2,408 research outputs found

    Analysing oscillatory trends of discrete-state stochastic processes through HASL statistical model checking

    Get PDF
    The application of formal methods to the analysis of stochastic oscillators has been at the focus of several research works in recent times. In this paper we provide insights on the application of an expressive temporal logic formalism, namely the Hybrid Automata Stochastic Logic (HASL), to that issue. We show how one can take advantage of the expressive power of the HASL logic to define and assess relevant characteristics of (stochastic) oscillators

    Compliance matrices for cracked bodies

    Get PDF
    An algorithm is presented which can be used to develop compliance matrices for cracked bodies. The method relies on the numerical solution of singular integral equations with Cauchy-type kernels and provides an efficient and accurate procedure for relating applied loadings to crack opening displacements. The algorithm should be of interest to those performing repetitive calculations in the analysis of experimental results obtained from fracture specimens

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Three-dimensional analysis of surface crack-Hertzian stress field interaction

    Get PDF
    The results are presented of a stress intensity factor analysis of semicircular surface cracks in the inner raceway of an engine bearing. The loading consists of a moving spherical Hertzian contact load and an axial stress due to rotation and shrink fit. A 3-D linear elastic Boundary Element Method code was developed to perform the stress analysis. The element library includes linear and quadratic isoparametric surface elements. Singular quarter point elements were employed to capture the square root displacement variation and the inverse square root stress singularity along the crack front. The program also possesses the capability to separate the whole domain into two subregions. This procedure enables one to solve nonsymmetric fracture mechanics problems without having to separate the crack surfaces a priori. A wide range of configuration parameters was investigated. The ratio of crack depth to bearing thickness was varied from one-sixtieth to one-fifth for several different locations of the Hertzian load. The stress intensity factors for several crack inclinations were also investigated. The results demonstrate the efficiency and accuracy of the Boundary Element Method. Moreover, the results can provide the basis for crack growth calculations and fatigue life prediction

    Finite element modeling of frictionally restrained composite interfaces

    Get PDF
    The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted

    Green's functions for dislocations in bonded strips and related crack problems

    Get PDF
    Green's functions are derived for the plane elastostatics problem of a dislocation in a bimaterial strip. Using these fundamental solutions as kernels, various problems involving cracks in a bimaterial strip are analyzed using singular integral equations. For each problem considered, stress intensity factors are calculated for several combinations of the parameters which describe loading, geometry and material mismatch

    National scientific report on the TABULA activities in Italy

    No full text
    The Italian contribution to the TABULA research project is decribed. Ii was addressed to: - the development of the harmonised structure for the Italian typology and the supply of input data on buildings, constructions and systems (heating and DHW), which constitute the main data for the webtool; - the application of the typology concept for the assessment of the energy performance of residential buildings and for the evaluation of the impact of energy conservation measures, through the calculation of the energy performance of the building-types; - the use of the typology concept to create a model for the estimation of the national energy balance of the residential building stock by the support of national statistical dat

    The effects of crack surface friction and roughness on crack tip stress fields

    Get PDF
    A model is presented which can be used to incorporate the effects of friction and tortuosity along crack surfaces through a constitutive law applied to the interface between opposing crack surfaces. The problem of a crack with a saw-tooth surface in an infinite medium subjected to a far-field shear stress is solved and the ratios of Mode-I stress intensity to Mode-II stress intensity are calculated for various coefficients of friction and material properties. The results show that tortuosity and friction lead to an increase in fracture loads and alter the direction of crack propagation
    corecore