
University of Huddersfield Repository

Viduto, Valentina, Maple, Carsten, Huang, Wei and Lopez-Perez, David

A novel risk assessment and optimisation model for a multi-objective network security 

countermeasure selection problem

Original Citation

Viduto, Valentina, Maple, Carsten, Huang, Wei and Lopez-Perez, David (2012) A novel risk 

assessment and optimisation model for a multi-objective network security countermeasure selection 

problem. Decision Support Systems, 53 (3). pp. 599-610. ISSN 0167-9236 

This version is available at http://eprints.hud.ac.uk/22825/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30730945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Novel Risk Assessment and Optimisation Model for

Multi-objective Network Security Countermeasure

Selection Problem

Valentina Vidutoa,∗, Carsten Maplea, Wei Huanga, David López-Perézb

aInstitute for Research in Applicable Computing, University of Bedfordshire, Park

Square, Luton, Bedfordshire, LU1 3JU, United Kingdom
bCentre for Telecommunications Research, King’s College London, Strand, WC2R 2LS,

United Kingdom

Abstract

Budget cuts and high demand in strengthening the security of computer

systems and services today are problematically balanced facts. Poor sys-

tem knowledge and inappropriate selection of security measures may lead

to unexpected financial and data losses. This paper proposes a novel risk

assessment and optimisation model (RAOM) which can be used as an exten-

sion of a standard risk assessment procedure to represent a multi-objective

security countermeasure selection problem, the purpose of which is to min-

imises the risk presented by network vulnerabilities in relation to financial

investments. A multi-objective Tabu Search (MOTS) algorithm has been

developed to construct an efficient frontier of non-dominated solutions and

has been compared to an Exhaustive Search (ES). It is discovered that the

proposed approach provides near optimal results for this type of the prob-

lem and can provide a model used to support financial investment decision

✩ This Research is financially supported by EPSRC, whose support is very appreciated
∗Corresponding author.Tel.:+44(0)1582 742159
Email addresses: valentina.viduto@beds.ac.uk (Valentina Viduto ),

carsten.maple@beds.ac.uk (Carsten Maple ), wei.huang@beds.ac.uk (Wei Huang ),
david.lopez@kcl.ac.uk (David López-Peréz)

Preprint submitted to Elsevier June 3, 2011



making.

Keywords: Financial decision support, Risk assessment, Multi-objective

optimization, Tabu Search.

1. Introduction

In the IT sector, most organisations implement security standards to be

competitive and trustworthy parties that run highly integrated and secure

businesses [1]. However, despite regulations, law and awareness of security

measures, data breaches continue to grow and evolve. For instance, accord-

ing to recent surveys, by around 84% of UK organisations suffered at least

one data breach in 2007 [2].

When an organisation performs regular risk assessments of assets and

services, the risk of experiencing a data breach may decrease. However,

frequently, decisions on what security measures should be implemented are

made based on the personal experience of the decision maker, who is often

unaware of specific system weaknesses and new threats. In order to solve this

issue, researchers have proposed a number of models relating to qualitative

and quantitative risk assessment approaches, where attack trees and attack

graphs are used to estimate the shortest attack paths and related security

costs [3, 4, 5, 6, 7]. However, these models lack of practical sense and cannot

support cost-effective security decisions.

A cost-effective and coherent risk assessment should study the relation-

ships among system vulnerabilities, threats and countermeasures. Knowing

potential risks gives the ability to organisations to make effective decisions

on what security countermeasures should be implemented before any poten-

tial threat can successfully exploit system vulnerabilities. NIST SP800-30,

2



ISO 27001 and ISO 17799 are common methodologies, which provide some

guidelines on how risk should be assessed and how countermeasures should

be selected [8, 9, 10]. However, these guidelines do not provide a specific

method for assessing risk related factors, i.e., vulnerabilities, threats, and

addressing them via security countermeasures.

Security countermeasure selection problems have received a great deal

of attention in the recent literature [11, 12, 13, 1]. However, existing ap-

proaches deal with this problem from very different perspectives. The au-

thors in [12] analyse the countermeasure selection in relation to residual

vulnerabilities, which are represented as uncovered existing vulnerabilities.

The idea behind their approach is to maximise the coverage of existing vul-

nerabilities by implementing the selected set of countermeasures, thus, to

minimise the residual vulnerability (uncovered). Another approach to select

a portfolio of countermeasures in relation to investment costs is by analysing

the residual damage in the system if a system hole is not fixed [13] and con-

sidering a set of controls in a form of disabling, enabling or patching a service

or application.

Although they are very detailed in some aspects, current countermea-

sure selection approaches miss some other details. For example, applying a

countermeasure may eliminate some risks, but generate new ones under cer-

tain circumstances. Therefore, it is not enough performing risk assessments

and independently selecting security countermeasures, but it is necessary to

understand the bi-directional relationship between them both. In this way,

we can make sure in a cost-effective manner that organisations are aware of

possible data losses and that the adequate security countermeasures are in

place.

Due to the lack of studies on this topic, this paper investigates risk

3



assessment methodologies and provides a tool to select security counter-

measures taking financial costs and residual risks into account. More specif-

ically, based on NIST SP800-30 guidelines, we propose a risk assessment

and optimisation model (RAOM) to satisfy organisational security needs in

a cost-effective manner, systematically present our security countermeasure

selection problem and formulate it as a multi-objective optimisation prob-

lem, where variables such as financial cost and residual risks may affect the

final solution. We also propose a tailored Tabu Search(TS)-based heuristic

approach to solve the proposed multi-objective optimisation problem and

asses the qualities of its solutions with respect to optimal ones.

2. Risk Assessment and Optimisation Model (RAOM)

In this section we present our risk assessment model, compare it to NIST

SP800-30 framework and formally define our multi-objective optimisation

problem.

ROAM consists of two processes, risk assessment and optimisation rou-

tine. The purpose of the proposed RAOM is to provide the foundation of

an effective risk assessment procedure, containing practical methods neces-

sary for assessing risks and cost-effectively minimising them through security

countermeasures. Figure 1 illustrates the flow chart of RAOM, which de-

scribes firstly the risk assessment stages (Part A), including identification of

risks through a vulnerability assessment, their impacts through the analysis

of threats mapped onto vulnerabilities and secondly, optimisation routine

(Part B), which is used to find optimal solutions in a cost-effective manner.

The first stage in our proposed risk assessment procedure is to identify

essential organisation’s systems and functions, which cannot be interrupted

4



Figure 1: Risk assessment and optimisation model (RAOM) flow chart

under any circumstances. Then, these systems and functions are assessed

for vulnerabilities, because if there is a vulnerability in the network, there is

the risk that a threat exploits the vulnerability, and hence the organisation

may face unexpected technical damages and financial expenditures. Vul-

nerabilities, technical or nontechnical, can be identified in four ways: using

automated vulnerability scanning tools, performing penetration tests on sys-

tems, using vulnerability modelling techniques and assessing previous risk

assessment IT documentation. Once the vulnerabilities are characterised, it

is important to identify the threats that can exploit them. Vulnerabilities

can only be translated into risk if there is a threat able to exploit them. If

5



we can estimate vulnerabilities and threats, we can derive the level of risk

in an organisation. Our aim is then to reduce this level of risk by selecting

the appropriate set of countermeasures in a cost-effective manner.

2.1. Definition of Vulnerabilities

Vulnerabilities are the weaknesses or flaws in system security proce-

dures, design or internal controls that can be triggered or intentionally

exploited, resulting in a security breach or a violation of security policy.

The National Vulnerability Database provides a source of technical vulner-

abilities [14]. Every vulnerability may have a different impact level on a

system.Traditionally, the impacts of a vulnerability on confidentiality, in-

tegrity and availability (CIA) are considered, where for each one of them,

there are three impact levels: partial (P), complete (C) and none (N). The

tuple comprised of the three potential impact levels on CIA of a vulner-

ability is then translated into an impact sub-score Isub with range [1,10],

where 1 is the lowest and 10 is the highest impact. Isub can also be retrieved

from the National Vulnerability Database [14], and depends on the inherent

characteristics of the vulnerability: exploit range, attack complexity, level

of authentication needed.

Table 1 provides an example of the potential impact on CIA and sub-

score Isub of some vulnerabilities. Furthermore, each vulnerability impact

sub-score Isub is mapped onto impact I ∈ {10, 50, 100} where 10 indicates

a low impact on CIA, 50 - medium, 100 - high. Impact value I has been

introduced to scale variations of Isub.

Let each vulnerability be represented as a single bit in the vulnerability

vector:

6



Representation Vulnerability CVE number Impact Impact

(Repr.) on CIA Sub-score

V1 Default, missing or blank local user password 1999-0504 PPP 6

V2 VirusScan NT 4.0.2 doesn not modify scan.dat file 1999-1195 PPP 6

V3 Administrator password disclosure 2006-0561 CCC 10

V4 IE version 5.01.5.5 and 6.0 2003-0344 PPP 6

V5 SSH v1 in OpenSSH has various weaknesses 2001-0572 PPP 6

V6 Cisco CSS11000 malformed UDP packet vulnerability 2004-0352 NNP 2

V7 mysqld in MySQL 3.21 stores passwords in log file 1999-1188 PPP 6

V8 MySQL 3.21 allows mysql users to gain root privileges 2003-0150 CCC 10

V9 Execute arbitrary commands in wu-ftpd 2.6.1 2001-0550 PPP 6

V10 wu-ftpd 2.6.1 with the restricted-gid option enabled 2004-0148 CCC 10

allows local users to bypass access restrictions

Table 1: Vulnerability and corresponding CVE, impact information

~V = {Vi} = {1, 0} ∀i, i = 1, 2, ..., n. (1)

where Vi represents an individual vulnerability. The value 1 indicates the

presence of this vulnerability in the information systems, otherwise 0.

Moreover, as discussed before, impact on CIA sub-score Isub of vulnera-

bility i is mapped onto impact Ii as follows

7



Ii =



















Low(10) when 0.0 ≤ Isub ≤ 3.9;

Medium(50) when 4.0 ≤ Isub ≤ 6.9;

High(100) when 7.0 ≤ Isub ≤ 10;

Because every vulnerability identified in the network is a potential risk,

we include all vulnerabilities into our analysis. For example, if we assume

that an organisation has identified 10 vulnerabilities, we set n to 10 and

Vi = 1 ∀n.

2.2. Threat Analysis

The next step in the model is to perform a threat analysis, which consists

of identifying potential threat sources and actions that may exploit system

vulnerabilities. An attack can be defined as the action, in which a threat

exploits a vulnerability that may create some risk in the system.

Information about threats can be gathered from the organisation’s his-

torical data base about the attacks recorded in system log files or by using

threat modelling techniques, which can predict threats not known to the

organisation. For example, modelling techniques, such as attack graphs, at-

tack trees or an onion skin model [15, 16] have been used to predict new

threats in particular scenarios.

Let each threat be represented as a single bit in the threat vector:

~T = {Tj} = {0, 1} ∀j, j = 1, 2, ...,m. (2)

where Tj represents an individual threat. The value 1 indicates the presence

of this threat in the information systems and otherwise 0.

Thereafter, based on data breaches reports, logged attack attempts and

self-expertise, we can match threats to vulnerabilities (Table 2) and estimate

8



Threat Threats/ Repr. Matched

sources Actions vulnerability

Incompetent user Unauthorized user gets access to resources T1 V1,V3, V7,V8,V9 ,V10

Physical attack T2 V1,V3, V7,V8 ,V10

Hacker Social engineering T3 V3,V8 ,V9

Tamper the protection relevant mechanisms T4 V1,V2, V5,V6 ,V10

Reckless network administration T5 V1,V2,V3,V4,V5,V9 ,V10

Tactical attack Improper management T6 V1,V3, V4,V7,V8

Viruses, Trojans, Worms T7 V2,V4, V6

Architecture, design T8 V5,V6, V9,V10

and implementation flaws

DoS attack T9 V4,V6, V7

Industrial Espionage BoF attack T10 V4,V8, V9,V10

No Audits T11 V1,V3, V4,V6,V8 ,V9,V10

Service administrator Elevation of privileges T12 V1,V3, V5,V7 ,V8

Password compromise through T13 V3,V4, V5

plain text communication

Dictionary/Brute Force attack T14 V1,V3, V5,V7 ,V9

Arbitrary code execution T15 V1,V4, V5,V9

Table 2: Matching threats and vulnerabilities

the likelihood Lij of a threat Tj acting over a vulnerability Vi, as shown in

Table 3, i.e., Lij = 〈Vi, Tj〉 [17, 18, 19].

This likelihood can adopt three values: 0.1, 0.5 and 1, where the value

0.1 represents low likelihood of threat Tj exploiting vulnerability Vi, 0.5 -

medium likelihood and 1 - high likelihood. If a threat Tj has no effect on a

vulnerability Vi, there is no risk and we make Lij = 0.

2.3. Risk Level Analysis

Definition 1: Total Initial Risk (TIR) is the sum of initial risks in an

organisation, when no security countermeasure has been applied, and can

be computed as follows

9



V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

T1 0.1 0 0.5 0 0 0 0.1 0.1 0 0.1

T2 1 0 0.5 0 0 0 0.1 0.1 0 0.1

T3 0 0 1 0 0 0 0 0.1 0.1 0

T4 0.1 0.1 0 0 0.5 0.1 0 0 0 0.5

T5 0.5 0.5 1 0.5 0.5 0 0 0 0.1 0.1

T6 1 0 0.5 0.1 0 0 0.5 0.1 0 0

T7 0 1 0 0.5 0 0.1 0 0 0 0

T8 0 0 0 0 0.5 0.1 0 0 0.1 1

T9 0 0 0 0.5 0 0.5 0.5 0 0 0

T10 0 0 0 0.1 0 0 0 0.5 0.1 0.5

T11 0.5 0 0.5 0.1 0 0.1 0 0.5 0.5 0.5

T12 1 0 1 0 0.1 0 0.5 1 0 0

T13 0 0 0.5 0.1 0.5 0 0 0 0 0

T14 1 0 0.5 0 0.5 0 1 0 0.5 0

T15 0.1 0 0 0.5 0.5 0 0 0 1 0

Table 3: Likelihood value Lij

TIR =
n

∑

i=1

m
∑

j=1

Lij ∗ Ii, (3)

where TIR ∈ R
+;

Once TIR is known, the organisation becomes aware of how critical

identified vulnerabilities are for running a successful business. Thus, the next

step is to identify potential security countermeasures that can be applied to

reduce the TIR value.

2.4. Control Recommendation

In general, security countermeasures (Table 4) can be categorised as

technical, management and operational based on the function they provide.

Similar classification can be found in the NIST report [8].

10



Category Type Countermeasure Representation

Support Identification S1

Cryptographic key management S2

Security administration S3

Technical System protection S4

Prevent Authentication S5

Authorisation S6

Access Control Enforcement S7

Non repudiation S8

Protected communication S9

Transaction privacy S10

Audit S11

Detect and Recover Intrusion detection and Containment S12

Virus detection and eradication S13

Assign security responsibilities S14

Implement separation of duties, least privilege S15

Preventive and PC access registration and termination

Management Conduct security awareness and technical training S16

and PC access registration and termination

Detection Conduct periodic review of security controls S17

Periodic system audits S18

Recovery Provide continuity of support and test, maintain it S19

Control data media access and disposal S20

Control software viruses S21

Operational Preventive Safeguard computing facility (e.g.biometric access control) S22

Protect laptops, personal computers, workstations S23

Detection Provide physical security (e.g. motion detectors) S24

Table 4: A generic list of security countermeasures for identified vulnerabilities and threats

Let each countermeasure be represented as a single bit in the counter-

measure vector:

~S = {Sl} = {0, 1} ∀l, l = 1, 2, ..., k. (4)

11



where Sl represents an individual countermeasure. The value 1 indicates

that this countermeasure is applied to the information system and otherwise

0.

The selection of countermeasures is performed by first matching them

to identified vulnerabilities as shown in Table 5. In particular, we assign zli

based on the characteristics of a certain vulnerability and a countermeasure,

and realistically assign the matching values for certain combinations based

on its applicability. Previously countermeasure-to-vulnerability matching

idea has been proposed in [20].

Information in Table 5 has been mostly retrieved from NIST vulnerabil-

ity database [14], where general information about vulnerabilities as well as

countermeasures from a number of vendors can be found. Furthermore, we

have relied on data breach reports [14, 21, 22] and our own knowledge to de-

liver the concise data about what vulnerabilities can be created or addressed

while an appropriate countermeasure is implemented.

Each countermeasure-vulnerability combination zli may have one of the

five possible consequences:

zli =











































1 if Sl directly addresses Vi;

0.5 if Sl indirectly addresses Vi;

0 if Sl and Vi do not match;

−0.5 if Sl indirectly creates Vi;

−1 if Sl directly creates Vi.

Note that if it is properly selected, a countermeasure can address a vulner-

ability, but if it is not adequately chosen may generate a new one. This fact

penalises organisations that do not judiciously select countermeasures.

Each of these countermeasures has an associated cost Cl. In this study,

12



Vulnerability / V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Countermeasure

S1 1 0 -0.5 0 0.5 0 -0.5 -0.5 0 -0.5

S2 0 0 -0.5 0 0.5 -0.5 -0.5 0 0.5 0.5

S3 1 0.5 -0.5 0.5 1 1 1 1 0.5 0.5

S4 -0.5 0 -1 0 1 1 1 1 0.5 0.5

S5 0.5 0 -1 0 0.5 0 0.5 0.5 -0.5 -0.5

S6 0.5 0 -0.5 0 0 0 0 0.5 0 0

S7 0 0.5 -0.5 0 0.5 0 0 1 0 0

S8 0 0 -0.5 0 0.5 0 0 0 0 0

S9 0 0 0 0 1 0 0.5 0.5 -0.5 0.5

S10 0 0 -1 0 1 0 0.5 0.5 0 -0.5

S11 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

S12 0.5 0.5 -0.5 0 0 0 0.5 0.5 1 0.5

S13 0 1 0 0.5 0 0.5 0 0.5 0 0

S14 0 0 0.5 0 0 0 1 0.5 0 0

S15 0 0 0.5 0 0.5 0 0 0 0 0.5

S16 1 0.5 1 0.5 0.5 0.5 1 1 1 1

S17 0.5 0.5 -0.5 0.5 1 0.5 0.5 0.5 1 1

S18 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5

S19 0.5 0.5 -0.5 0 -0.5 0 0 0.5 0 0

S20 -0.5 0 -0.5 0 0 0 0 0 0 0

S21 0 1 0 0.5 0 0 0 0 0.5 0

S22 1 0 -1 0 0 0 0 0 0 0

S23 0 -0.5 0 0 0.5 0 0.5 0 0 0

S24 -0.5 0 -1 0 0 0 0 0 0 0

Table 5: Matching countermeasures to vulnerabilities zli

we have identified four different costs of implementing a security counter-

measure - purchase cost (monetary), operational cost (monetary), training

cost (monetary) and man power (monetary).

Purchase cost includes all the costs associated with purchasing a certain

countermeasure from a vendor. All the additional sub-charges, if there are

some, are also summed up to the total purchase cost value. Operational cost

13



can be defined as expenses which are related to the operation of a certain

countermeasure: this can be fixed or variable costs, such as delivery costs,

rent payment or electricity charges. Training cost can be applied for such

cases when an additional training is required for an IT staff to increase

security awareness. Man power is calculated in persons per hour required

to implement a new countermeasure or re-configure the existing one.

Operational Man Purchase Training Total

cost ($) power($) cost ($) cost ($) ($)

S1 75 48 200 150 473

S2 30 24 0 300 354

S3 150 24 0 200 374

S4 105 24 150 0 279

S5 45 24 50 50 169

S6 30 24 0 0 54

S7 45 48 500 0 593

S8 60 24 0 0 84

S9 30 24 0 0 54

S10 15 24 0 50 89

S11 735 0 200 0 935

S12 15 24 0 0 39

S13 210 24 160 0 394

S14 75 48 0 0 123

S15 60 48 0 0 108

S16 15 24 0 50 89

S17 300 72 100 0 472

S18 150 0 300 0 450

S19 0 48 0 0 48

S20 75 144 500 0 719

S21 420 24 80 0 524

S22 0 72 50 0 122

S23 450 96 160 200 906

S24 15 24 450 0 489

Table 6: Estimated cost value in monetary units

14



The overall cost for a particular security countermeasure Sl is the sum

of the four presented sub-costs defined in monetary units (Eq.5).

Cl =

4
∑

n=1

Cn (5)

The cost values estimated for each of the countermeasures used in our

analysis are shown in Table 6. The values have been estimated relying on

the costs offered by the security technology manufacturers and self expertise.

2.5. Risk Assessment and Optimisation Model (RAOM) as an extension of

NIST SP800-30

Organisations use risk assessment methodologies to determine the ex-

tent of existing threats, vulnerabilities and the risk, associated with the

networked systems. NIST SP800-30 risk management guide is designed for

organisations which are willing to perform the risk assessment process in a

coherent way and thus, help decision makers to quantify the level of risk an

organisation has, based on the impact vulnerabilities introduce, likelihood

values and overall network state.

Despite the advantages introduced by the NIST SP800-30, there are

some limitations to be considered. First of all, it is not designed to help in

security countermeasure selection. Also, the data gathering procedure use

a simplified way to quantify risk,i.e. by applying a scale to all risk related

factors. In overall, the quantitative analysis proposed by the standard can-

not be used when optimisation of financial resources in relation to risk is

desired. However, the qualitative analysis used to identify all risk related

factors can be used as a baseline.

To address the issue covered above, we build on NIST SP800-30, how-

ever modify and extend the standard risk assessment procedure by the ad-

15



ditional methods, denoted as ’Control Selection’ and ’Optimisation’ (Figure

2). Differently from NIST SP800-30 and other models, we propose a new

Figure 2: Comparison and extension to the NIST SP800-30

way of quantifying risks in relation to threats and vulnerabilities. From

the literature, researchers agree that security is commonly referred to as

confidentiality, integrity and availability (CIA) [23]. In fact, a vulnerability

will impact CIA, if it is exploited and it will cause disruptions in delivering

services to customers, so CIA plays a crucial role in estimating total risks.

Thus, the proposed approach allows to perform a more realistic vulnera-

bility assessment and thus, to calculate the total risk value an organisation

holds considering the impact on security triangle.

RAOM also includes a control selection method, which incorporates a

multi-objective function and an optimisation technique (Figure 1,Part B).

The multi-objective function is proposed considering two conflicting factors:

16



cost and risk to be optimised. As a result, an optimisation routine can pro-

vide with the solutions (trade-offs) that can satisfy organisational security

needs in a cost-effective manner.

3. Problem Formulation

We consider two objectives in this study: the total investment cost TC

and the risk R. For the n = 10 vulnerabilities listed in Table 1 we have

suggested l = 24 generic security countermeasures (Table 4). As a result,

the 224 security countermeasures choices available prove the problem to be

hard to solve manually or relying on self-expertise. Furthermore, the time

to find the solution increases when the size of the problem increases, i.e., if

the number of vulnerabilities n, threats m and countermeasures k increases,

the time to find the optimal solution also increases.

Definition 2: Total investment cost

Given a set of k security measures, each having a cost Cl, 1 ≤ l ≤ k and

having a vector of ~S = (Sl), Sl ∈ {0, 1}∀ l, 1 ≤ l ≤ k, the total investment

cost TC is defined as:

TC =

{

k
∑

l=1

ClSl : Cl > 0, ∀l (Cl)

}

(6)

Sl =







1 if a security measure l is selected in the solution;

0 otherwise.

Definition 3: Risk

Given a total initial risk TIR, a vector ~S = (Sl), Sl ∈ {0, 1}∀ l, 1 ≤ l ≤ k

and a matching matrix zli , zli = 〈Vi, Sl〉, the risk R is defined as:

17



R =







TIR −
k

∑

l=1

n
∑

i=1

m
∑

j=1

Lij ∗ Ii ∗ zli ∗ Sl







(7)

Problem: Given a vector of vulnerabilities ~V , threats ~T and k security

countermeasures, find the vector ~S, which minimises total investment cost

and risk.

min
sl

[TC, R] (8)

3.1. Multi-objective Optimisation Principles

In most real world scenarios problems can be formulated to satisfy single

or multiple objectives and a decision choice is made based on these objectives

and constraints. However, these objectives and constraints are conflicting

each other in many cases, making it difficult to find an optimal solution. The

conflicting nature of multiple objectives cannot be balanced by just finding

a single optimum solution, because when a solution that optimises one of

the objectives may not have the same effect on the other objectives. Thus,

in case when two or more feasible solutions should be compared, a concept

of Pareto front should be considered [24].

Definition 4: Pareto optimal solution, concept of dominance

Let us consider, a minimisation problem, where x and x′ are two feasible

solutions, X is the set of feasible solutions or decision space, i.e., x, x′ ∈ X,

p is an objective where 1 ≤ p ≤ P , P is the maximum number of objectives,

and fp is the cost function of objective p. Then, solution x strictly dominates

or is preferred to solution x′ if each cost function value fp(x) of x is no

greater than the corresponding cost function value fp(x
′) of x′ and at least

one cost function value is strictly less: that is, fp(x) ≤ fp(x
′) for each p and

18



fp(x) < fp(x
′) for some p. The set of all non-dominated elements is referred

to as non-dominated frontier or a Pareto front [25].

The concept of dominance plays a crucial role for our problem, i.e.,

minimisation of the security countermeasure cost and risk. A solution that

reduces risk will most probably increase cost and vice versa. However, the

Pareto front of our problem will provide the optimal trade-offs.

Generating a Pareto set can be computationally expensive, though, a

number of stochastic search methods such as evolutionary algorithms, tabu

search, simulated annealing have been developed. In general, these methods

do not guarantee the optimality of the solution but they often find good

approximate solutions. As evolutionary algorithms posses several charac-

teristics that are desired for the multi-objective problems involving multiple

conflicting objectives, and intractably large and complex search spaces, these

types of search strategies have been successfully used for more than a decade

[25].

3.2. Multi-objective Tabu Search (MOTS) for Risk Optimisation

We develop a Tabu Search (TS) technique for solving (8). TS has been

applied to a wide range of combinatorial optimisation (e.g. scheduling, rout-

ing, traveling salesman) problems. We are now willing to test its the effi-

ciency in the security countermeasure selection problem. The elements, pa-

rameters and operation that have been used in our algorithm are presented

as following:

• Solution ~S.

A solution is a selection of countermeasures.

• Initial random solution ~Srnd.

The multi-objective TS (MOTS) algorithm starts from creating an

19



initial solution, which is randomly selected, i.e., each element Sl of

solution ~S is set to 0 or 1 with an equal probability.

• The solution space X. This is the set of all possible solutions. The

size of X is 2l, where l is the number of available countermeasures.

• Objective function fp(~S),

The objective function fp(~S) is used to evaluate solution ~S with respect

to the objective p. In this case, there are two objective functions, (6)

and (7).

• Neighbourhood Ns.

The TS moves at each iteration from current solution ~S to a neigh-

bouring one ~S′ based on a tabu selection process.

• Tabu List (tb).

The concept of the tabu list is introduced to prevent the problem of

possible cycling or/and infinite loop [26]. Tabu list does not allow

solutions that have been visited recently.

• Aspiration criteria.

The aspiration criteria is a global rule for allowing a move, even if it

is tabu, if it is a non-dominated solution [27].

• Stopping criteria. TS stops iterating when a given condition is reached.

The condition could be a given number of iterations, a running time

or a solution quality.

When applying MOTS to the minimisation problem proposed in this

study, MOTS moves in each iteration from the current solution ~S to a

neighbooring one ~S′. In our algorithm, neighbooring solutions are always

20



~S = ~Srnd; fc
cur = fc(~S); fr

cur = fr(~S); /* random initial solution */

~Sbest = ~S; /* initialise best solution */

tb = ∅; /* initialise tabu list */

iter = 0 /* set an iteration counter */

while iter ≤ itermax do

iter = iter + 1

neigh = 0 /* initialise checked neighboor counter */

~Sbest
neigh

; fbest
neigh

/* best neighboor */

bestNeighList = ∅ /* Create best neighboor list */

while neigh ≤ Ns do

neigh = neigh + 1

~S′ = randneigh(~S) /* neighboor selection */

fc
neigh

= fc(~S′); fr
neigh

= fr(~S′) /* evaluate its cost */

if dominated == 0 then

/* Is neighboor dominated by some solution in the pareto front?

*/

~Sbest = ~S′; fc
best

= fc
neigh

; fr
best

= fr
neigh

/* save it */

StoreSolutionInPareto(~S′)

break; /* stop looking for neighboors */

end

if movement(~S, ~S′) in tb then

/* Is this movement forbidden? */

continue; /* Yes, skip it */

end

if neigh == 0, fc(~S′) < fc(~S) or fr(~S′) < fr(~S) then

StoreSolutionInBestNeighList(~S′)

end

neigh = neigh + 1;

end

m = movement(~S, ~Sbest
neigh

)

~S = ~Sbest
neigh

; fc
cur = f

best,c

neigh
; fr

cur = f
best,r

neigh
/* Move to best neighboor */

tb = tb + [m] /* add movement to tabu list */

removeOld(tabu) /* remove old entries */

end

Algorithm 1: Pseudo Code for multi-objective TS

21



selected randomly by choosing a random countermeasure Sl and changing

its allowance from 0 to 1 or vice versa.

First of all, in each iteration the neighboorhood Ns of a current solution

~S must be defined. In our case, we limit the number of visited neighboors to

a value Ns. Thus, MOTS moves from current solution ~S to its best neigh-

booring one (with the lowest cost and/or risk within the neighboorhood)

~S′ ∈ Ns. To construct the Pareto frontier, we remove dominated solutions.

The dominated solutions are those, which satisfy the following constraints:

• If the objective function value for cost fc(~S) is no greater than the

corresponding or is equal to cost function value of the neighboor, that

is: that is, fc(~S) ≤ fc(~S
′) and the objective function value for risk

fr(~S) is strictly less than the corresponding risk function value of the

neighboor: that is, fr(~S) < fr(~S
′);

• If the objective function value for cost fc(~S) is no greater than the

corresponding cost function value of the neighboor, that is: that is,

fc(~S) < fc(~S
′) and the objective function value for risk fr(~S) is no

greater or equal to the corresponding risk function value of the neigh-

boor: that is, fr(~S) ≤ fr(~S
′);

• If the objective function value for cost fc(~S) is equal to the correspond-

ing cost function value of the neighboor, that is: that is, fc(~S) = fc(~S
′)

and the objective function value for risk fr(~S) is equal to the corre-

sponding risk function value of the neighboor: that is, fr(~S) = fr(~S
′);

It must be noted, that the objective function f(~S′) of the best neighbor

does not need to improve the current one f(~S). To avoid getting stuck in a

local minima, MOTS may move from current solution ~S to a neighbooring

22



one ~S′ even it is worsening the objective function value [26]. The action of

this move from current solution ~S to its best neighboor ~S′ is called movement

[28]. MOTS stops iterating when a given condition is reached, i.e., given

number of iterations. The pseudo code of the MOTS is given in Algorithm

1.

4. Experiments and Discussion

In the following section, we demonstrate the validity of the proposed

model by applying an optimisation routine to help decision makers to decide

the best solution in multi-objective terms. We compare the qualities of

MOTS solutions to optimal ones obtained through the traditional exhaustive

search (ES) approah. We examine ten cases when the number of iterations

is changed from 500 iterations to 30 000 iterations to examine the speed of

the TS approach in finding near optimal solutions.

Prior to presenting actual results, it is appropriate to note that the

solving method was written in C++ and executed on an AMD Athlon II X2

245 2.8MHZ processor, 4GB RAM.

4.1. Testing the speed of MOTS

For the first experiment, we test the speed of the MOTS for the original

problem. Increasing the number of iterations, we have recorded the time.

Table 7 summarizes the efficiency of the MOTS recorded at each case.

The next step of the first experiment was to analyse the quality of solu-

tions obtained. Figure 3(a) shows the non-dominated solutions obtained in

500, 2500, 8000 and 20000 iterations.

In comparison, we took 8000 and 20 000 iteration generated solutions.

We did not observe any significant change in the non-dominated solutions

23



Case Iterations Time (s)

1 500 5

2 1000 14

3 2500 44

4 5000 99

5 8000 163

6 10000 221

7 12000 261

8 15000 336

9 20000 450

10 30000 598

Table 7: TS time recorded for ten cases

0 1000 2000 3000 4000 5000 6000 7000
1300

1400

1500

1600

1700

1800

1900

Objective 1 (Cost)

O
bj

ec
tiv

e 
2 

(R
is

k)

 

 
500 iterations
2500 iterations
8000 iterations
20 000 iterations

(a) Convergence of the Pareto Front

0 1000 2000 3000 4000 5000 6000 7000
1300

1400

1500

1600

1700

1800

1900

 

 

X: 634
Y: 1784

X: 545
Y: 1809

O
bj

ec
tiv

e 
2 

(R
is

k)

Objective 1 (Cost)

TS 8000 iterations
TS 20000 iterations

(b) Difference in new solutions

Figure 3: Obtained Pareto front and difference in solutions

by varying the algorithm parameters. In 20000 iterations, MOTS has found

the same number of solutions with the difference in four of them. Two of

these solutions are labeled with the squared box in Figure 3(b). Once we

have noted that variation in solutions is not large and the speed difference

is significant for mentioned cases, we can assume, that stopping an algo-

rithm after 8000 iterations the decision maker could get the highest possible

number of optimal solutions.

24



4.2. Testing the quality of solutions

The second experiment was to examine the quality of solutions obtained

by MOTS algorithm. We carried it out for the same data set using ex-

haustive search method (ES). An ES approach was chosen to this problem

for several reasons. First, ES is a search technique to solve multiobjective

optimisation problems based on enumerative evaluation of each possible so-

lution from a given finite set. Second and perhaps more important, the

ES approach is the only way at present to find an exact Pareto Front in

multi-objective problems [29].

0 1000 2000 3000 4000 5000 6000 7000
1300

1400

1500

1600

1700

1800

1900

2000

2100

Objective 1 (Cost)

O
bj

ec
tiv

e 
2 

(R
is

k)

(a) ES obtained Pareto Front

0 1000 2000 3000 4000 5000 6000 7000
1300

1400

1500

1600

1700

1800

1900

2000

2100

Objective 1 (Cost)

O
bj

ec
tiv

e 
2 

(R
is

k)

 

 
TS 8000 iterations
ES

(b) ES compared to TS

Figure 4: Comparison of the Pareto Front obtained by MOTS and ES algorithms

Figure 4(a) shows the Pareto front obtained by running ES. The algo-

rithm was able to obtain 106 solutions, which surely were optimal ones for

this problem. Analysing the quality of solutions, we have compared Pareto

fronts obtained by both algorithms, shown in Figure 4(b). We did not see

any change in solutions in the intervals of [1000:4500] by the objective 1

(cost) value and [1400:1700] by the objective 2 (risk). A decision maker, in

general, would be interested in these intervals, as they are the middle of the

25



Pareto front with good trade-offs between both objectives.

Despite the fact, that ES is the only algorithm that has an ability to

obtain optimal solutions for multi-objective problems, the downside of ES

is that the search is computationally expensive.

TS ES

(8000 iterations)

Time (s) 163 2466

Number of non- 54 106

dominated solutions

Table 8: TS and ES comparison data

We have recorded the execution time required to generate the Pareto

Front for the ES approach and compared it with the TS 8000 iterations

approach (Table 8). MOTS search method has performed 15 times faster

than ES. Such a big time difference can be critical in a real life scenario if

the decision should be made instantly.

To justify the fact that MOTS has found near optimal solutions, we

have calculated Euclidean distance between solutions obtained by both al-

gorithms. Figure 5 shows how close these 54 solutions obtained by MOTS

were to the optimum one obtained by ES. It was recorded that 31 solution

obtained by MOTS was exactly the same as the ones obtained by ES, thus

we can say that MOTS has obtained 30% of optimal solutions when the

stopping condition was set to 8000 iterations (Table 9). Other solutions

though, are very close to optimum ones, as it can be seen in Figure 5.

4.3. Testing MOTS for the different problem

For the third experiment, we have modified the problem by varying the

likelihood Lij, impact Ii, cost Cl and matching zli values. In terms of speed,

26



0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

Solution

D
i
s
t
a
n
c
e

Figure 5: Euclidean distance between 54 MOTS obtained solutions and 106 ES optimum

ones

MOTS under different data set has performed very similarly to the original

problem. The time and quality of solutions are summarised in Table 9.

From the experiment, we can claim, that in the intervals of 5000 - 10000

iterations the decision maker can obtain higher percentage of optimal solu-

tions (∼ 30%). However, when time is considered as a stopping condition,

the best results would be achieved when the algorithm runs between 95s -

200 s.

With such results, MOTS approach shows acceptable levels of accuracy

in determining optimal solutions.

Once a decision maker has a better perspective of the solutions possi-

ble, the decision on what set of countermeasures should be selected can be

justified by the obtained cost and risk trade-offs. The MOTS algorithm has

proved to be an efficient way of solving security countermeasure problem

when there are two objectives to be minimised.

27



Iterations Original Problem (MOTS) Different Problem (MOTS)

Nr.of optimal Optimality in Time Nr.of optimal Optimality in Time

solutions % (s) solutions % (s)

500 0 0 5 0 0 3

2500 2 1.9 44 17 12 42

5000 11 10 99 25 19 94

8000 31 30 163 34 26 158

10 000 31 30 221 33 25 200

15 000 30 28 336 32 24 317

20 000 29 28 450 31 23 433

ES 106 100 2488 131 100 2842

Table 9: Result comparison under different data sets

5. Conclusion

The importance of decision making in the area of computer security

is well understood. Large body of work has been undertaken to support

decision makers by providing models which deal with the optimisation of

financial investments in relation to computer security. However, most of the

models described in existing study are hypothetical rather than practical.

This paper has proposed a novel risk assessment and optimisation model

(RAOM), which is partially based on NIST SP800-30 guidelines on per-

forming risk assessments in various organisations. We have adopted the

step-by-step procedure of assessing risk, however, we made some important

modifications in calculating impact of vulnerabilities and total risk. Due to

the fact, that computer security is referred to as CIA, we have designed a

way of defining risk in relation to an impact on CIA that each identified

vulnerability introduces.

The RAOM differs from previous attempts on improving computer se-

curity by applying optimisation techniques in several ways. First of all the

28



RAOM seeks to assess risk considering an impact on CIA and likelihood that

possible threats will exploit identified vulnerabilities, whereas most recent

methodologies exclude this realistic fact and risk is assumed to be uniform

(e.g.[12]). Moreover, RAOM has an advantage that applying a Tabu Search

method to solve a multi-objective countermeasure selection problem formu-

lated in this study makes it possible to review the solutions with the good

balance between the two objectives: risk and cost.

Overall it can be concluded that RAOM contributes a new way to make

decisions more justified and informed. Experimental results showed that

MOTS approach is much faster than the ES approach in searching for the

Pareto optimal set. Moreover, the proposed MOTS algorithm showed a good

approximation of solutions if compared with the optimal solutions obtained

by the ES.

Despite the advantages RAOM and MOTS provides for decision makers,

larger size problems (e.g. when the size of security controls, threats and

vulnerabilities increases) have not been tested yet. A future research task

will thus be to test the performance and scalability of the proposed approach

and compare it with other heuristics. Furthermore, we would be interested

in adding constraints to the problem, such as a maximum budget assigned

for security countermeasure implementation and/or the bounds of risk an

organisation is willing to take.

References

[1] T. Neubauer, A. Ekelhart, S. Fenz, Interactive selection of ISO 27001 controls under
multiple objectives, in: SEC, 2008, pp. 477–492.

[2] C. Maple, A. Phillips, UK Security Breach Investigations Report, 7Safe (2010).

[3] S. Bistarelli, F. Fioravanti, P. Peretti, Defense trees for economic evaluation of secu-
rity investments, in: ARES, 2006, pp. 416–423.

29



[4] H. Lv, Research on network risk assessment based on attack probability, International
Workshop on Computer Science and Engineering. 2 (2009) 376–381.

[5] L. Wang, S. Noel, S. Jajodia, Minimum-cost network hardening using attack graphs,
Comput. Commun. 29 (2006) 3812–3824.

[6] A. Asosheh, B. Dehmoubed, A. Khani, A new quantitative approach for information
security risk assessment, International Conference on Computer Science and Infor-
mation Technology. (2009) 222–227.

[7] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, Efficient minimum-cost network hardening
via exploit dependency graphs, in: ACSAC, 2003, pp. 86–95.

[8] G. Stoneburner, A. Goguen, A. Feringa, Risk Management Guide for Information
Technology Systems, Tech. rep., National Institute of Standards and Technology
(2002).

[9] ISO/IEC 27001:2005, Information technology - Security techniques - Information
security management systems - Requirements, International Organisation for Stan-
dardization (2005).

[10] ISO/IEC 17799:2005, Information technology - Code of practice for information se-
curity management (2005).

[11] T. Neubauer, C. Stummer, E. Weippl, Workshop-based multiobjective security safe-
guard selection, International Conference on Availability, Reliability and Security.
(2006) 366–373.

[12] M. Gupta, J. Rees, A. Chaturvedi, J. Chi, Matching information security vulnerabil-
ities to organizational security profiles: a genetic algorithm approach, Decis. Support
Syst. 41 (2006) 592–603.

[13] R. Dewri, N. Poolsappasit, I. Ray, D. Whitley, Optimal security hardening using
multi-objective optimization on attack tree models of networks, in: ACM Conference
on Computer and Communications Security, 2007, pp. 204–213.

[14] NIST, National vulnerability database, automating vulnerability management, se-
curity measurement and compliance cheking, http://nvd.nist.gov/home.cfm, Ac-
cessed before 1st of December 2010.

[15] V. Viduto, C. Maple, W. Huang, An analytical evaluation of network security mod-
elling techniques applied to manage threats, International Conference on Broadband,
Wireless Computing, Communication and Applications (2010) 117–123.

[16] C. Maple, V. Viduto, A visualisation technique for the identification of security
threats in networked systems, in: Information Visualisation, 2010, pp. 551–556.

[17] Verizon, 2008 Data Breach Investigations Report, Tech. rep., Verizon Business RISK
Team (2008).

[18] DTI, Information Security Breaches Survey, Tech. rep., Department of Trade and
Industry (2004).

[19] S. Vadera, C. Potter, A.Beard, Information Security Breaches Survey, Tech. rep.,
PriceWaterHouseCoopers (2008).

[20] S. G. B. H. R. M. J. P. J. R. J. C. R.H. Anderson, P.M. Feldman, Securing the U.S.
Defense Information Infrastructure: A Proposed Approach, RAND, Santa Monica,
CA, 1999.

[21] M.Templeman, M. Beishon, L. Malachowski, A.Wilson, T. Nash, L. Robertson, In-
formation security - best practice measures for protecting your business, Tech. rep.,
Department of Trade and Industry (2005).

30



[22] US-CERT, Introduction to recommended practices,
http://www.us-cert.gov/control systems/practices/, Accessed before 1st
of April 2011.

[23] T. Neubauer, C. Hartl, On the singularity of valuating IT security investments, in:
ACIS-ICIS, 2009, pp. 549–556.

[24] J. Legriel, C. Le Guernic, S. Cotton, O. Maler, Approximating the pareto front of
multi-criteria optimization problems, in: Tools and Algorithms for the Construction
and Analysis of Systems, Vol. 6015, Springer Berlin / Heidelberg, 2010, pp. 69–83.

[25] E. Zitzler, M. Laumanns, S. Bleuler, A tutorial on evolutionary multiobjective opti-
mization, in: X. Gandibleux, et al. (Eds.), Metaheuristics for Multiobjective Opti-
misation, Lecture Notes in Economics and Mathematical Systems, Springer, 2004.

[26] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[27] M. Gendreau, An introduction to tabu search, International series in operations re-
search and management science 57 (2003) 37–54.

[28] D. López-Peréz, Interference avoidance in macrocell-femtocell self-organizing net-
works: models and optimization, Ph.D. thesis, University of Bedfordshire (2010).

[29] F. Luna, A. J. Nebro, E. Alba, A globus-based distributed enumerative search al-
gorithm for multi-objective optimization, Tech. rep., Departamento de Lenguajes y
Ciencias de la Computacion, University of Malaga (2004).

31


