Gaussian

shape respectively. Molecules were randomly distributed with an

average density of 0.5 molecule per mm2 (Fig. 5.C). Blurred signal

was then sampled on a 64664 pixelated matrix, with a pixel size of

100 nm providing Nyquist sampling in the visible light range.

Finally, digital images were corrupted by a combination of

Gaussian and Poisson noise, simulating a limited number of

photons and CCD electronic read-out noise. In order to test the

localization efficiency of each method for various typical

Figure 4. Real-time super-resolution imaging. (A) Diffraction-limited epifluorescence image of microtubules labeled with Alexa Fluor 647. (B)
2D super-resolved image of the cell in figure (A), reconstructed in real-time from 20,000 frames and 1.2 million single-molecule localizations. (C) 3D
super-resolved image of the microtubules of figure (A) obtained only 15 seconds just after the end of the acquisition. Colors encode for the axial
position, in mm. (E) A selected region of interest (ROI) from figure (A). (F) A selected ROI from figure (B). (G) Corresponding ROI from figure (C). (D),
(H) Intermediate real-time visualization obtained after 1,000 and 4,000 frames respectively. (I) Diffraction limited epifluorescence image of
microtubules labeled with Alexa Fluor 647. (J), (K) 2D super-resolved images of the cell in figure (I), reconstructed in real-time from 3,000 frames,
without (78,341 localizations) and with (96,298 localizations) feedback control respectively. (L) Graph of the number of localizations over the number
of images, without (red) and with (green) feedback loop control. Solid and dashed black lines represent their respective trends. For better clarity, only
one point over 25 points is displayed.
doi:10.1371/journal.pone.0062918.g004
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fluorophores, we used 3 different simulation dataset with

respectively 100, 200 and 1000 detected photons per molecule

per image. For each condition, we generated a stack of 30,000

images composed of 286,665 molecules. These reconstructions

allow to illustrate the localization accuracy and rate of each

method for various signal to noise ratio (SNR), in 2D and 3D. The

corresponding quantitative measurements are summarized in

Fig. 6.

Fig. 6A shows a detailed comparison of the computational

speed of the three methods. In offline mode, our method took

Figure 5. Simulations. (A) 3D test patterns made of 40 sunburst alternating black and white stripes, used for single molecule based super-
resolution microscopy simulations. The pattern is 1 mm thick, with consecutive stripes distant from 50 nm in the axial direction. (B) Diffraction limited
image of the test pattern. (C) Example of isolated single point emitters located inside the test pattern, convolved with 3D astigmatic point spread
function (PSF). (D–F) Test pattern reconstruction performed by WaveTracer software for 1000, 200 and 100 photons/molecule respectively. (G–I) Test
pattern reconstruction performed by RapidSTORM software for 1000, 200 and 100 photons/molecule respectively. (J–L) Test pattern reconstruction
performed by QuickPALM software for 1000, 200 and 100 photons/molecule respectively. Scale bar is 1 mm.
doi:10.1371/journal.pone.0062918.g005
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more time than RapidSTORM, since our 2D localization was

performed frame by frame for real-time purpose. We didn’t

optimize our 2D localization method using massively parallel

architecture, since our main target was real-time localization (i.e.

no delay after the acquisition process). We can localize about 150

molecules within 10 ms (Fig. 3.B), which is sufficient for

streaming processing with rapid EM-CCD camera. In the case

of 3D real-time, 2D localization is performed in real-time and 3D

localization offline. WaveTracer takes full advantage of GPU

capability and could outperform tested methods like Rapid-

STORM, with more than 80,000 fits per second. In terms of

localization accuracy (Fig. 6B), the three methods show similar

performances with an advantage for WaveTracer and Rapid-

STORM in comparison to QuickPALM, as illustrated in Fig. 5.

Similarly, the detection rates (Fig. 6C) are similar for all three

methods, with a slight advantage of WaveTracer in the capability

to localize true positives (ratio and recall rates) even in low SNR

conditions, an advantage provided by the wavelet segmentation.

Results and Discussion

Here, we illustrate a new advanced analysis method, named

WaveTracer, which enables optimized real-time data reconstruc-

tion for single-molecule super-resolution microscopy. Spatial

coordinates of each localized molecule are retrieved in real-time

in two or three dimensions, down to the few tens of nm resolution.

Automatic feedback control on the activation laser power is

performed based on real-time localization statistics, allowing the

regulation of the optimal density during the acquisition process

(Fig. 1). For 2D real-time localization, we use a wavelet-based

segmentation algorithm, a method which outperforms the

Gaussian fitting (MLE or NLLS) in terms of speed, while

maintaining similar localization accuracy [13]. Wavelet filtering

allows to get rid of most of the image noise and background,

enabling rapid and accurate object segmentation. A watershed

algorithm is applied after segmentation to allow close molecules to

be separated. In order to respect the constraint of real-time

analysis, i.e. the analysis of each image in streaming, desirable for

feedback control, we opted for a hybrid CPU/GPU implemen-

tation (Fig. 2). The use of graphic processors is primarily to speed

up the wavelet decomposition (Fig. 2.A). Since the wavelet

Figure 6. Benchmarking. (A) Speed benchmarking for 2D and 3D localization, in offline and real-time modes, and comparison with QuickPALM
and RapidSTORM software. Benchmarking was performed on an image stack of 30,000 planes composed of 286,665 molecules. The 0* value
mentioned for 2D online means that the localizations are performed in parallel with the acquisition, and that no extra processing time is required. (B)
Localization accuracy benchmarking in 2D, 3D and for 3 different numbers of photons per molecule, and comparison with QuickPALM and
RapidSTORM software. (C) Recall and precision detection rates benchmarking for 3 different numbers of photons per molecule, and comparison with
QuickPALM and RapidSTORM software.
doi:10.1371/journal.pone.0062918.g006
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decomposition is very similar to a convolution, the processing of

each pixel of the image is independent of each other. The local

nature of wavelet decomposition suits perfectly the parallel pixel-

by-pixel processing on a GPU. Practically, the computation time is

about two times faster compared to a classical CPU implemen-

tation (Fig. 3.B). With our method, we reached to process and

reconstruct the super-resolution image from single-molecule data

acquired at any EM-CCD frame rate in real-time. This enables

the computation of the localization density along the acquisition,

and provides the capability to perform a laser intensity feedback

control to optimize the single molecule density. In addition,

fiduciary markers that are present in the field of view are

automatically tracked using a nearest-neighbour algorithm,

allowing real-time image registration.

For 3D localization based on astigmatism [4,5], we combined

wavelet segmentation with Gaussian fitting. The PSF is elliptically

shaped above and below the focal plane with a shape factor and

dimension changing along the optical axis. After calibrating the

optical system, the axial coordinate of a localized molecule can

then be retrieved by performing a local fitting of the raw data

around the coordinates computed by the wavelet segmentation

process, followed by a mean-square-error (MSE) minimization

with the calibration function. A Gaussian fitting of a 767 pixel

area allows computing the ellipse parameters necessary to retrieve

the position and length of the small and large axes. Since this

fitting step is time consuming when computed on a CPU, we

performed a GPU implementation. Nevertheless, real-time con-

strains do not allow massively parallel implementation. Conse-

quently, even a GPU implementation does not allow for Gaussian

fitting to be performed in real-time (Fig. 3B). This is because the

GPU is more adapted to large data set computation, where the

configuration time is negligible compared to the processing time

(Fig. 3A). Therefore, we implemented the following 2 steps for 3D

reconstruction (Fig. 1): i) compute the 2D localization with

intensity feedback control in real-time using wavelet segmentation;

ii) compute the fitting and 3D extraction sequentially, right after

the end of the acquisition. The fitting of different spots being

independent of each other, the GPU implementation can

efficiently do the treatment in parallel (Fig. 2.B). We implemented

the NLLS fitting method in GPU using Levenberg-Marquardt

optimization, since it offers faster processing with similar accuracy

compared to MLE algorithm [17]. Thanks to the molecule

coordinates and intensities computed during the 2D real-time

localization step, the Gaussian fitting converged rapidly after only

few iterations (Fig. 3.C). Therefore, we used a maximum of 10

iterations per molecule as a convergence stopping criteria. The

fitting of a million molecules is almost 70 times faster in the case of

GPU versus CPU (Fig. 3.A). GPU implementation enables

computing the axial coordinates of 1.2 million molecules in less

than 15 seconds, compared to about 15 minutes in the case of a

CPU. This enables the user to access the 3D information just a few

seconds right after the acquisition process, which can be

assimilated to real-time compared to the acquisition time. Thanks

to this unique combination, we could achieve more than 80,000

fits per second with optimal molecule density, outperforming other

tested reference methods and keeping similar localization accura-

cy.

We have illustrated the performance of our algorithm on

experimental dSTORM [15] data recorded from COS7 cells with

microtubules stained with Alexa Fluor 647 (Fig. 4), as well as on

2D and 3D synthetic patterns (Fig. 5). On experimental data, we

observe the microtubule organization at different planes with an

average lateral and axial resolution of 20 nm and 50 nm,

respectively. 2D super-resolution images were provided in real-

time during the streaming acquisition at 80 FPS for a 2006200

pixel image. An average number of 60+/220 localizations per

image was kept constant during the whole acquisition process by

adjusting the irradiation power accordingly. The 3D reconstruc-

tion of 1.2 million molecules was obtained less than 15 seconds just

after the acquisition. Simulated test pattern reconstructions

allowed us to benchmark, in offline mode, the computation speed

and the localization accuracy and rate of WaveTracer with

popular free software RapidSTORM and QuickPALM (Fig. 6).

Our method allows overcoming two of the major limitations in

single-molecule based super-resolution microscopy, which are the

computation time required to process the massive amount of data

(up to 0.5 Gigabyte per minute) and the regulation and control of

the optimal molecule density. Using a regular computer, it offers

access to 2D and 3D information during the acquisition, without

compromising the resolution. Real-time analysis saves the user

from performing post-processing, which dramatically slows down

the overall acquisition pipeline. In addition, it allows optimizing

the acquisition parameters by feedback control on the micro-

scope’s illumination system. If desired, only the molecule

localizations and super-resolution images can be stored and

manipulated, saving time, disk space and bandwidth. These are

key features if we want to consider using such methodology in high

throughput context to screen molecule organization at high spatial

resolution. We thus think that the proposed approach will further

promote the use of one of the most popular and powerful super-

resolution imaging method of today.

Acknowledgments
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