5,268 research outputs found

    Financial Applications of a Tabu Search Variable Selection Model

    Get PDF

    A novel risk assessment and optimisation model for a multi-objective network security countermeasure selection problem

    Get PDF
    Budget cuts and the high demand in strengthening the security of computer systems and services constitute a challenge. Poor system knowledge and inappropriate selection of security measures may lead to unexpected financial and data losses. This paper proposes a novel Risk Assessment and Optimisation Model (RAOM) to solve a security countermeasure selection problem, where variables such as financial cost and risk may affect a final decision. A Multi-Objective Tabu Search (MOTS) algorithm has been developed to construct an efficient frontier of non-dominated solutions, which can satisfy organisational security needs in a cost-effective manner

    Heuristic Optimisation in Financial Modelling

    Get PDF
    There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well- behaved’ in other ways (eg, discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. This paper argues that an alternative approach is the application of optimisation heuristics like Simulated Annealing or Genetic Algorithms. These methods have been shown to be capable to handle non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, the paper presents several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, the paper describes in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, Threshold Accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. It is shown, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computations.Optimisation heuristics, Financial Optimisation, Portfolio Optimisation

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Forest Management Zone Design with a Tabu Search Algorithm

    Get PDF
    Increased conflicts between timber production and environmental protection led some analysts to advocate land-use segregation, often referred to as forest management zoning. The objective of zoning is to create ecologically desirable non-fragmented forest reserves and group timber production areas. We formulate an integer programming model of forest zoning that explicitly addresses clustering of spatial units allocated to timber production and reserve zones while also promoting separation of these zones. A tabu search algorithm is developed, implemented and tested using a case study. The case study results indicate that up to 5% of the net financial return is sacrificed with a 'satisfactory' grouping of units within each zone. A 'good' separation between the reserves and timber production zone is achieved at the cost of further decline of the net financial return up to 11% relative to the unconstrained case.forest planning, integer programming, reserves, tabu search, timber production, zoning

    Reinforcement learning based local search for grouping problems: A case study on graph coloring

    Get PDF
    Grouping problems aim to partition a set of items into multiple mutually disjoint subsets according to some specific criterion and constraints. Grouping problems cover a large class of important combinatorial optimization problems that are generally computationally difficult. In this paper, we propose a general solution approach for grouping problems, i.e., reinforcement learning based local search (RLS), which combines reinforcement learning techniques with descent-based local search. The viability of the proposed approach is verified on a well-known representative grouping problem (graph coloring) where a very simple descent-based coloring algorithm is applied. Experimental studies on popular DIMACS and COLOR02 benchmark graphs indicate that RLS achieves competitive performances compared to a number of well-known coloring algorithms

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    Dynamic Collection Scheduling Using Remote Asset Monitoring: Case Study in the UK Charity Sector

    Get PDF
    Remote sensing technology is now coming onto the market in the waste collection sector. This technology allows waste and recycling receptacles to report their fill levels at regular intervals. This reporting enables collection schedules to be optimized dynamically to meet true servicing needs in a better way and so reduce transport costs and ensure that visits to clients are made in a timely fashion. This paper describes a real-life logistics problem faced by a leading UK charity that services its textile and book donation banks and its high street stores by using a common fleet of vehicles with various carrying capacities. Use of a common fleet gives rise to a vehicle routing problem in which visits to stores are on fixed days of the week with time window constraints and visits to banks (fitted with remote fill-monitoring technology) are made in a timely fashion so that the banks do not become full before collection. A tabu search algorithm was developed to provide vehicle routes for the next day of operation on the basis of the maximization of profit. A longer look-ahead period was not considered because donation rates to banks are highly variable. The algorithm included parameters that specified the minimum fill level (e.g., 50%) required to allow a visit to a bank and a penalty function used to encourage visits to banks that are becoming full. The results showed that the algorithm significantly reduced visits to banks and increased profit by up to 2.4%, with the best performance obtained when the donation rates were more variable
    corecore