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ABSTRACT: Today, combinatorial optimization is one of the 
youngest and most active areas of discrete mathematics. It is a branch 
of optimization in applied mathematics and computer science, related 
to operational research, algorithm theory and computational 
complexity theory. It sits at the intersection of several fields, including 
artificial intelligence, mathematics and software engineering. Its 
increasing interest arises for the fact that a large number of scientific 
and industrial problems can be formulated as abstract combinatorial 
optimization problems, through graphs and/or (integer) linear 
programs. Some of these problems have polynomial-time (“efficient”) 
algorithms, while most of them are NP-hard, i.e. it is not proved that 
they can be solved in polynomial-time.  Mainly, it means that it is not 
possible to guarantee that an exact solution to the problem can be 
found and one has to settle for an approximate solution with known 
performance guarantees. Indeed, the goal of approximate methods is 
to find “quickly” (reasonable run-times), with “high” probability, 
provable “good” solutions (low error from the real optimal solution). 
In the last 20 years, a new kind of algorithm commonly called 
metaheuristics have emerged in this class, which basically try to 
combine heuristics in high level frameworks aimed at efficiently and 
effectively exploring the search space. This report briefly outlines the 
components, concepts, advantages and disadvantages of different 
metaheuristic approaches from a conceptual point of view, in order to 
analyze their similarities and differences. The two very significant 
forces of intensification and diversification, that mainly determine the 
behavior of a metaheuristic, will be pointed out. The report concludes 
by exploring the importance of hybridization and integration methods. 

 
 
1. INTRODUCTION 

 
Combinatorial optimization (CO) is the general name given to the problem of 

finding the best solution out of a very large, but finite, number of possible solutions. It lies 
at the interface of Discrete Mathematics, Computer Science and Operational Research. 
Many real-life decision problems can be formulated as combinatorial optimization 
problems and consequently there is a large and growing interest in both theoretical and 
practical aspects of the subject. In practice, combinatorial optimization problems are often 
large-scale and difficult to solve. Thus, much attention has been given to studying 
computational complexity and algorithm design with a view to developing efficient 
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solution procedures. A combinatorial optimization problem ( )fSP ,=  may be specified as 
follows: 

• A set of variables { }nxxX ,...,1= ,  
• Variable domains ,  nDD ,...,1

• Constraints among variables, 
• An objective function f  to minimize (maximize), where . +ℜ→×× nDDf ...: 1

 
The set of all possible feasible solutions is 

( ) ( ){ }{ }.sconstraintthesatisfiesand/,,..., 11 sDvvxvxsS iinn ∈==  
S is usually called a search (or solution) space, as each element of the set can be 

seen as a candidate solution. To solve a combinatorial optimization problem means to find 
a solution s*∈S with minimum (maximum) objective function value; that is, f (s*) ≤ f (s), 
∀s∈S. s* is called a “globally optimal solution” of (S, f) and let the set S*⊆ S be the “set of 
globally optimal solutions”. 

Examples of such problems are Network Flow Problems (e.g. Shortest Path 
Problem, Minimum Spanning Tree Problem, Maximum/Minimum Cost Flow Problem), 
Matching Problems (e.g. Cardinality Matching Problem, Job Assignment Problem, 
Maximum/Minimum Weight Matching Problem), Matroids (e.g. 
Maximization/Minimization Problem For Independent Systems, Matroid Intersection 
Problem, Matroid Partitioning Problem), Set Covering Problem, Colouring Problems (e.g. 
Vertex-Colouring Problem, Edge-Colouring Problem), 3-Occurrence Max-Sat Problem, 
Knapsack Problems, Bin-Packing Problem, Network Design Problems (e.g. Survivable 
Network Design Problem, Steiner Tree Problem), and Traveling Salesman Problem. 

By considering the Knapsack Problem, it is easy to understand the difficulty of 
finding an optimized solution. Suppose a hitchhiker has to fill up his knapsack by selecting 
from among various possible objects those that will give him maximum comfort: these and 
many other example of Knapsack Problems can be mathematically formulated by 
numbering the objects from 1 to n, introducing a vector of binary variables xj  (j=1,…,n) 
having the following meaning: 

⎩
⎨
⎧

=
otherwise.0

selectedjobjectif1
jx  

 
Then, if pj is a measure of the comfort given by object j, wj its size and c the size of 

the knapsack, the problem will be to select, from among all binary vectors x satisfying the 
constraint 

cxw
n

j
jj ≤∑

=1

, 

the one which maximizes the objective function f 

∑
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There are many applications of the knapsack model. For example, suppose an 
investment of up to c dollars is to be made in one or more of n possible investments. Let pj 
be the profit expected from investment j, and wj the required investment. It is self-evident 
that the optimal solution of the knapsack problem above will indicate the best possible 
choice of investments.   

A naive approach to solve the knapsack problem would be to examine all possible 
binary vectors x, selecting the best of those that satisfy the constraint. A full enumeration 
consists of 2n vectors and thus, for a computer with a clock frequency of 3.6 GHz (3.6 ⋅ 109 
instructions per second, i.e. 1 instruction in 0.28 ⋅ 10-9 s), the time, t, to compute 2n 
instructions is given by: 

 

( ) ;10228,0
360024365

11028.02 99 yearssect nn −− ⋅⋅⋅
⋅⋅

=⋅⋅=  

 
For n = 60 vectors, for example, t ≈ 10 years, and for n = 61 more than 20 years, 

almost 4 centuries for n = 65, and so on. 
However, the (N.F.L.T.) No-Free-Lunch-Theorem (Martello and Toth, 1990) states 

that, if an algorithm performs well on a particular class of problems, having been designed 
to exploit the specific characteristics of the problem in question, then it necessarily pays for 
that with degraded performance on the other problems. The theorem is used as an argument 
against using generic searching algorithms (e.g. genetic algorithms and simulated 
annealing) without exploiting as much domain knowledge as possible. Alternatively, the 
theorem establishes that “a general-purpose universal optimization strategy is not possible, 
and the only way one strategy can outperform another is if it is specially adapted to the 
problem under consideration” (Ho and Pepyne, 2002). 

So combinatorial optimization algorithms are custom-strategies; that is, they are 
optimization techniques specialized to the particular kind of problem being solved. 
Complete (or exact) algorithms are guaranteed to find, for every instance of a specified CO 
problem of finite size, an optimal solution in bounded time (with proof of its optimality), 
while in approximate methods, the guarantee of finding an optimal solution is sacrificed for 
the sake of getting good solutions in a significantly reduced amount of time. 

Combinatorial optimization problems can be classified as P-problems and NP-hard 
problems. In computational complexity theory, the class P consists of all those decision 
problems that can be solved on a “deterministic sequential Turing-machine” in an amount 
of time that is polynomial p(x) in the size of the input x; the class NP consists of all those 
decision problems whose positive solutions⏐x⏐can be verified in polynomial-time p(⏐x⏐)  
given the right information, or equivalently, whose solution can be found in polynomial- 
time p on a “non-deterministic Turing-machine”. The term NP-hard (Non-deterministic 
Polynomial-time hard) refers to the class of problems that contains all problems H, such 
that for every decision problem L in NP there exists a “polynomial-time many-one 
reduction” to H, written L ∝ H. Formally, H is NP-hard if 

• There exists an L in NP and  
• L ∝ H (i.e. The NP-problem L is reducible to H) in a polynomial-time. 
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FIG 1: Diagram of complexity classes provided that P ≠ NP. If P = NP, then all three classes are equal. 

 
 
In computational complexity theory, a many-one reduction from L to H is a 

reduction that converts instances of the decision problem L into instances of the decision 
problem H. If there is an algorithm that solve instances of H, it is possible to use it to solve 
instances of L in: 

− the time needed for N plus the time needed for the reduction;  
− the maximum of the space needed for N plus the space needed for the reduction.  
Many-one reductions are a special case and a weaker form of Turing reductions; the 

latter are sometimes more convenient for designing reduction algorithms, but their power 
also causes several important classes, such as NP, to be not closed under this kind of 
reduction. Formally, a many-one reduction from L to H (or L many-one reducible to H) is a 
totally computable function , which is a function that can be calculated using 
a mechanical calculation device (i.e. it is possible to construct an algorithm that halts after a 
finite amount of time and decides whether or not a given element belongs or not to the 
function domain), such as 

ff CDf →:

( ) ., fDHfLif ∈∀∈⇔∈ ααα  
Therefore, the “polynomial-time many-one reduction” from L to H is a many-one 

reduction which is computable by a deterministic Turing-machine in polynomial-time; 
while the term “C1 reducible to C2“ (written C1 ∝ C2 ) means that for every instance a ∝ C1 
there is a deterministic algorithm which transforms it into an instance b ∝ C2, such that the 
answer of the “deterministic Turing-machine” to b is YES if and only if  the answer to a is 
YES. 

So, the notion of NP-hardness plays an important role in the discussion about the 
relationship between the complexity classes P and NP, because if it is possible to find an 
algorithm that solves one of these problems H in polynomial-time, it should be possible 
construct a polynomial-time algorithm for any problem L in NP by first performing the 
reduction from L to H and then running the polynomial algorithm. This would be 
equivalent stating “P = NP”, and thus solving the biggest open question in theoretical 
computer science concerning the relationship between these two classes. Indeed, a common 
mistake is to think that the word "NP" in "NP-hard" stands for "non-polynomial" but 
although it is widely suspected that there are no polynomial-time algorithms for these 
problems, this has never been proved. 
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Summarizing, if a NP-problem L is many-one reducible in polynomial-time to H, the 
H is called NP-hard. This doesn’t mean that H is in NP: therefore, if it is also the case that 
H is in NP, then H is called NP-complete (NP-C). FIG 1 shows the diagram of the 
complexity classes NP, P and NP-C, assuming that P ≠ NP. In a more formal way, a 
decision problem H is NP-complete if 

• it is in NP and  
• it is NP-hard (i.e. every other problem in NP is reducible to it). 
A consequence of this definition is that if we had a polynomial-time algorithm for 

H, we could solve all problems in NP in polynomial-time (“P = NP”). The NP-complete 
complexity class contains the most difficult problems in NP, in the sense that they are the 
ones most likely not to be in P. For more details see Garey and Johnson (1979) in which 
many NP-Complete problems are classified. 

Numerous instances of problems arising in Operational Research and other fields are 
too large for an exact solution to be found in reasonable time. Thousands of problems are 
NP-hard and no algorithm with a number of steps polynomial in the size of the instances 
exists. Moreover, in some cases where a problem admits a polynomial algorithm, the power 
of this polynomial may be so large that realistic size instances cannot be solved in 
reasonable time in most of the cases (these are called long-term P problems). In this context 
(NP-C problems, long-term P problems, or in general problems difficult to solve), making 
use of exact algorithms is ineffective. So approximate algorithms should deal them in order 
to find “quickly” (reasonable run-times), with “high” probability, provable “good” 
solutions (low error from the real optimal solution). In the last 20 years, a new kind of 
approximate algorithms commonly called metaheuristics have emerged in this class, which 
basically try to combine heuristics in high level frameworks aimed at efficiently and 
effectively exploring the search space.  

In the next section the basic concepts of metaheuristics will be outlined, allowing 
different kinds of classification between them. 

In the sections 3 and 4, the most important single-point and population-based 
methods will be presented in order to analyze their similarities and differences, advantages 
and disadvantages and components from a conceptual point of view. 

In the section 5, the two very significant forces of intensification and diversification, 
that mainly determine the behavior of metaheuristics, will be pointed out, concluding by 
exploring the importance of hybridization and integration methods in section 6. 

 
 

2. CONCEPTS AND CLASSIFICATION OF META-HEURISTICS 
 
Approximate algorithms can be divided in two main classes: local-search 

algorithms and constructive algorithms. In short, the first class starts from an initial 
solution and it tries to replace the current solution at each step with a “better” one in a 
neighborhood of the current solution. Here the neighborhood of a current solution s is 
defined as a function , which assigns to every s ∈ S a set of neighborhoods 
N(s) ⊆ S, where S is the search space. With the introduction of a neighborhood structure it 
is possible to define the concept of locally minimal solution (or local minimum) with 
respect to a neighborhood structure N(s), as a solution 

( ) sSsN 2: →

s such that ∀ s ∈ S → f (s) ≤ f (s). 
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The second class of approximate methods, constructive algorithms, builds a solution 
at each step, simply adding components to the solution of the previous step, until the 
constraints are satisfied. These methods are usually faster than local-search methods, but 
they also tend to be of lower quality. 

In recent years, there have been significant advances in the theory and application of 
meta-heuristics to the approximate solution of hard optimization problems. The term 
metaheuristic derives from the composition of two Greek words: “Heuristic” (from the verb 
heuriskein) that means “to find”; and the suffix “Meta” that means “beyond, in an upper 
level”. Before this term was largely adopted, metaheuristics were often called modern 
heuristics (Rayward-Smith V.J., Osman I.H., Reeves C.R. and Smith G.D, 1996). As 
illustrated in (FIG 2), this family includes, but it is not limited to, Tabu Search (TS), 
Simulated Annealing (SA), Explorative Local Search Methods including Greedy 
Randomized Adaptive Search Procedures (GRASP), Iterated Local Search (ILS), Variable 
Neighborhood Search (VNS) and Guided Local Search (GLS), Evolutionary Computation 
(EC) including Genetic Algorithms (GA) and Ant Colony Optimization (ACO).  

As Voss S., Martello S., Osman I.H. and Roucairol C., (1999) state, “A 
metaheuristic is an iterative master process that guides and modifies the operations of 
subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a 
complete (or incomplete) single solution or a collection of solutions at each iteration. The 
subordinate heuristics may be high (or low) level procedures, or a simple local search, or 
just a construction method”. 

Summarizing, metaheuristics are strategies, approximate and usually non 
deterministic, that guide the search process to efficiently explore the search space in order 
to find (near-) optimal solutions, using techniques which range from simple local search 
procedures to complex learning processes. They are not problem-specific, can incorporate 
mechanisms to avoid “traps” (local optima), may use domain-specific knowledge to explore 
the best promising areas and finally they can memorize the search experience in order to 
guide the future search (long/short-time form of memory). 

It is very important to clarify the concepts of diversification and intensification used 
in metaheuristics; the first term means the exploration of the search space while the latter 
one the exploitation of the accumulated search-experience. When the search process starts, 
it needs to compute the value of very different points in the search domain in order to find 
the promising areas (diversification). Then the algorithm needs to investigate promising 
zones to find the local-optimum (intensification). The best local optimum found in the 
different areas will be the candidate solution, hoping to be as near as possible to the 
optimum that the algorithm is looking for. The terms “diversification” and “intensification” 
are mainly used in methods based on the concept of memory, such as Tabu Search. 
Conversely the terms “exploration” and “exploitation” are used in strategies that don’t 
require explicit usage of memory, such as evolutionary computation. Finding a good 
balance between diversification (exploration) and intensification (exploitation) is essential 
for a metaheuristic in order to quickly identify regions in the search space with high quality 
solutions, without wasting too much time in regions with a low quality. Metaheuristics can 
be classified in different ways depending on the specific point of view of interest.  

A first classification can be made by considering nature-inspired algorithms, such as 
Genetic Algorithms and Ant Algorithms, and non-nature inspired ones, such as Tabu 
Search and Iterated Local Search. This classification is not very meaningful because many 
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recent hybrid algorithms fit both classes at the same time and also because sometimes it is 
not possible to clearly attribute an algorithm to one of the two classes. 
A second classification can be population-based, like Genetic Algorithms, and single point 
search methods, such as Tabu Search, Iterated Local Search and Simulated Annealing. The 
algorithms of this latter class are often called also trajectory methods because they work on 
a single solution at each time-step describing a curve (trajectory) in the search space during 
the progress of the search; they encompass local search-based metaheuristics. On the other 
hand, population-based metaheuristics compute simultaneously a set of points at each time-
step of the search process, describing the evolution of an entire population in the search 
domain (FIG 2). 

Metaheuristics can also be classified according to the way they make use of the 
objective function. If, during the search, the objective function is altered by trying to 
incorporate information collected during the search process (for example to escape from 
local minima), then the metaheuristic is said to have a dynamic objective function, as with 
the Guided Local Search (GLS). Techniques that keep the objective function as it is given 
by the problem belong to the class of metaheuristic with a static objective function. 

Moreover, most metaheuristic algorithms work on one single neighborhood 
structure, i.e. the fitness landscape topology does not change in the course of the search 
process. Other metaheuristics, such as Variable Neighborhood Search (VNS), use a set of 
neighborhood structures (various neighborhood structures), diversifying the search by 
swapping between different fitness landscapes. 

Finally, a very important feature to classify metaheuristics is the usage of a memory 
during the search history, because it is one of the fundamental elements of a powerful 
metaheuristic. In memory-less algorithms the next state depends only on the information 
accumulated in the current state of the search process, as a Markov process, while in 
memory-usage algorithms there is a usage of a short-term and/or a long-term memory. 
Usually, the first keeps track of recently visited solutions (moves), while the second is a 
huge storage of information about the entire search process. 

The classification of metaheuristics in trajectory and population based methods 
permits a clear distinction between these kinds of algorithms. In the following sections, the 
most important single-point and population-based methods will be presented in order to 
analyze their similarities and differences, advantages and disadvantages and components 
from a conceptual point of view. 

 

 
 

FIG 2: Main metaheuristics and their principal classification in trajectory and population-based methods. 
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3. TRAJECTORY METAHEURISTICS 
 
Trajectory methods are so called because the search process designs a trajectory in 

the search space, starting from an initial state and dynamically adding a new better solution 
to the curve in each discrete time-step. So, this process can be seen as the evolution in time 
of a discrete dynamical system in the state space. The generated trajectory is useful because 
it provides information about the behavior of the algorithm and its dynamics in order to 
chose the most effective method to solve the problem instance under consideration. The 
system dynamics are the result of the combination of algorithms (i.e. chosen strategy), 
problem representation (i.e. definition of the search landscape) and problem instance. 
Trajectory shape depends on the strategy used: simple algorithms generate a trajectory 
composed of a transient phase followed by an attractor (a fixed point, a cycle or a complex 
attractor); advanced algorithms generate more complex trajectories comprising more 
different phases, representing the dynamic tuning between diversification and 
intensification during the search process. These continuous oscillations provide alternate 
phases in the designed trajectory, trying to find an optimal balance between these 
fundamental strengths. The main trajectory search methods are described below.  

 
 

3.1 BASIC LOCAL SEARCH (OR ITERATIVE SEARCH) 
 
Basic Local Search is the simplest trajectory search technique, and is often used in 

conjunction with other techniques. The concept is simple: every “move” from the current 
solution to the candidate solution is only performed if the objective function value given by 
the candidate solution is smaller than the value given by the current solution (in the case of 
a minimization problem). A move is the choice of a solution s’ from the neighborhood N(s) 
of the previous solution s, that is s’∈N(s). The algorithm halts when a better solution can’t 
be found (i.e. the current solution is a local minimum). Formally, in pseudo code, the 
procedure may be specified as follows (Blum C. and Roli A., 2003): 

 
s  = Generate-Initial-Solution(); 
repeat 
   s =  Improve(N(s)); 
until no improvements are possible 

 
The procedure Improve(N(s)) can be in the extremes either a first improvement, or a 

best improvement function, or any intermediate option. The former scans the neighborhood 
N(s) and chooses the first solution that is better than s, the latter exhaustively explores the 
neighborhood and returns one of the solution with the lowest objective function value. Both 
methods stop at local minima. Therefore, their performance strongly depends on the 
definition of the search space S, of the objective function f and of neighborhood structure 
N(⋅).  

The effectiveness of a Basic Local Search tends to be highly unsatisfactory for 
combinatorial optimization problems, because it often becomes trapped in a local 
minimum. Some extra mechanisms have been developed to enable the procedure to escape 
from a local minimum, but they add computational complexity to the entire procedure. 
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Therefore, rather than as a stand-alone algorithm, Basic Local Search is usually used as a 
component in hybrid metaheuristics in order to improve performance to try solving a 
specific CO problem. 

Possible termination conditions of a Basic Local Search could be:  
− Reaching the maximum cpu time; 
− Reaching the maximum total numbers of iterations; 
− Finding a solution s with an objective function f(s) smaller than a threshold value; 
− Achieving a maximum number of iterations without improvements. 

 
 

3.2 SIMULATED ANNEALING (S.A.) 
 
Simulated Annealing (SA) is possibly the oldest probabilistic metaheuristic for 

global optimization problems, and surely one of the first to explitly provide a way to escape 
from local traps. It was independently invented by Kirkpatrick S., Gelatt C. D. and Vecchi 
M. P. (1983), and by V. Cerny (1985). The SA metaheuristic performs a stochastic search 
of the neighborhood space. In the case of a minimization problem, modifications to the 
current solution that increase the value of the objective function are allowed in SA, in 
contrast to classical descent methods where only modifications that decrease the objective 
value are possible.  

The name and inspiration of this method come from the process of annealing in 
metallurgy, a technique involving heating and controlled cooling of a material to increase 
the size of its crystals and reduce their defects. The heat causes the atoms to become 
unstuck from their initial positions (a local minimum of the internal energy) and wander 
randomly through states of higher energy; the slow cooling provides an opportunity to find 
configurations with lower internal energy than the initial one.  

By analogy with this physical process, each step of the SA algorithm replaces the 
current solution by a random "nearby" solution, chosen with a probability that depends on 
the difference between the corresponding function values and on a global parameter T 
(called temperature), that is gradually decreased during the process (cooling process).  

The dependency is such that the current solution changes arbitrarly in the search 
domain when T is large, i.e. at the beginning of the algorithm, through uphill moves (or 
random walks) that saves the method from becoming stuck at a local minimum. 
Afterwards, the temperature T is gradually decreased, intensifying the search process in the 
specific promising-zone of the domain (downhill moves).  

More precisely, the current solution is always replaced by a new one if this 
modification reduces the objective value, while a modification increasing the objective 
value by ∆ is only accepted with a probability e -∆/T. At a high temperature, the probability 
of accepting an increase to the objective value is high (uphill moves: high diversification 
and low intensification). Instead, this probability gets lower as the temperature is decreased 
(downhill moves: high intensification and low diversification).  

The process described is memory-less because it follows a trajectory in the state 
space in which the successor state is chosen depending only on the incumbent one, without 
taking into account the past of the search process.  

This strategy is specified in pseudo code as follows (Blum C. and Roli A., 2003): 
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s = s0;   //Generate-Initial-Solution() 
T = T0; 
e = e0;   //e0 > emax 
k = 0; 
while k < kmax and e > emax do 
   s’ = neighbor(s);   //Pick-At-Random(N(s)) 
   if f(s’) < f(s) then 
      s = s’;   //s’ replaces s 
   else 

      if rand() < 

( ) ( )
T

sfs'f −-
e  then 

s = s’; //Accepting a worse s’ as new solution with a 
given  probability 

      endif 
   endif 
   Update(T); 
   k = k + 1; 
Endwhile   //termination conditions met 
return s; 
 

The initial temperature value, the number of iterations to be performed, the 
temperature value at each step, the cooling (reduction) rate of T, and the stopping criterion 
are determined by the so-called “SA cooling schedule”, generally specified by the 
following rule: 

 
Tk+1 = funct(Tk ,K); 

 
Theoretical results on non-homogeneous Markov chains (Aarts E. H. L., Korst J. H. 

M. and Laarhoven P. J. M. V., 1997) state that under particular conditions on the cooling 
schedule, the algorithm converges in probability to a global minimum for k→∞. More 
precisely, calling pk the probability to find a global minimum after k steps: 

 

;1lim/
1

=⇔∞→ℜ∈Γ∃
∞→

∞

=

Γ

∑ kk
k

T peiif k ; 

 
So different cooling schedules, all satisfying this hypothesis of convergence, may be 

considered, such as a logarithmic cooling law: 
 

( )0
1 lg KK

Tk +
Γ

=+ ; 
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The drawback of this logarithmic cooling law is that it is too slow for practical 

purposes; therefore faster cooling schedule techniques are adopted in real applications, such 
as a geometric cooling law, which is a cooling rule with an exponential decay of the 
temperature: 

 
[ ]1,0where;1 ∈⋅=+ αα kk TT ; 

 
Other complex cooling techniques can be used in order to improve the performance 

of the SA algorithm. For example, to have an optimal balance between diversification and 
intensification, the cooling rule may be updated during the search process. At the beginning 
T can be constant or linearly decreasing to have a high diversification factor for a larger 
exploration of the domain; after that, T can follow a fast rule, such as the geometric one, to 
converge quickly to a local optimum.  

Other successful variants are non-monotonic cooling schedules that alternate phases 
of cooling and reheating, providing an oscillating balance between diversification and 
intensification. 

Concluding, simulated annealing has been applied to several combinatorial 
problems, such as (Blum C. and Roli A., 2003): 

− Quadratic Assignment Problem (QAP);  
− Job Shop Scheduling (JSS) problem. 
Rather than as a stand-alone algorithm, it is nowadays used as a component in 

hybrid metaheuristics to improve performance as in Threshold Accepting and Great Deluge 
Algorithms (Blum C. and Roli A., 2003). 

 
 

3.3 TABU SEARCH (T.S.) 
 
Tabu Search (TS) method, introduced by Glover (1986), is one of the most widely 

used metaheuristics. It shares with SA the ability to guide the search avoiding traps in poor 
local optima, but in a deterministic way rather than a stochastic one, modeling human 
memory processes.  

Memory is implemented by the implicit recording of previously seen solutions using 
a simple data structure. This consists of a tabu list of moves which have been made in the 
recent past of the search, and which are forbidden (tabu) for a certain numbers of iterations. 
This helps to avoid cycling, and serves also to promote a diversified search of the solution, 
trying to escape from local minima.  

At each iteration, TS moves to the best admissible neighbour restricted to the 
solutions that do not belong to the tabu list, referring to this set as the allowed set. The best 
solution from the allowed set is chosen as the new current solution, it is added to the tabu 
list and the oldest element of the tabu list removed (FIFO queue). Due to this dynamic 
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restriction of allowed solutions in a neighborhood, TS can be considered as a dynamic 
neighborhood search technique, with a short term memory implemented by the tabu list.  

The entire algorithm stops when a termination condition is met or the allowed set is 
empty, as specified in the following procedure (Blum C. and Roli A., 2003): 

 
s  = Generate-Initial-Solution(); 
TabuList = ∅;  
while termination conditions not met do 
   s = Choose-Best-Of(N(s) \ TabuList);  
   Update(TabuList); 
Endwhile 

 
Generally, usage of memory in metaheuristics can be described in terms of four 

“dimensions” in the search: recency, frequency, quality and influence, in which the first 
two are the most important.  

Recency records the most recent iteration in which a solution was involved. In TS 
the most recent moves are forbidden and the length of the tabu list, called “tabu tenure”, 
represents the recency principle. The tabu tenure is either fixed or dynamically updated 
during the search process. If its value is small, there is a high exploitation of the domain, 
but not many uphill moves to differentiate the search. Otherwise, if the tabu tenure is large, 
the exploration of new areas is encouraged because it forbids revisiting a large number of 
solutions.  

Obviously, it is more convenient varying the tabu tenure dynamically. For example, 
the tabu tenure could be periodically reinitialized at random between a minimum value and 
a maximum value. Otherwise, it could be manually increased if there are many solution 
repetitions (i.e. a larger diversification factor is needed), while it could be decreased if no 
improvements are obtained and more intensification is required. 

It is often beneficial to focus on some components or attributes of a move rather 
than on the complete move itself, avoiding managing a list on entire solutions that could 
make TS inefficient and not practical. Attributes are stored in different tabu lists defining 
the tabu conditions, which are used to filter the neighborhood of a solution and generate the 
allowed set. A neighbouring solution is considered forbidden and deemed not admissible if 
it has attributes on a tabu list.  

Storing attributes rather than complete solutions is much more efficient, but also it 
may cause some non-tabu solutions, because forbidding an attribute means assigning the 
tabu status to probably more than one solution. To correct such errors aspiration criteria 
are defined, enabling the introduction of a solution in the allowed set even if it is forbidden 
by tabu conditions. The most commonly used aspiration criterion selects elements that are 
better than the current solution.  

If recency simulates the short-term memory, a long-term memory can be 
implemented by the use of a variety of frequency measures, as “residence” measures and 
“transition” measures. The former is related to the number of times a particular attribute is 
observed, while the latter relates to the number of times an attribute changes from one value 
to another. In each case, the frequency measures are usually employed to generate 
penalties, which modify the objective function. Thereby, diversification is encouraged by 
the generation of solutions embodying combinations of attributes significantly different 
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from those previously encountered. Conversely, intensification is promoted by 
incorporating attributes of solutions from selected subsets of elements, called elite subsets, 
implicitly focussing the search in sub-regions defined relative to these subsets. 

After discussing the concepts of recency and frequency, it may be also helpful to 
provide a brief reiteration of the basic notions of quality and influence.  

Quality in TS usually refers to those solutions with good objective function values. 
A collection of such elite solutions may stimulate a more intensive search in the most 
promising regions of the search area.  

Influence is roughly a measure of the degree of change induced in solution structure, 
commonly expressed in terms of the distance of a move from one solution to the next. It is 
an important aspect of the use of aspiration criteria, and is also relevant to the development 
of candidate list strategies. Influence is a property regarding choices made during the search 
and can be used to indicate which choices have shown to be the most critical. 

The Tabu Search heuristic is a rich source of ideas. Many of these ideas together 
with the corresponding strategies have been, and are currently, adopted by other 
metaheuristics. From a practical point of view, a recency-based approach with a simple 
neighborhood structure, searched using a restricted candidate list strategy, will often 
provide very good results.  

TS has been applied to most CO problems; examples of successful applications are 
(Blum C. and Roli A., 2003): 

− Robust Tabu Search to the QAP; 
− Reactive Tabu Search to the MAXSAT problem; 
− multidimensional Knapsack problem; 
− cutting and packing problems;  
− assignment problems;  
− Job Shop Scheduling (JSS) problems (TS dominates completely this area); 
− vehicle routing. 
 

 
3.4 EXPLORATIVE LOCAL SEARCH METHODS 

 
Explorative Local Search Methods are a family of trajectory algorithms recently 

developed. The most important ones, such as GRASP (Greedy Randomized Adaptive 
Search Procedure), VNS (Variable Neighborhood Search), GLS (Guided Local Search), 
and ILS (Iterated Local Search), will be briefly explained below.  

 
 

3.4.1 GRASP: GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE  
 
GRASP is a recently exploited method combining the power of greedy heuristics, 

randomization, and local search. It mainly consists of a construction phase and a local 
search improvements phase, as specified in the following pseudo code procedure (Blum C. 
and Roli A., 2003): 
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GRASP ALGORITHM: 
while termination conditions not met do 
   s  = Construct-Greedy-Randomized-Solution(); // 1° phase 
   Apply-Local-Search(s); // 2° phase 

Memorize-Best-Found-Solution();  
Endwhile 

 
1° phase – Construct Greedy Randomized Solution(): 

while termination conditions not met do 
   s  = Construct-Greedy-Randomized-Solution();  
   Apply-Local-Search(s); // 2° phase 

Memorize-Best-Found-Solution();  
Endwhile 
 
s = 0; // s denotes a partial solution in this case 
α = Determine-Candidate-List-Length(); //def. of RCL length 
while solution not complete do 
   RCLα = Generate-Restricted-Candidate-List(s); 
   x = Select-Element-At-Random(RCLα); 
   s = s ∪ {x};    
   Update-Greedy-Function(s); //update of the heuristic values 
Endwhile 

 
2° phase – Apply Local Search(s): 

Solution-Improvement(); //e.g. S.A., T.S. 
 
The solution construction mechanism is characterized by a dynamic constructive 

heuristic and by randomization: each solution is randomly produced step-by-step by 
uniformly adding one new element from a candidate list (RCLα) to the current solution. 
RCLα is the restricted candidate list of length α that contains the best α elements of the 
search space. The elements are ranked by means of a heuristic criterion that gives them a 
score as a function of the benefit if inserted in the current partial solution. 

These values can be either static values (fixed from the starting point to the end of 
the entire algorithm) or dynamic values (updated at each step depending on the current 
partial solution). The length α of the restricted candidate list is a very important parameter 
because it determines the strength of the heuristic bias, and also influences the sampling of 
the search space. In the extreme cases: 

• α = 1; only the best element would be added; construction mechanism is 
equivalent to a deterministic Greedy Heuristic; 

• α = n; completely random construction mechanism; random-choice of elements 
from RCLα.  

The simplest scheme to define α is updating it at each step, either randomly or by 
means an adaptive scheme. 

After the solution construction phase, a local search is applied (such as S.A., T.S., 
iterative improvements) to try to improve the best current solution. The best element found 
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since the starting iteration is memorized, and the algorithm continues until the user 
termination conditions are reached. 

Basic GRASP does not use history-memory of the search process and, for this 
reason, it is often outperformed by other metaheuristics. For its characteristics of simplicity 
and high speed, it is able to produce good solutions in a short amount of time. For example, 
it is a useful method for generating good starting points for other hybrid metaheuristics.  

GRASP can be effective if the solution construction mechanism samples the most 
promising regions of the domain (by using an effective constructive heuristic and an 
appropriate value of α), and if the resulting solutions from the constructive heuristic belong 
to regions associated with different local minima (by using an effective constructive 
heuristic and an appropriate local search). 

Successful applications of GRASP are (Blum C. and Roli A., 2003): 
− Graph Planarization problems; 
− grouping and clustering problems; 
− production planning; 
− vehicle routing; 
− assignment problems;  
− Job Shop Scheduling (JSS) problems. 
 
 

3.4.2 VNS: VARIABLE NEIGHBORHOOD SEARCH 
 
Variable Neighborhood Search is a new and widely applicable metaheuristic that 

makes use of a strategy based on dynamically changing neighborhood structures during the 
search process (Hansen and Mladenović, 1999, 2001, 2003, 2005). VNS provides a general 
framework and many variants exist for specific requirements. VNS doesn’t follow a 
trajectory, but it searches for new solutions in increasingly distant neighborhoods of the 
current solution, jumping only if they are better than the current best solution.    

At the starting point it is required to define arbitrarily the neighborhood structure. 
The simplest and more ordinary choice is a structure in which the neighborhoods have 
increasingly cardinality: |N1(s)| < |N2(s)| < … < |Nmax(s)| (Nevertheless, with this sequence a 
large number of solutions could be revisited, at the cost of increased computational time. 
Today, attempts to improve the scanning of the landscape are made through more complex 
neighborhood structures). 

The process of changing neighborhoods in the case of no improvements corresponds 
to a diversification of the search. In particular the choice of neighborhoods of increasing 
cardinality yields a progressive diversification.  

The VNS approach can be summarized in the sentence: “One Operator, One 
Landscape”, meaning that promising zones on the search space given by a specific 
neighborhood may not be promising for other neighborhoods (landscape). Nevertheless, a 
local optimum with respect to a given neighborhood may not be locally optimal with 
respect to another neighborhood.  

The VNS basic procedure is specified below (Blum C. and Roli A., 2003): 
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VNS ALGORITHM: 
Select a set of neighborhood structures Nk(s), with k =1… max;          

// 0. Initialization phase, e.g. |N1(s)| < |N2(s)| < … < |Nmax(s)| 
s = Generate-Initial-Solution();  
while termination conditions not met do 
   k = 1; 
   while k < max do  // Inner loop 
      s’ = Pick-At-Random (Nk(s));  // 1. Shaking phase 
      ŝ = Local-Search (s’);  // 2. Local search phase 
      if ( f (ŝ) < f (s)) then 
         s = ŝ; // 3. Move phase 
         k = 1; 
      else 

      k = k + 1;  
   endif 

   Endwhile // end inner loop 
Endwhile 
 

The shaking phase consists of the random selection of a point s’ in the neighborhood 
of the current solution Nk(s). It provides a good starting point for the local search phase 
because s’ may belong to a different basin of the current solution s (inner the Nk(s)), but 
maintaining some good characteristics of it. The random point s’ is generated in order to 
avoid cycling, which might occur if any deterministic rule was used. The succeeding local 
search is not restricted to Nk(s) but any neighborhood structure can be used. Afterwards, if 
no improvements are obtained (f (ŝ) > f (s)) in the move phase, the neighborhood structure 
is changed (k = k + 1) giving a progressive diversification (in the case of increasing 
cardinality neighborhoods |N1(s)| < |N2(s)| < … < |Nmax(s)|). As usual, the stopping 
conditions may be to reach either the maximum allowed CPU time, the maximum number 
of iterations, or the maximum number of iterations between two succeeding improvements.  

Numerous variants in VNS have been found. Experimentally, VNS performance can 
be improved if s’ is not just picked at random from Nk(s), but it is achieved by performing 
an iterative search in the shaking phase between a random selection of points. Moreover, 
setting k = k + kstep instead of k = k + 1, and k = kmin instead of k = 1, gives an easy and 
natural way to drive the intensification and diversification of the search. It is also possible 
to remove the local search step (RVNS: Reduced VNS) for very large instances for which it 
is costly, making it similar to the classic Monte-Carlo method. Other more successful 
variants can be achieved and they will be described below.    

A first important successful variant of VNS is the Variable Neighborhood Descent 
(VND) algorithm. It is based on the fundamental concept: the properties of a neighborhood 
are in general different from those of other neighborhoods and, therefore, a search strategy 
performs differently on them (Hansen and Mladenović, 2005). As Simulated Annealing, 
VND is a descent-ascent method because it may accept a worse candidate solution ŝ, 
following a certain probability 

( ) ( )( )sfs'f −-e  inserting in the move phase (Conversely, VNS 
is a descent method because it only accepts a candidate solution if it is better than the 
current one).  
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Moreover, instead of a first improvement strategy (used in the VNS shaking phase), 
VND makes use of a best improvement search in Nk(s) in order to improve its performance. 
The VND algorithm can be obtained by substituting the inner loop of the VNS procedure, 
as specified in the following (Blum C. and Roli A., 2003): 

 
VND ALGORITHM: 

Select a set of neighborhood structures Nk(s), with k =1… max;          
// 0. Initialization phase, e.g. |N1(s)| < |N2(s)| < … < |Nmax(s)| 

s = Generate-Initial-Solution();  
while termination conditions not met do 
   k = 1; 
   while k < max do  // Inner loop 
      s’ = Chose-Best-Of (Nk(s));   
      if ( f (s’) < f (s)) then 
         s = s’; // Move phase 
      else       

      if rand() < 
( ) ( )( )sfs'f −-e then 

    s = s’;   // Flexible move phase: Accepting a worse s’ as new 
solution with probability 

( ) ( )( )sfs'f −-e  
      else 

k = k + 1; // no improvements: local minimum reached; 
let’s investigate in another neighbor 

      endif 
   endif 

   Endwhile // end inner loop 
Endwhile 
 

The best improvement local search is applied in the current neighborhood (Chose-
Best-Of (Nk(s))) and, in case a local minimum is found (i.e. no other improvements in that 
neighbor), the search proceeds investigating if the solution found is also a local optimum 
for the successive neighborhood (k = k + 1). Conversely, if a move is performed (s = s’), the 
search will proceed with the same neighborhood structure until a minimum is reached. As 
in the classical VNS, the search will stop if either the maximum CPU time, the maximum 
number of iterations, or the maximum number of iterations between two improvements is 
reached. The choice of the neighborhood structures is the critical point in VNS and VND, 
because the neighborhoods should exploit different properties and characteristics of the 
search space. So another variant of VNS, called Variable Neighborhood Decomposition 
Search (VNDS), selects the neighborhoods producing a decomposition of the problem 
instance (Hansen and Mladenović, 2005). VNDS follows the usual VNS scheme, but the 
neighborhood structures and the local search are defined on sub-problems of each solution, 
All attributes (variables) of the current solution are kept fixed with the exception of k of 
them, which define a neighborhood structure Nk. Local search only regards changes on the 
variables belonging to the sub-problem it is applied to.  

VNDS procedure can be obtained by substituting the inner loop of the VNS 
algorithm, as specified in the following (Blum C. and Roli A., 2003): 
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VNDS ALGORITHM: 

Select a set of neighborhood structures Nk(s), with k =1… max;          
// 0. Initialization phase, e.g. |N1(s)| < |N2(s)| < … < |Nmax(s)| 

s = Generate-Initial-Solution();  
while termination conditions not met do 
   k = 1; 
   while k < max do  // Inner loop 
      s’ = Pick-At-Random (Nk(s));  // 1. Shaking phase 
      ŝ = Local-Search (s’, k variables);       // 2. Local search phase 
      if ( f (ŝ) < f (s)) then 
         s = ŝ; // 3. Move phase 
         k = 1; 
      else 

      k = k + 1;  
   endif 

   Endwhile // end inner loop 
Endwhile 

 
In the shaking phase the current solution s and the incumbent one s’ differ only in k 

attributes (variables); in the local search phase the new solution ŝ is found by just allowing 
movements involving these k attributes. If a better solution ŝ is reached, the algorithm will 
start again setting k = 1 (i.e. the first neighborhood). Conversely, if no improving solutions 
are reached (f (ŝ) > f (s)) it means that the current solution s is a local minimum for k 
variables; so the algorithm will increase the number of the variables (k = k + 1) and will go 
on the search. The algorithm will stop if the usual stop conditions are met.  

VNS, VND, and VNDS are steepest descent-oriented algorithms and often they are 
unsuitable to effectively explore the search space. So another variant has been developed 
called Skewed VNS (SVNS), which extends VNS providing a more flexible acceptance 
criterion (Hansen and Mladenović, 2005). As an alternative to only accepting solution 
improvements, worse solutions s’’ can be accepted if they differ from the current one less 
than the value of α ⋅ ρ(s, s’’), where ρ(s, s’’) is the distance (previously defined) between s 
and s’’, and α is a weight parameter in the acceptance criterion. The SVNS procedure is 
specified in the following pseudo code (Blum C. and Roli A., 2003): 

 
SVNS ALGORITHM: 

Select a set of neighborhood structures Nk(s), with k =1… max;          
// 0. Initialization phase, e.g. |N1(s)| < |N2(s)| < … < |Nmax(s)| 

s = Generate-Initial-Solution();  
while termination conditions not met do 
   k = 1; 
   while k < max do  // Inner loop 
      s’ = Pick-At-Random (Nk(s));  // 1. Shaking phase 
      s’’ = Local-Search (s’);  // 2. Local search phase 
      if ( f (s’’) - f (s) < α ⋅ ρ(s, s’’)) then         // new  accept. criterion 
         s = s’’; // 3. Move phase: improvements + worse  
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// solutions in the range α⋅ρ(s, s’’) 
         k = 1; 
      else 

      k = k + 1;  
   endif 

   Endwhile // end inner loop 
Endwhile 

 
Variable Neighborhood Search and its variants have been successful applied to 

many CO problems (Hansen P. and Mladenović N., 2003), such as: 
− Traveling Salesman Problem (TSP); 
− vehicle routing; 
− location and clustering problems; 
− weighted MAXSAT problem:  
− graph and network based problems;  
− Job Shop Scheduling (JSS) problems. 
 
 

3.4.3 GLS: GUIDED LOCAL SEARCH 
 
The Guided Local Search (GLS) approach gradually moves (to guide the search) 

away from local minima by changing the search landscape. In contrast to Tabu Search and 
VNS strategies, the set of solutions and the neighborhood structure are kept fixed while the 
objective function f is dynamically changed, in order to make the current local optimum 
less desirable and trying to escape from it (FIG 3).  
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FIG 3: Guided Local Search strategy: escaping from traps increasing the relative objective function value,  
(Blum C. and Roli A., 2003). 
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This strategy is based on the definition of solution features, which may be any kind 
of properties or characteristics that can be used to discriminate between solutions (e.g. in 
TSP they could be arcs between pairs of cities, while in the MAXSAT problem the number 
of unsatisfied clauses could be considered).  

An indicator function Ii(s) is defined to show if the feature i is present in a specific 
solution s: 

( )
⎩
⎨
⎧

=
othewise

ssolutioninpresentisifeatureif
sIi 0

1
 

 
The new objective function f’ is equal to the sum of the current objective function f 

and a term depending on the m features: 

( ) ( ) ( )∑
=

⋅⋅+=
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i
ii sIpsfsf
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where λ is the regulation parameter balancing the importance of features I respect 
the original f(s); pi are the penalty parameters weighting the importance of the specific 
feature i. Before the actual search starts, the algorithm initializes all penalties parameters to 
zero, and assigns the variables uniformly at random. After each search phase, the penalties 
of all features with maximal utility are incremented by one, where the utility of a solution s 
under feature i is defined as: 

 

( ) ( )
⎪⎩

⎪
⎨
⎧

+
⋅

=
othewise

ssolutioninpresentisifeatureif
p

c
sIisUtil i

i
i

0
1,  

 
where ci is the cost assigned to feature i, obtained from an heuristic evaluation of the 

relative importance of features with respect to others (the higher the costs, the higher are 
the utilities of the associated features). Nevertheless, the cost is scaled by the penalty 
parameter to prevent the algorithm from being totally biased toward the cost, making it 
sensitive to the search history. The GLS procedure is specified in the following pseudo 
code (Blum C. and Roli A., 2003): 

 
s  = Generate-Initial-Solution(); 
while termination conditions not met do 
   for “all features I with Max Util(s, i)” do 
      pi = pi + 1; // or a variant is pi = α · pi  with α ∈ [0, 1]; 
   end for 
Update(f’, p); 
Endwhile 

 
where p = [p1, p2, …, pm] is the vector of penalties, updated in every search cycle, 

together with the incumbent objective function f’. 
A variant is to apply the penalties update rule (i.e. the multiplicative rule) with a 

lower frequency than with an incrementing rule (for example every few hundreds of 
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iterations), in order to smooth the weights of penalized features and to prevent the 
landscape from becoming too rugged. The penalty update rules are often very sensitive to 
the problem instance. Another extension of GLS uses an additional mechanism for 
bounding the range of the penalties: if after the updating process, the maximum penalty 
exceeds a given max threshold, all penalties are uniformly decayed, improving the 
performance of the algorithm and its efficacy to solve large and hard structured instances of 
problems. 

Successful applications of GLS are (Blum C. and Roli A., 2003): 
− Traveling Salesman Problem (TSP); 
− vehicle routing; 
− weighted MAXSAT problem;  
− Quadratic Assignment Problem (QAP). 
 
 

3.4.4 ILS: ITERATED LOCAL SEARCH 
 
Iterated Local Search (ILS) mainly consists of two steps, the first to reach local 

optima performing a walk in the search space, while the second to efficiently escape from 
local optima. The aim of this strategy is to prevent getting stuck in local optima of the 
objective function. Iterated Local Search is probably the most general scheme among the 
explorative strategies. It is often used as framework for other metaheuristics or can be 
easily incorporated as subcomponents in some of them to build effective hybrids. Formally, 
in pseudo code its procedure may be specified as following (Blum C. and Roli A., 2003): 

  
s0  = Generate-Initial-Solution();  
ŝ = Local-Search(s0); 
while termination conditions not met do 
   s’ = Perturbation (ŝ, history); 
   ŝ’ = Local-Search (s’);   
   if ( f (ŝ’) < f (ŝ)) then  // Move phase 
      ŝ = ŝ’;     // improvements  
   else 
      ŝ = Apply-Acceptance-Criterion (ŝ, ŝ’, history); // acceptance  

// criterion for worse solutions 
endif 

Endwhile     // end inner loop 
 
The algorithm initializes the search by selecting an initial candidate solution s0. The 

construction of s0 should be both computationally not expensive and a good starting point 
for local search. The fastest way is to generate randomly the initial solution. However 
constructive heuristics may also be adopted in order to quickly find high-quality starting 
points. Afterwards, a locally optimal solution ŝ is achieved by applying a local search 
procedure, whose characteristics have a considerable influence on the performance of the 
entire algorithm.  

The core of the overall algorithm mainly consists of the following three phases: 
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1. A “perturbation” applied to the current candidate solution ŝ; 
2. Another “local search” performed to the modified solution s’ in order to find a local 

optimum s’’; 
3. The application of an “acceptance criterion” to decide which of the two local optima, 
ŝ’ or ŝ, has to be chosen to continue the search process. 
The specific steps have to be properly designed and set to find a good tradeoff 

between intensification and diversification, and so achieving high performance in the 
difficult CO area. Both the perturbation and the acceptance criterion mechanisms can use 
aspects of the search history (long- or short-term memory). For example, stronger 
perturbation should be applied when the same local optima are repeatedly encountered. 

The role of the perturbation (usually probabilistic to avoid cycling) is to modify the 
current candidate solution to help the search process to effectively escape from local 
minima, in order to eventually find different better points. Typically, the strength of 
perturbation has a strong influence on the length of the subsequent local search phase. It 
can be either fixed (independently of the problem size) or variable. However, the latter one 
is in general more effective because the bigger the problem size is, the larger should be the 
strength. A more sophisticated adaptive strength scheme is also possible in which the 
perturbation strength is increased when more diversification is needed, and decreased when 
intensification seems preferable (VNS and its variants belong to this category). 

The acceptance criterion has also a strong influence on the behavior and 
performances of ILS. The two extremes are: 
− Accepting the new local optimum only in case of improvement (strong 

intensification: iterative improvement mechanism); 
− Always accepting the new solution (high diversification: random walk in the search 

space).  
Between these extremes, there are several intermediate choices. It is possible, for 

example, to adopt a kind of annealing schedule: accepting all the improving candidate 
solutions and also the non-improving ones with a probability that is a function of the 
temperature T and the difference of objective function values (Blum C. and Roli A., 2003): 
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As in simulated annealing, the cooling schedule for the temperature T can be either 

monotonic (non-increasing in time) or non-monotonic (adapted to tune the balance between 
diversification and intensification). The non-monotonic schedule is particularly effective if 
it exploits the history of the search: instead of constantly decreasing the temperature, it is 
increased when more diversification seems to be required. 

Successful applications of GLS are (Blum C. and Roli A., 2003): 
− Traveling Salesman Problem (TSP); 
− Single Machine Total Weighted Tardiness (SMTWT) problem; 
− Quadratic Assignment Problem (QAP). 
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4. POPULATION-BASED METAHEURISTICS 
 
Population-based methods deal at each step with a set of solutions (or a population) 

rather than with a single one, providing a natural and intrinsic way to explore the search 
space. Their performance strongly depends on the way the populations are manipulated. 
The main population-based methods in combinatorial optimization are Evolutionary 
Computation (EC) and Ant Colony Optimization (ACO). In EC methods, specific 
recombination and mutation operators modify sets of individuals, while in ACO a colony of 
artificial ants is used to construct solutions guided by the pheromone trails and by heuristic 
information (as it will be specified in the following sections). 

 
 

4.1 EVOLUTIONARY COMPUTATION  
 
The field of natural evolution applied to optimization algorithms is at a stage of 

tremendous growth. The main idea consists of the survival of the best element in natural 
evolution processes. There are currently three well-defined paradigms, which have served 
as the basis for much of the research in this field:  

− Genetic Algorithms (GA);  
− Evolution Strategies (ES);  
− Evolutionary Programming (EP).  

Each of these emphasizes a different aspect of natural evolution. In general, they 
have foundation on the following evolutionary operators:  

a) Recombination or crossover, which recombines two or more individuals 
(ancestors) to produce new individuals (children);  

b) Mutation or modification, which causes a self-adaptation of individuals;  
c) Selection of individuals based on their fitness (value of an objective function or 

some measure of the quality of solutions), which is the driving force in 
evolutionary algorithms. Individuals with a higher fitness have a higher 
probability to be chosen as members of the next population (or as parents 
for the generation of new individuals). This is an analogy with the principle 
of survival of the fittest in natural evolution, i.e. the capability of nature to 
adapt itself to a changing environment. 

Formally, in pseudo code, the general EC procedure is specified as follow (Blum C. 
and Roli A., 2003): 

 
P  = Generate-Initial-Population (); 
Evaluate (P); 
while termination conditions not met do 
   P’ = Recombine (P); 
   P’’ = Mutate (P’); 
   Evaluate (P’’);  
   P = Select (P ∪ P’’); 
Endwhile     // end inner loop 
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EC methods often outperform classical optimization algorithms when applied to 
difficult real-world problems.  

It is generally accepted that any EC algorithm must have five basic components 
(Michalewicz, 1996): 

1) A genetic representation of problem solutions; 
2) A way to create the initial population; 
3) An evaluation function rating the solutions in terms of their fitness; 
4) Genetic operators (already mentioned); 
5) Values for the specific parameters (population size, probabilities of applying 

genetic operators, etc). 
The data structure used to represent the solutions and the set of genetic operators, 

constitute the skeleton of each EC algorithm. Historically, there are associations between 
GA and binary string representations, between ES and vectors of real numbers (in order to 
perform numerical optimizations), and between EP and finite state machines (in order to 
build predictive systems). The EP and ES communities have emphasized a reproduction 
mechanism based on mutation. By contrast, the GA community emphasized reproduction 
based on recombination and mutation.  

Genetic Algorithms have their origins from the studies of cellular automata 
conducted by John Holland (1975, 1992) and his colleagues, but only recently their 
potential for solving combinatorial optimization problems has been exploited. The term 
“Genetic Algorithms” is due to their genetic make-up representation and manipulation of 
individuals, rather than using a phenotypic representation. The basic idea is to maintain a 
population of candidate solutions, which evolves under a selective pressure helping the 
survival of the fittest individual. Hence, they are a class of local search methods employing 
solution generation, which operates on attributes of a set of solutions rather than attributes 
of a single solution. Genetic Algorithms work on finite populations each of which as N 
chromosomes (solutions). The chromosomes are fixed strings with binary values (alleles) at 
each position (locus). An allele is the 0 or 1 value in the bit string, while the "locus" is the 
position at which the 0 or 1 value is placed in the chromosome. Chromosomes are 
evaluated according to a specified fitness function, and are selectively interbred in pairs to 
produce offspring, through the genetic operators. The resulting offspring inherit properties 
directly from their parents. The fitter a chromosome is, the more likely it is to produce 
offspring. The offspring are evaluated and placed in the new population replacing the 
weaker members. The GA mechanism consists of three phases: evaluation of the fitness of 
each chromosome, selection of the parent chromosomes, and applications of mutation and 
recombination (crossover) operators to the parent chromosomes. The process is repeated 
until the system ceases to improve. The survival of the fittest ensures that the overall 
solution quality increases as the algorithm proceeds from one generation to the next one. 

Differently from GA, Evolution Strategies were developed mainly to build systems 
capable of solving real-valued parameter optimization problems. Its natural representation 
of the individuals consists of a vector of real numbers in order to help mutation operators 
and gene manipulation. Generally, ES emphasize behavioral changes by mutation at the 
level of the individual. 

The third EC approach is Evolutionary Programming, which stresses behavioral 
change at the level of the species. The phenotypes of individuals are represented as finite 
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state machines capable of reacting to environmental stimulation, and to develop operators 
(primarily mutation) for reflecting structural and behavioural change over time. 

The Evolutionary Computation characteristics are summarized as follows (Blum C. 
and Roli A., 2003): 
• DESCRIPTION OF INDIVIDUALS: EC deals with a population of individuals 

commonly represented as bit strings. In GA, the single individuals are called genotypes, 
while the solutions formed by combinations of individuals are called phenotypes;  
• EVOLUTION PROCESS: In each evolution process, the selection operator is 

fundamental in choosing the individuals to enter the next population of each step. If they 
are chosen exclusively from the offspring, it is a case of a so-called “generational 
replacement” evolution process. Instead, if it is also allowed to transfer individuals of the 
current population into the next one, it is a case of a so-called “steady state” evolution 
process. Moreover, EC may work with a population of fixed or variable size; 
• NEIGHBORHOOD STRUCTURE: EC can also deal with an unstructured 

population, in which any individual may be recombined with any other one to create an 
offspring (e.g. Basic GA). If any individual can be recombined with only those included in 
a particular set (e.g. Parallel GA), it is a case of a structured population; 
• INFORMATION SOURCES: If the information sources for the crossover operations 

are just a couple of individuals, it is a case of a two-parents crossover scheme. Otherwise, if 
the offspring are produced by some recombination of more than two parents, it is the case 
of a multi-parent crossover. Recently clever crossover schemes were developed, such as 
Gene Pool Recombination (using population statistics to generate the individuals of the 
next population), or the Bit-Simulated Crossover (using a probability distribution over the 
search space given by the current population to generate the next one); 
• INFEASIBILITY: there are three different ways to handle infeasible solutions 

generated by the genetic operators. Infeasible individuals could be simply “rejected”, 
“penalized” (by assigning them an additional bad fitness value, so that they will have 
difficulty in being reselected in the succeeding steps to create offspring), or just “repaired” 
(but it is not always possible); 
• INTENSIFICATION STRATEGY: Some EC methods, including mechanisms to 

improve the exploitation of the fitness function, were designed in recent years. They have 
been shown to be useful in many practical applications. Memetic Algorithms, for example, 
apply a local search to every individual of a population to quickly identify promising areas 
in the search space (Moscato P., 1999). While the use of a population ensures the 
diversification of the search, the use of local search techniques improves the intensification 
factor on the promising zones. Another strategy performed by the so-called Linkage 
Learning and Building Block Learning algorithms, guides the search to promising areas, 
combining each parts of individuals with good properties (see (Goldberg D.E. at all, 1991), 
(Van Kemenade C. H. M., 1996), (Watson R.A. at all, 1998), (Harik G., 1999) as 
examples). Moreover, generalized recombination operators incorporating the notion of 
“neighborhood search” into EC, have been recently proposed in other novel methods 
(Rayward-Smith V. J., 1994); 
• DIVERSIFICATION STRATEGY: A problem to avoid in EC algorithms is the 

premature convergence toward sub-optimal solutions. To try to avoid premature 
convergence, the simplest mechanism is the use of the mutation operator, which just 
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performs a small random perturbation on individuals (noise). Other strategies are the 
“crowding” mechanism, the novel “fitness sharing” and “niching”. They reduce the 
allocation of reproductive fitness to an individual in the population, proportionally to the 
number of other individuals sharing the same region in the search space. 

Evolutionary Computation algorithms have been applied to most CO problems, such 
as (Blum C. and Roli A., 2003): 

− multi-objective optimization; 
− growing Bioinformatics area; 
− evolvable hardware. 
In the following two sections, three furthers populations-based methods that are 

sometimes also regarded as being EC algorithms, will be introduced. 
 
 

4.1.1 SCATTER SEARCH AND PATH RELINKING 
 

Scatter Search (SS) and its generalization called Path Relinking (PR) are novel 
evolutionary methods compatible with randomized implementations, but not based on 
randomization as in the case with the other evolutionary approaches (Glover F., Laguna M. 
and Martí R., 2000). They join solutions by generalized path constructions (in both 
Euclidean and neighborhood spaces) and utilizing strategic designs, instead of exclusively 
using randomization. Scatter Search and Path Relinking embody strategies still not 
emulated by other evolutionary methods. The approach has been shown to be advantageous 
for solving a variety of complex optimization problems (see (Glover F., Laguna M. and 
Martí R., 2000) for more details). 

The SS process captures information not separately contained in the original vectors. 
It takes advantage of auxiliary heuristic methods both for selecting the elements to be 
combined and for generating new vectors.  It linearly combines solutions from a set, called 
the reference set, in order to create new ones. 

 

 
 

FIG 4: Example of reference set (Glover F., Laguna M. and Martí R., 2000). 
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In the example specified in (FIG 4), the original reference set consists of the solutions 
labeled A, B and C, (Glover F., Laguna M. and Martí R., 2000). After a non-convex 
combination of the reference solutions A and B, a number of new solutions in the line 
segment defined by A and B are created; in the example only solution 1 is introduced into 
the reference set. In a similar way, other convex and non-convex combinations between 
original and newly created reference solutions, produce points 2, 3 and 4. Finally, the 
resulting reference set is composed of 7 solutions (or elements).  

Scatter Search does not leave solutions in a raw form after the combination 
mechanism, but applies heuristic improvements to the candidates for entry into the 
reference set. Unlike a “population” in Genetic Algorithms, the reference set of solutions in 
Scatter Search is relatively small. A typical GA population size consists of 100 elements, 
which are randomly sampled to create combinations. In contrast, Scatter Search 
systematically chooses two or more elements of the reference set to create new solutions. If 
the reference set consists of b solutions, experimentally the procedure will examine around 
(3b-7)⋅b/2 elements, and so there is a practical need for keeping the cardinality of the 
reference set small. Typically, the reference set in Scatter Search has 20 solutions or less. 
Moreover, Genetic Algorithms need large populations to maintain a good level of 
diversification (for the random sampling embedded in its search mechanisms), while 
Scatter Search systematically injects diversity to the reference set. To limit the scope of the 
search to a selective group, a mechanism for controlling the number of possible 
combinations in a given reference set can be used. The reference set is divided into “tiers” 
and combined solutions must include at least one of the elements from each of them. 

The Scatter Search approach may be outlined as follows (Glover F., Laguna M. and 
Martí R., 2000): 

1) Generate a starting set of solution vectors to guarantee a critical level of diversity. 
Apply custom heuristic processes to try to improve these solution vectors. The reference 
solutions will be a subset of the best vectors. A solution may be added to the reference set if 
the diversification factor of the set improves, even if its objective value is inferior to other 
solutions competing for admission into the set. 

2) Create new solutions consisting of structured combinations of subsets of the current 
reference solutions. These combinations are chosen to produce points both inside and 
outside the convex regions spanned by the reference solutions, and they are modified to 
become acceptable solutions. 

3) Apply the heuristic processes (already used to generate the reference set) to improve 
the solutions created. These heuristic processes must be able also to operate on infeasible 
solutions to restore the feasibility if possible. 

4) Extract a collection of the “best” improved solutions from last step and add them to 
the reference set. The notion of “best” is once again broad, as in the step 1. Steps 2, 3 and 4 
are repeated until the reference set does not change. Moreover, the reference set is 
periodically diversified restarting from step 1. When reaching a specified iteration limit the 
algorithm will stop. 

The goal of structured combinations in Scatter Search is to create weighted centres 
of the selected sub-regions. This adds non-convex combinations external to the original 
reference solutions (e.g., solution 3 in FIG 4). Another important feature relates to the 
construction of new solutions “within” and “across” clusters of points. Finally, Scatter 
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Search employs subordinate mechanisms to improve infeasible solutions, in order to make 
it possible for them to be included into the reference set. 

The main general behavior of Scatter Search, also applicable to Path Relinking, is 
specified in the following routines (Blum C. and Roli A., 2003):  
− Seed-Generation: One or more seed trial solutions are created to initialize the 

algorithm; 
− Diversification-Generator: a procedure to generate a collection of diverse trial 

solutions from an arbitrary seed as input; 
− Improvement: a local search method transforms a trial solution into one or more 

enhanced ones. (Neither the input nor the output solutions are required to be feasible); 
− Reference-Set-Update: this method builds the reference set, consisting of the “best” 

found solutions (typically small values, e.g. no more than 20). Solutions gain membership 
of the reference set according to their quality or their diversity values; 
− Subset-Generation: operates on the reference set and produces a subset of its 

solutions as a basis for creating combined solutions; 
− Solution-Combination: transforms a given subset of solutions into one or more 

combined solution vectors. 
From a spatial orientation, in Scatter Search new solutions are created by linear 

combinations of reference solutions using both positive and negative weights. The resulting 
points can be both inside and outside the convex region spanned by the reference set. By 
natural extension, such combinations may be paths, generated between and beyond selected 
solutions in neighborhood space rather than in Euclidean space. This SS extension is called 
Path Relinking. A path between solutions in a neighborhood space will produce new 
solutions sharing a subset of attributes contained in the parent solutions. The attributes vary 
according to the path selected and the location on the path. Such paths are specified by the 
solution attributes that are added, dropped or modified by the moves executed in 
neighborhood space. To generate the desired paths starting from an initiating solution, the 
moves must progressively introduce (or subtract) attributes by a guiding solution. This step 
consists of the incorporation of attributes from elite parents in partially or fully constructed 
solutions by means of heuristic methods. It is carried out by isolating assignments occurring 
frequently or influentially in high quality solutions, and then introducing them into other 
solutions (implicit form of frequency-based memory). Moreover, the possibilities of 
multiparent path generation emerge in Path Relinking. Typically, the generation of such 
paths “relinks” previous points in the neighborhood space in ways not achieved from the 
search history (hence giving the approach its name). Path Relinking is often used as a 
hybrid component in metaheuristics, such as Tabu Search and GRASP. 

The evolutionary Scatter Search and Path Relinking have proved unusually effective 
for solving diverse optimization problems, from both classical and real world settings. It 
has been applied to a lot of problems such as (Blum C. and Roli A., 2003):  

− multiobjective assignment and quadratic assignment; 
− vehicle routing; 
− financial product design; 
− Job Shop Scheduling (JSS)); 
− mixed integer programming. 
 



OPERATIONAL RESEARCH REPORT: COMBINATORIAL OPTIMIZATION AND METAHEURISTICS 
JANUARY 2006 

 
 
 

 
 
 

SCHOOL OF INFORMATION SYSTEMS, COMPUTING AND MATHEMATICS, BRUNEL UNIVERSITY 

29

4.1.2 Estimation of Distribution Algorithms (EDA)  
 
Genetic Algorithms are optimization techniques based on selection and 

recombination of promising solutions. GA behavior depends on the choice of the genetic 
operators: selection, crossover, mutation, probabilities of crossover and mutation, 
population size, rate of generational reproduction, number of generations etc. Interactions 
among the variables are only rarely considered. Moreover, the fixed two parents 
recombination and evolution sometimes provide low quality solutions. Two parents 
crossover can been replaced by generating new solutions according to a probability 
distribution (Topon Kumar P. and Hitoshi I., 2002). This new approach is the Estimation of 
Distribution Algorithm (EDA). 

In EDA, interactions among variables are explicitly expressed through the joint 
probability distribution calculated from a database of selected individuals. Sampling the 
probability distribution of the previous generation creates the offspring for the next one. 
Selections methods of EDA are the same of those used in Genetic Algorithms, but neither 
crossover nor mutation is applied. Formally, in pseudo code, Estimation of Distribution 
Algorithm may be specified as follows (Blum C. and Roli A., 2003): 

 
P = Initialize-Population (); 
while termination criteria not met do 
   Psel = Select (P);  // Psel ⊂ P 
   p(x) = p(x | Psel ) = Estimate-Probability-Distribution(); 
   P = Sample-Probability-Distribution (); 
Endwhile 

 
The algorithm starts generating an initial population P of M size; N (<=M) 

individuals are selected to form Psel. The next step is to calculate the joint probability 
distribution of the selected individuals Psel using one of the EDA methods. Just sampling it 
will generate offspring, and the old population will be replaced according to the specific 
replacement strategy. The algorithm goes on until the termination conditions are satisfied. 

Different EDA approaches can be exploited according to the dependencies among 
the problem specific variables. Univariate Marginal Distribution Algorithm (UMDA), 
Population Based Incremental Learning (PBIL) and Compact Genetic Algorithm (CGA) do 
not consider interaction among variables (univariate); it is the easiest way to calculate the 
probability distribution. Indeed, the joint probability distribution may be simply computed 
as the product of the marginal probabilities of the single variables.  

In UMDAs the joint probability distribution is factorized as a product of 
independent univariate marginal distributions, estimated from marginal frequencies. 

Instead, in PBILs a vector of probabilities represents the population of individuals:  
pl(x)=(pl(x1),…, pl(xi),…,pl(xn)) 

where pl(xi) refers to the probability of obtaining a 1 in the ith component of the 
population in the lth generation (Topon Kumar P. and Hitoshi I., 2002). At each step, M 
individuals are generated by sampling pl(x). The best N individuals are selected to update 
the probability vector by a rule, which shifts the vector towards the best of generated 
individuals.  
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In CGA the probabilities are initialized to a 0,5 value for each variable. Then using 
this vector of probabilities, the method randomly generates new individuals. An evaluation 
of their objective function values provides a ranking. Then, the probability vector pl(x) is 
shifted toward the generated solution vector(s) with highest quality. The distance that the 
probability vector is shifted depends on the learning rate parameter. Then, a mutation 
operator is applied to the probability vector. After that, the cycle is repeated until the vector 
of probabilities converges to an optimum The probability vector can be regarded as a 
prototype vector for generating high-quality solution vectors with respect to the available 
knowledge about the search space. The drawback of this method is the fact that it does not 
automatically provide a way to deal with constrained problems. (Topon Kumar P. and 
Hitoshi I., 2002). 

EDA provides better results for variables with no significant interactions among 
each other. To solve problems of pairwise interactions (bivariate dependencies), other 
procedure should be applied, such as Mutual Information Maximizing Input Clustering 
(MIMIC) Algorithm, Combining Optimizers with Mutual Information Tress (COMIT) or 
Bivariate Marginal Distribution Algorithm (BMDA).  

Instead, for real world problems where multiple interactions occur, the followed 
algorithms are used: Factorized Distribution Algorithm (FDA), Extended Compact Genetic 
Algorithm (ECGA), Bayesian Optimization Algorithm (BOA), Estimation of Bayesian 
Network Algorithm (EBNA). 

BOA, for example, estimates the joint probability distributions of selected 
individuals using modeling data from Bayesian Networks (Topon Kumar P. and Hitoshi I., 
2002). The Bayesian metric, used to measure the goodness of each structure, has the 
property that structures reflecting the same conditional dependency or independency have 
the same scores. In order to reduce the cardinality of the search space, BOA imposes 
restrictions on the number of parents a node may have (for problems where a node may 
have more than 2 parents, the situation is complicated to solve). 

The field of EDA is still quite young and much of the research effort is focused on 
methodology rather than high-performance applications. EDA has been applied to various 
CO problems such as (Blum C. and Roli A., 2003):  

− Knapsack problems; 
− Job Shop Scheduling (JSS) problem.  
 
 

4.1.3 Quantum-inspired Genetic Algorithms (QGA) 
 

Quantum-inspired Genetic Algorithms (QGA) are a family of novel evolutionary 
computing methods based on concepts and principles of quantum mechanics (e.g. standing 
waves, interference, coherence). They are applied to successful evolutionary computing 
methods, particularly to genetic algorithms, in order to increase their performance. A 
quantum-inspired computational method generates candidate solutions to the problem 
instance, and a classical algorithm checks if these solutions are in fact feasible. In order to 
continue a clear comprising of QGA, it is necessary to underline some basic principles of 
quantum mechanics. 

An atom consists of a nucleus (containing particles called protons (positive charges) 
and neutrons (neutral charges)) and electrons (negative charges), surrounding the nucleus 
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through wave orbits (not-planar). There are different types of orbit, depending on two 
factors: angular momentum and energy level. An electron around a nucleus jumps states in 
discrete quanta by absorbing photons (from a low energy orbit to an higher energy one) or 
releasing it (high level to a lower one): the term “quantum” means that in-between states or 
orbits don’t exist, while a “photon” is the smallest unit of energy. 

A quantum particle’s location can be described by a quantum state vector >Ψ , 
representing a linear superposition (i.e. a weighted sum) of the particle given individual 
quantum state vectors ,>A ,>B ,>C …, respectively of the possible positions A, B, C, 
….(Narayan A., 1999): 

 
....;+>⋅+>⋅+>⋅>=Ψ CBA γβα  

 
where the weighting factors α, β, γ, … are complex numbers, which represent the 

probability that the particle is in a specific location (probA = |α |2, probB = |β | 2, probC = |γ |2, 
… respectively). 

From Heisenberg’s uncertainly principle, both the position and momentum of a 
particle cannot be simultaneously known at any particular moment. Thus, if there are n 
locations given by n state vectors, the particle is said to be at all n locations at the same 
time. However, in the act of observing a quantum state (or wave function), it collapses to a 
single one (many universes interpretation of Everett: all quantum systems exist in parallel 
universes; it is not possible to view a quantum system in all these universes but only in a 
single one). For example, in the case of two universes, the probability P12 of arrival of the 
particle in a specific point is the square of the height of its quantum amplitude a12 (Narayan 
A. and Moore M., 1998): 

 
;2

1212 aP =  
 
From the analogy with the water waves theory, the total amplitude a12 is the sum of 

the wave amplitude of each single universe (Narayan A. and Moore M., 1998): 
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So the probability P12 is given by: 
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that is, the probability P12 of arrival of the particle in a specific point is the sum of 

the probability to have the particle in each single universe, adding of an interference factor, 
2⋅a1⋅a2, due by the scrambling between the universes.  

Recently it was proved that a quantum system could be used to perform 
computations and could simulate quantum processes, impossible to compute efficiently on 
a conventional calculator (Narayan A., 1999). The “many universes” interpretation was 
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used by Shor (1994) in his quantum computing method for extracting prime factors of very 
large integers. A memory register was placed in a superposition of all possible integers it 
could contain, followed by a different calculation being performed in each ‘universe’. This 
result was used to deal with cryptography algorithms, in which key production methods are 
based on the seeming intractability of finding the prime factors of very large integers. So, 
although there are no known fast classical algorithms for factorizing large numbers into 
primes, Shor’s method uses known fast algorithms for taking a candidate prime factor and 
determining whether it is in fact a prime factor. 

Quantum principles were applied to genetics algorithms giving an initial basic 
methodology to design quantum algorithms. The following guidelines explain how to 
develop a Quantum-inspired Genetic Algorithm (Narayan A., 1999): 

1. Express the problem in a numerical form through specific conversion methods;  
2. Determine the initial configuration; 
3. Define the terminating conditions; 
4. Divide the problem instance into smaller sub-problems; 
5. Identify the number of required universes;  
6. Assign an universe to each sub-problem; 
7. Compute in parallel in the different universes; 
8. There must be a form of interaction (interference) between all the universes, which 

yields a solution or new useful information for the universes. 
An important difference between the classical GA and QGA is the representations of 

the elementary information unit. If GA are based on bits, QGA are based on QuBits, 
derived by the superposition principle of quantum mechanics. The QuBit does not represent 
only the value 0 or 1, but a superposition of the two bits. Its state is represented as follows: 

 
;10 >⋅+>⋅>=Ψ βα  

 
where >0 and >1  are the classical bit values 0 and 1, and α and β are complex 

numbers, respectively standing for the probability to measure the value 0 (prob0 = |α |2) and 
that to measure 1 (prob1 = |β | 2). That is: 

 
;122 =+ βα  

 
In the case of multiple QuBits, as in a quantum system, the resulting state space 

grows exponentially with respect to the number of particles. For example, in the case of n 
QuBits, the state space has 2n dimensions, and its representation is defined as follows 
(Narayan A. and Moore M., 1998): 
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Each chromosome is encoded as a matrix of 2 x n QuBits. This allows a chromosome 
to encode not only one solution but all the possible solutions by using the superposition 
principle. Again, |αi |2 and |βi |2 are the probabilities to measure respectively the value >0  
and the value >1  for the QuBit i of a certain chromosome. Each quantum operation regards 
in parallel all the states present within the superposition (characteristic of diversity; for 
more details see (Narayan A. and Moore M., 1998)). Only one QuBit chromosome is 
enough to represent c states, while in a classical bit representation at least c chromosomes 
are needed. This means that the QuBit representation possesses simultaneously the two 
characteristics of exploration and exploitation. If |αi |2 or |βi |2 converges to 1 or 0, the 
QuBit chromosome stretches to a single state and the property of diversity disappears 
gradually. 

The procedure for a general Quantum-inspired Genetic Algorithm, starting from an 
initial population, applies four quantum operators (Quantum crossover interference, 
Classical crossover operator, Mutation, Shifting) and an evaluation. Formally, it may be 
specified as follows (Talbi H., Draa A. and Batouche M., 2004): 

  
m = Choose-Chromosomes-Number ();  
n = Choose-QuBits-Number (); 
P  = Generate-Initial-Population (m, n); 
Measure&Evaluate (P); 
while termination conditions not met do 
   PI = Interference (P); // Quantum crossover interference 
   PII = Recombine (PI); // Classical crossover operator 
   PIII = Mutate (PII); 
   PIV= Shift (PIII); 
   Measure&Evaluate (PIV);  
   P = Select-New-Population (PIV | m); 
Endwhile     // end inner loop 

 
At the beginning, the initial population P, composed of m “quantum chromosomes”, 

is randomly generated. After the four operators of Quantum crossover interference, 
Classical crossover operator, Mutation, and Shifting are applied . 

The first operation is a quantum interference (crossover) that allows a shift of each 
QuBit in the direction of the corresponding bit value in the best solution. That is performed 
by rotating the specific QuBit (αi and βi) of an angle, K, function of the value of the 
corresponding bit in the best solution (FIG 5).  

 

 
 
FIG 5: Quantum Interference: rotation operator (Talbi H., Draa A. and Batouche M., 2004). 
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α β Reference bit value Rotation angle K 

>0 >0 1 + K 
>0 <0 0 - K 
>0 >0 1 - K 
>0 <0 0 + K 
<0 >0 1 - K 
<0 <0 0 + K 
<0 >0 1 + K 
<0 <0 0 - K 

 
TABLE 1: Example of rotation angle of a QuBit in function of the bit values of the best solution (Talbi H., 

Draa A. and Batouche M., 2004). 
 
 
TABLE 1 shows an example of the sign of the K rotation angle of a chosen QuBit in 

function of the reference bit value of the best solution (α and β are the component of K). 
The second operation is a classical crossover performed between each pair of the m 

chromosomes at a random position, obtaining an overall population of m x m 
chromosomes. The third operation is a random mutation over some chromosomes. It 
depends on the probability of applying permutations on a chromosome, and the probability 
of permuting each column in the chromosome with another column.  The fourth operation 
consists of a random shifting of a chromosome, in order to increase the diversification of 
the search process. 

After these four quantum operators, a special kind of measurement is applied to the 
resulting solutions in order to extract the best one. In Quantum Mechanics, only states 
containing exactly one QuBit with the value 1 in each line, and exactly one QuBit having 
the value 1 in each column (coherent solution) are possible. Conversely, in QGA, the final 
measurement does not destroy the states superposition, keeping all the possible solutions 
for the following iterations. After the evaluation of the solutions, a new population for the 
next iteration is selected if the termination conditions are not reached. The new population 
will consist of the best (m – 1) chromosomes from the current population, plus one 
chromosome randomly selected among the other ones (in order to maintain a good 
diversity).  

The increased performance of Quantum-inspired Genetic Algorithms with respect to 
classical Genetic Algorithms may be attributed mainly to interference crossover and to the 
multiple superpositions of individuals. Interference crossover provides a larger number of 
chromosomes to choose for the next generation, while the multiple superpositions of 
individuals allow losing less good solutions during each step.  

If progress continues at this rate, future computer circuits will be based on 
nanotechnology and the behaviour of such circuits will have to be given in quantum 
mechanical terms rather than in terms of classical physics (since on the atomic scale matter 
obeys the laws of quantum mechanics). Such compilers will require less translation to 
machine language than the classical ones, so carrying really efficiency benefits (Narayan A. 
and Moore M., 1998). Even if it is currently not clear how true quantum computation 
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algorithms will be related to quantum hardware (e.g. quantum logic gates), quantum-
inspired computing could help quantum hardware platforms to be feasible.  

The increased performance of Quantum-inspired Genetic Algorithms with respect to 
classical Genetic Algorithms has been proved for some classical combinatorial optimization 
problems, such as the (Narayan A. and Moore M., 1998):  

− Traveling Salesman Problem (TSP); 
− Knapsack Problems; 
− depth-two and/or tree problem. 

 
 

4.2 ANT COLONY OPTIMIZATION (ACO) 
 
Ant colony optimization (ACO) was first proposed in the early 90's by Marco 

Dorigo and colleagues. As Dorigo M. and Stűtzle T. (2004) state, its inspiring source is the 
foraging behaviour of real ants. When searching for food, ants initially explore the area 
surrounding their nest in a random manner. As soon as an ant finds a food source, it 
evaluates quantity and quality of the food and carries some of the found food to the nest. 
During the return trip, the ant deposits a chemical pheromone trail on the ground. The 
quantity of pheromone deposited, which may depend on the quantity and quality of the 
food, will guide other ants to the food source. The indirect communication between the ants 
via the pheromone trails allows them to find shortest paths between their nest and food 
sources (FIG 6). This functionality of real ant colonies is exploited in artificial models in 
order to solve discrete optimization problems. 

 
 

 
FIG 6: Foraging behaviour of real ants. 
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FIG 7:Example of a decision (or constructive) graph. 
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ACO algorithms use the parameterized probabilistic pheromone model to include the 
chemical pheromone trails: ants incrementally construct solutions by adding opportunely 
defined solution components to a partial solution under consideration. In doing that, 
artificial ants perform randomized walks on a completely connected construction (or 
decision) graph G = (C, L), whose vertices ci are the solution components C and the set L 
are the connections li,j (FIG 7). 

Pheromone trail parameters, Ti and Tij, are associated, respectively, with every 
node ci and each arch li,j, which also have assigned the pheromone values τi and τij. 
Furthermore, a priori or run time values, ηi and ηij, are associated with every node ci and 
each arch li,j respectively (Dorigo M. and Stűtzle T., 2004).  

It is possible to define the following useful parameter sets: 
 T =  {Ti ; Tij}  ⇔ set of pheromone trail parameters 
 H =  {ηi ; ηij ; τi ; τij} ⇔ set of all the heuristic values 

All these values are used by the ants to take probabilistic decisions on how to move 
on the decision graph. The probabilities involving in moving on the construction graph are 
commonly called transition probabilities.  

The simplest ACO algorithm is the Ant System (AS), which is only based on the 
pheromone trail parameters T and the set of the heuristic values H. Considering a as a 
single ant, A as the set of all ants ai, and sa as the solution constructed by a ∈ A, a basic 
description of this procedure is specified as follows  (Blum C. and Roli A., 2003): 

 
Initialize-Pheromone-Values (T, H); 
while termination conditions not met do 
   for all ants a ∈ A do 

   sa = Construct-Solution(T, H); 
   endfor 
   Apply-Online-Delayed-Pheromone-Update (T, {sa / a ∈ A}); 
Endwhile 

 
After the initialization (Initialize-Pheromone-Values (T, H)) of the pheromone 

parameters T and heuristic values H (ηi = ηij = τi = τij = ph > 0), each ant constructs a 
solution of the problem at each step of the algorithm. In this phase an ant incrementally 
builds a solution by adding probabilistic-chosen components (by means of transition 
probabilities) to the partial solution constructed so far. Only feasible solution components 
can be added to the current partial solution, avoiding the infeasible ones.  

This mechanism is called state transition rule (Dorigo M. and Stűtzle T., 2004): 
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where the above parameters have the following meaning: 
− [ ]( kar cscprob / )  is the probability of adding the component cr to the 

partial solution, sa[ck], constructed so far (ck is the last node added); 
− α, β adjust, respectively, the relative importance of heuristic 

information and pheromone values; 
− Ja(sa[ck]) is the set of solution components allowed to be added to the 

partial solution sa[ck]. 
 
Once all ants have constructed a solution, the online delayed pheromone update rule 

(Apply-Online-Delayed-Pheromone-Update (T, {sa / a ∈ A})) increases the pheromone of 
solution components that have been found in high-quality solution (Dorigo M. and Stűtzle 
T., 2004): 
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and where: 
− F(⋅) : S → ℜ is the quality function satisfying: 

,'/', ssSsSs ≠∈∀∈∀ ( ) ( ) ( ) ( '' sFsFsfsf >⇒ )< ; 
− ρ is the pheromone evaporation rate, with value included between 1 

and 0 (0 < ρ ≤ 1).  
 
An extension of AS is the more general Ant Colony Optimization (ACO) 

metaheuristic (FIG 8). It consists of three parts assembled in the Schedule-Activities 
construct and synchronized following the decisions of the designer.  

 
 

 
 

FIG 8: Overview of the Ant Colony Optimization metaheuristic (Blum, 2005). 
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Formally, in pseudo code, the procedure may be specified as follow (Blum C. and 
Roli A., 2003): 

 
while termination conditions not met do 
   Schedule-Activities 
      Ant-Based-Solution-Construction(); 
      Pheromone-Update(); 
      Daemon-Actions(); //optional 
   end Schedule-Activities 
Endwhile 

 
In the Ant-Based-Solution-Construction method, each ant builds a solution moving 

through the decision graph G, following the same state transition rule pointed out in AS. In 
this phase, this mechanism makes use of a sort of memory because each ant keeps the 
partial solution it has built in terms of path, allowing to retrace backward the same way. 
Instead, the Pheromone-Update method improves AS including two kinds of different 
update processes:  

1) Online step-by-step pheromone update (real time):  When an ant is walking on 
connection li,j in order to reach component cj to add to the current partial solution, it updates 
step-by-step the pheromone trail parameters and their values, τi and τij; 

2) Online delayed pheromone update (offline): If the quality of the built solution is 
good, the ant retraces the path backward and updates the pheromone trail parameters and 
their values, τi and τij, and/or connections li,j, according to the degree of excellence of this 
solution. 

ACO includes also the mechanism of Pheromone evaporation. The pheromone 
values, τi, decrease with time to avoid rapid convergence to local minima, due to the nature 
of the online delayed pheromone update rule. It represents a form of “forgetting”, allowing 
an easier exploration of new areas of the search domain.  

It is also possible to apply a centralized action on the algorithm by means Daemon-
Actions. For example, a daemon entity may collect global information about the path found 
by each ant, and can decide whether to apply additional weight to the pheromone of the 
components used by the ant that built the best solution. Pheromone updates performed by 
the daemon are called offline pheromone updates. 

Currently, the best performing implementations of ACO are (Dorigo M. and Stűtzle 
T., 2004): 

• Ant Colony System (ACS), created by Dorigo M.;  
• MAX-MIN Ant System (MMAS), first designed by Stűtzle T. 

Ant Colony System (ACS) metaheuristic has been introduced to improve the 
performance of AS. Its main differences with AS are: 

1) Daemon offline pheromone updates: It is the same optional mechanism carried out 
by Daemon-Action entity in ACO, but here it becomes mandatory. At the end of an 
iteration, every ant builds a solution. Then, pheromone bias is added to the pheromone 
values, τi and τij , of the arcs within the best solution. 
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2) Pseudo random-proportional rule: Ants use two mechanisms to decide where to 
move next in the decision graph. The first mechanism involves deterministic moves (in a 
greedy manner) to intensify the search around high-quality solutions. The second one 
includes random movements, chosen by the usual decision rule, to diversify the search 
process. 

3) Online step-by-step pheromone update: As outlined, the pheromone trail parameters 
and their values, τi and τij, of the ant walking on arcs li,j to reach component cj, are update in 
real-time. No online delayed pheromone updates are allowed. 

Instead, MAX-MIN Ant System (MMAS) improves AS through the following 
strategies: 

1) Daemon offline pheromone updates: as in ACS, additional pheromone is added to 
the arcs used by the best ant within each iteration. 

2) Bounded pheromone values: the pheromone values, τi and τij, are bounded to vary in 
a finite interval [τmin, τmax], after being initialized to τmax. In this way, the probability of 
constructing a solution can’t exceed a minimum threshold value (a lower bound ≥ 0), 
previously fixed. So, solutions apparently of medium/low-quality have the chance to find a 
global optimum, increasing the diversification factor of the search. 

3) Application of restarts: they are periodic re-initialization of the pheromone values in 
order to encourage the diversification of the search. 

Current research tries to use ACO with other metaheuristics in order to create 
hybridizations. Similarities between ACO and probabilistic learning algorithms have been 
found, such as with Estimation of Distribution Algorithms (EDA), with Population-Based 
Incremental Learning (PBIL) algorithms, with Stochastic Gradient Descent (SGD) 
algorithms, and with the Univariate Marginal Distribution Algorithms (UMDA). For more 
details see (Blum C. and Roli A., 2003). 

Successful applications of ACO include a lot of applications to combinatorial 
optimization problems (Blum C. and Roli A., 2003): 

− Knapsack problems; 
− Job Shop Scheduling (JSS) problem; 
− routing in communication networks; 
− Sequential Ordering Problem (SOP); 
− Resource Constraint Project Scheduling (RCPS).  
In the following sections, two significant forces of intensification and 

diversification, that mainly determine the behavior of metaheuristics, will be pointed out, 
concluding by exploring the importance of hybridization and integration methods. 

 
 

5. INTENSIFICATION AND DIVERSIFICATION FORCES 
 
As shown in the previous section, the utilization of randomness in local search 

algorithms can lead to significant increases in their performance and robustness. However, 
with this potential comes the need to balance randomized and goal-directed components of 
the search strategy, a trade-off that is often characterized as ‘diversification vs 
intensification’. As already stated, the term diversification means the exploration of the 
search space while the term intensification means the exploitation of the accumulated 
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search-experience. When the search process starts, it needs to compute the value of 
different points in the search domain in order to find the promising areas (diversification). 
Then the algorithm needs to investigate promising zones to find the local-optimum 
(intensification). The best local optimum found in the different areas will be the candidate 
solution, hoping to be as near as possible to the global optimum that the algorithm is 
looking for. The terms “diversification” and “intensification” are mainly used in methods 
based on the concept of memory, such as Tabu Search. Conversely the terms “exploration” 
and “exploitation” are used in strategies that don’t require explicit usage of memory, such 
as evolutionary computation. Finding a good balance between diversification (exploration) 
and intensification (exploitation) is essential for a metaheuristic in order to quickly identify 
regions in the search space with high quality solutions, without wasting too much time in 
regions with a low quality. 

Balancing properly these two strengths is a crucial issue in heuristics and so a large 
variety of techniques have been proposed in recent years. These techniques are often based 
on intuition and experience rather than on theoretically or empirically derived principles. In 
this context, both problem specific knowledge and a solid understanding of the properties 
and characteristics of the different metaheuristics are crucial for achieving peak 
performance and robustness. Intensification and diversification are not contradictory 
options. Each feature contains aspects of the other.  

A framework may be helpful in providing a unified view on these critical 
components in order to focus this concept and to underline similarities and differences 
among the different metaheuristic approaches (Blum C. and Roli A., 2003). I&D 
component is defined as any algorithmic or functional component (operators, actions, or 
strategies) that has an intensification and/or a diversification effect on the search process 
(e.g.: genetic operators, perturbations of probability distributions, the use of tabu lists, 
changes in the objective function…). Any of these components contains either an 
intensification or a diversification effect, as can be shown in the I&D frame (FIG 9).  The 
I&D frame compares each other the I&D components of different metaheuristics (Blum C. 
and Roli A., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 9: The I&D frame, a unified view on intensification and diversification (Blum C. and Roli A. 2003). 
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 The space of all I&D components is drawn as a triangle with the three extreme 
corners:  

1) OG (Objective function Guided), which corresponds to components solely guided 
by the objective function of the problem (max intensification, min diversification). For 
example, the steepest descent choice rule in local search is placed in this corner;  

2) NOG (Not only Objective function Guided), which covers all components guided 
by one or more functions other than the objective function without using of any randomness 
(max diversification, min intensification). The deterministic restart mechanism based on 
global frequency counts of solution components is an example of such a component; 

3) R (Randomness guided), which comprises completely random I&D components, 
guided by nothing (max diversification, min intensification). An example is a restart with 
random individuals in EC algorithms. 

The less an I&D component uses the objective function, the further away from 
corner OG it has to be located. In the same manner, the less randomness is involved, the 
further away from corner R it has to be located. Furthermore, a third gradient describes the 
influence of criteria different from the objective function. These criteria generally come 
from the exploitation of the search history, stored in some form of memory.  

In the following table (TABLE 2), some basic I&D components, intrinsic to the 
classic metaheuristics, are listed. 

 
 

Metaheuristic I&D component 

SA acceptance criterion+ cooling schedule 

neighbor choice (tabu lists) 
TS 

aspiration criterion 

recombination 

mutation EC 

selection 

pheromone update 
ACO 

probabilistic construction 

black box local search 

kick-move ILS 

acceptance criterion 

black box local search 

neighborhood choice 

shaking phase 
VNS 

acceptance criterion 

black box local search 
GRASP 

restricted candidate list 

GLS penalty function 

TABLE 2: I&D components intrinsic to the basic metaheuristics (Blum C. and Roli A. 2003). 



OPERATIONAL RESEARCH REPORT: COMBINATORIAL OPTIMIZATION AND METAHEURISTICS 
JANUARY 2006 

 
 
 

 
 
 

SCHOOL OF INFORMATION SYSTEMS, COMPUTING AND MATHEMATICS, BRUNEL UNIVERSITY 

42

6. HYBRIDIZATION OF METAHEURISTICS 
 
A current trend is the integration of single point search methods with population-

based ones. In this section, a brief description of the most important hybridization 
approaches is given. It is possible to divide hybrid methods into three classes.  

The first class, called Components Exchange Among Metaheuristics, consists of 
methods including components from different metaheuristics, usually from a trajectory 
method and a population-based one. The strength of population-based methods is the 
concept of recombining solutions, explicitly in EC algorithms and Scatter Search by 
recombination operators, implicitly in ACO and EDA for the nature of their mechanisms.  

The recombination follows the criterion to mix high-quality solutions in the hope of 
finding better ones, on the followed direction. The recombination in population-based 
methods allows “big” guided steps in the search space, usually larger than the ones 
performed by trajectory methods. Some trajectory methods, such as ILS and VNS, also 
perform “big” steps, but resulting from random mechanisms called “kick move” or 
“perturbation”, indicating the absence of guidance.  

Instead, the strength of trajectory methods is based on a local search, to strictly 
explore a promising region in the search space. In this way, the danger of being close to 
good solutions but “missing” them is not as high as in population-based methods. Most of 
the successful applications of EC and ACO make use of local search procedures. 
Summarizing, population-based methods are better at identifying promising areas in the 
search space, whereas trajectory methods are superior in exploring specific zones of the 
domain. Thus, hybrid metaheuristics, combining the advantages of population-based 
methods with the power of trajectory methods, are often very successful today (Blum C. 
and Roli A., 2003). 

The second form of hybridization, Cooperative Search, consists of a search carried 
out by different algorithms, approximate or complete ones, exchanging information about 
states, models, entire sub-problems, solutions or other search space characteristics. 
Cooperative algorithms can be either different search techniques, or instances of the same 
algorithm with different settings of the model or the parameters, or algorithms in parallel 
execution with a variable level of communication. Cooperative Search also receives much 
attention as a result of the rapid growth of parallel implementations of metaheuristics. 
Research on parallelization is focused on the re-design of metaheuristics in order to make 
them suitable for parallel implementations. 

The latter hybridization class is the Integration of Metaheuristics and Systematic (or 
complete) Search Methods, producing very effective algorithms for real-world applications 
(e.g. the successful integration of metaheuristics in Constraint Programming (CP)). There 
are three main approaches for the integration of metaheuristics (especially trajectory 
methods) and systematic techniques (CP and tree search).  

The first consists in their sequential application and/or their interleaved execution. 
For example, the metaheuristic may produce solutions which are then improved by 
systematic search (or vice-versa, the systematic algorithm may generate partial solutions 
which are completed by the metaheuristic). This procedure can also be viewed as a loose 
form of cooperative search.  

The second approach uses a complete method to efficiently explore the 
neighborhood, instead of randomly sampling it or simply enumerating the neighbors. This 
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approach is particularly effective when the neighborhood to explore is very large, because it 
combines the advantages of a fast exploration, by using a metaheuristic, with efficient 
neighborhood exploitation, performed by a systematic method.  

The third possibility consists of introducing concepts or strategies from classes of 
algorithms into others. A typical case is a probabilistic backtracking instead of a 
deterministic one into a search-tree algorithm. This is carried out through the introduction 
of the concepts of tabu list and aspiration criteria into a search-tree algorithm, in order to 
manage the list of open nodes to explore. 

 
 

7. SUMMARY AND CONCLUSIONS 
 
This report presents a review of metaheuristic methods, covering both theoretical 

aspects of metaheuristics and applications to Combinatorial Optimization problems. 
Metaheuristics are classified as trajectory-based (e.g. Basic Local Search, Simulated 

Annealing, Tabu Search, GRASP, Variable Neighborhood Search, Guided Local Search, 
Iterated Local Search) and as population-based (e.g. Evolutionary Computation, Scatter 
Search, Path Relinking, Estimation of Distribution Algorithms, Quantum-inspired Genetic 
Algorithms, Ant Colony Optimization). The use of intensification and diversification with 
both categories of metaheuristics is extremely analyzed in this report. Finally, the 
promising area of metaheuristic hybridization is explored. 

An example of hybridization is the attempt to introduce the concept of memory in 
SA, which is a memory-less method, through the integration with other usage-memory 
metaheuristics, such as Tabu Search (Aarts E. H. L., Korst J. H. M. and Laarhoven P. J. M. 
V., 1997). In general, the TS field is a rich source of ideas, which have been and are 
currently adopted by other metaheuristics. Another promising research direction in TS is to 
create more advanced ways to adapt the tabu tenure dynamically (Glover F., 1986). 

As TS, also GRASP may be successfully integrated into other search techniques, 
due to its simplicity and high speed (generally). However, a basic GRASP does not use the 
history of the search process: the only memory requirement is for storing the problem 
instance and for keeping the best so-far solution. This is one of the reasons why GRASP is 
often outperformed by other metaheuristics. So, another promising research direction is 
trying to introduce the concept of memory in GRASP through other usage-memory 
methods (Blum C. and Roli A., 2003). 

Instead, current research area in VNS is huge. A systematic study of moves (or 
neighborhoods) for whole classes of problems together with the data-structures most 
adequate for their implementation is one promising direction. Another one is trying to 
consider more sophisticated distributions of neighborhood. Introduction of memory, 
parallel VNS, hybridizing VNS within exact algorithms, enhancing graph theory are all 
research directions for VNS (Hansen P. and Mladenović N., 2005). 

In Evolutionary Computation, recent successes were obtained in the rapidly growing 
bioinformatics area, in multiobjective optimization and in evolvable hardware (Blum C. 
and Roli A., 2003). Path relinking is often used as a component in metaheuristics such as 
Tabu Search and GRASP. Differently, the field of EDA is still quite young and much of the 
research effort is focused on methodology rather than high performance applications. 
Recently, researchers have been dealing with finding similarities between ACO algorithms 
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and probabilistic learning algorithms such as EDA. An important step into this direction 
was the development of the Hyper-Cube Framework for Ant Colony Optimization (HC-
ACO) (Blum C. et al., 2001). Furthermore, connections of ACO algorithms to Stochastic 
Gradient Descent (SGD) algorithms represent a research area of growing interest. Instead, 
current research in Quantum-inspired Genetic Algorithms is trying to make quantum 
hardware platforms feasible, even if it is currently not clear how true quantum computation 
algorithms will be related to quantum hardware (Narayan A. and Moore M., 1998).   

In conclusion, there is a need for the hybridization of metaheuristics to be examined 
in detail in order to be able to produce hybrid metaheuristics that perform better than their 
“pure” parents.  
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