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Abstract

There is a large number of optimisation problems in theoretical and applied finance
that are difficult to solve as they exhibit multiple local optima or are not ‘well-
behaved’ in other ways (eg, discontinuities in the objective function). One way to
deal with such problems is to adjust and to simplify them, for instance by dropping
constraints, until they can be solved with standard numerical methods. This paper
argues that an alternative approach is the application of optimisation heuristics like
Simulated Annealing or Genetic Algorithms. These methods have been shown to be
capable to handle non-convex optimisation problems with all kinds of constraints.
To motivate the use of such techniques in finance, the paper presents several actual
problems where classical methods fail. Next, several well-known heuristic techniques
that may be deployed in such cases are described. Since such presentations are quite
general, the paper describes in some detail how a particular problem, portfolio
selection, can be tackled by a particular heuristic method, Threshold Accepting.
Finally, the stochastics of the solutions obtained from heuristics are discussed. It is
shown, again for the example from portfolio selection, how this random character
of the solutions can be exploited to inform the distribution of computations.
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1 Introduction

Financial economics is essentially concerned with two questions: How much
to save, and how to save, that is, how to invest income not consumed (Con-
stantinides and Malliaris, 1995). Traditionally, economists have formulated
both these questions as optimisation problems (Dixit, 1990); the latter one
has, however, received much greater attention in applied finance, and here the
optimisation models have come to be deployed in practice.

To solve such models, many researchers and practitioners rely on what we call
here ‘classical’ optimisation techniques. Classical methods are, for the purpose
of this paper, defined as methods that usually require convexity and relatively
well-behaved objective functions as they are often based on gradients or sim-
ilar indicators for descent-direction. They are mathematically well-founded;
numerically, there are powerful solvers available which can efficiently tackle
even large-scale instances of given problems. Methods that belong to this ap-
proach are for instance linear and quadratic programming. The efficiency and
elegance of these methods comes at a cost, though, since considerable con-
straints are put on the problem formulation, that is the functional form of the
optimisation criterion and the constraints. The analyst often has to shape the
problem in a way that it can be solved by such methods. Thus, the answer that
the final model provides is a precise one, but often only to an approximative
question.

An alternative approach that will be described in this paper is to use heuristic
optimisation techniques. Heuristics are a relatively new development in opti-
misation theory. Even though early examples date back to the 1960s or so,
these methods have become practically relevant only in recent decades with the
enormous growth in computing power. Heuristics aim at providing good and
fast approximations to optimal solutions; the underlying theme of heuristics
may thus be described as seeking approximative answers to exact questions. In
fact, heuristics have been shown to work well for problems that are completely
infeasible for classical approaches (Michalewicz and Fogel, 2004). They are
conceptually often very simple; implementing them rarely requires high levels
of mathematical sophistication or programming skills. Heuristics are flexible
as adding, removing or changing constraints or exchanging objective functions
can be accomplished very easily. These advantages come at a cost as well, as
the obtained solution is only a stochastic approximation, a random variable.
However, such a solution may still be better than a poor deterministic one
(which, even worse, may not even become recognised as such) or no solution
at all when classical methods cannot be applied. In fact, for many practical
purposes, the goal of optimisation is probably far more modest than to find
the truly best solution. Rather, any good solution, where ‘good’ means an
improvement of the status quo, is appreciated.
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There are two points that we wish to stress at the outset. First, we do not
suggest to consider heuristics as better optimisation techniques than classical
methods; the question rather is when to use what kind of method. If classi-
cal techniques can be applied, heuristic methods will practically always be less
efficient. When, however, given problems do not fulfil the requirements of clas-
sical methods (and the number of such problems seems large), the suggestion
made in this article is not to tailor the problem to the available optimisation
technique, but to choose an alternative, heuristic, technique to optimise.

The second point concerns the empirical application of optimisation in finance,
and it applies to both classical and heuristic techniques. In this article, we will
only be concerned with computational and numerical issues for given, well-
defined problems, and given data. When constructing optimisation models in
practice, the question what to optimise, that is how to formulate the opti-
misation model, seems just as important as how to optimise. For example,
when fitting models to historical financial time series, one may find ‘spikes’ in
the objective functions which are often entirely spurious. Hence, if the opti-
miser finds such solutions (and it should, if it works properly), the result will
likely be an overfitting. (An area where this is extreme is algorithmic trading,
see Dacorogna et al. (2001, ch. 11).) Possible solutions, which may include
more emphasis on data modelling or incorporating alternative, more robust
objective functions, are in our view very often ‘under-researched’, in partic-
ular when it comes to their actual empirical performance. The advantage of
heuristics here is that when formulating the model, the analyst is quite un-
constrained with regard to tractability of the model, hence emphasis can be
put on the empirical merits of specific methods. Optimisation is only a tool;
it is the application of this tool that matters.

This paper is not a survey, but a selection of problems from finance to illustrate
and motivate the use of heuristic methods in this field. For more detailed stud-
ies, see for example to Maringer (2005); Schlottmann and Seese (2004) or Gilli
et al. (2008) give more references to specific applications. The remaining paper
is organised as follows. Section 2 will detail several examples of problems that
arise in theoretical and applied finance; Section 3 will give a brief introduc-
tion to heuristic methods which can be applied to solve these problems. The
emphasis will be on principles, rather than on details. Heuristic methods as
presented here may be regarded as ‘recipes’ rather than specific algorithms.1

To demonstrate the process of implementing such a recipe, in Section 4 it will
be shown how to apply a particular heuristic method, Threshold Accepting,
to a portfolio selection problem. Section 5 then discusses an important aspect
of heuristics, namely the stochastic nature of the obtained solutions. Section 6
concludes.

1 Some authors prefer the notion of meta-heuristics for the concepts underlying
these techniques, whereas only the specific implementations are called heuristics.
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2 Optimisation problems in finance

2.1 Portfolio optimisation with alternative risk measures

In the framework of modern portfolio optimisation (Markowitz, 1952, 1959),
a portfolio of assets is completely characterised by a desired property, the
‘reward’, and something undesirable, the ‘risk’. Markowitz identified these two
properties with the expectation and the variance of returns, respectively, hence
the expression mean-variance optimisation (MVO). There exists by now a large
body of evidence that financial asset returns are not normally distributed
(Cont, 2001), thus describing a portfolio by only its first two moments is
often regarded as insufficient. Alternatives to MVO have been proposed, in
particular replacing variance as the risk measure.2

Assume an investor has wealth v0 and wishes to invest for one period. A given
portfolio, as it comprises risky assets, maps into a distribution of wealth at
the end of the period, or, equivalently, into a distribution of losses ℓ. The
optimisation problem can be stated as follows

minx∈R
nA Φ(ℓ)

E(ℓ) ≤ −v0 rd

xinf
j ≤ xj ≤ x

sup
j j ∈ J

Kinf ≤ #{J } ≤ Ksup

. . .

The objective function, Φ(ℓ), is a risk measure or a combination of multiple
objectives to be minimised. Candidates include the portfolio’s drawdown, par-
tial moments, or whatever the analyst wishes to optimise. The vector x stores
the (integer) numbers of assets held; rd is the desired return. xinf

j and x
sup
j

are vectors of minimum and maximum holding sizes, respectively, for those
assets included in the portfolio (ie, those in J ). (If short-sales are allowed,
this constraint should rather read xinf

j ≤ |xj| ≤ x
sup
j .) Kinf and Ksup are car-

dinality constraints which set a minimum and maximum number of assets to
be in J . There may be restrictions on transaction costs (without restrictions
on their functional form), turnover, or lot size constraints (ie, restrictions on
the multiples of assets that can be traded). One may also add constraints that
under certain market conditions, the portfolio needs to behave in a certain
way (usually give a required minimum return).

2 Though we do not pursue this possibility here, the techniques discussed later in
this paper can also be used for utility optimisation, see for example Maringer (2008).
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Similar to this framework are index tracking problems where investors try to
replicate a pre-defined benchmark (see for example Gilli and Këllezi (2002b)).
This benchmark need not be a passive equity index. In the last few years, for
instance, there have been attempts to replicate the returns of hedge funds, see
Lo (2008).

Applying alternative risk measures generally necessitates using the empirical
distribution of returns. (As an extreme example, there seems little advantage in
minimising kurtosis when stock returns are modelled by a Brownian Motion.)
The resulting optimisation problem is very often not convex, in particular
under reasonable constraints (like cardinality restrictions). To give an example,
Figure 1 shows the search space, that is the values of the objective function
that particular solutions map to, for a particular problem where Φ is the
portfolio’s Value-at-Risk (VaR). As can be seen, the surface is not convex and
not smooth. Any search that requires a globally convex solution, like gradient-
based methods, will stop at the first local minimum encountered.
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Fig. 1. Objective function for VaR.

For some objective functions, the optimisation problem can be reformulated to
be solved with classical methods, examples are Gaivoronski and Pflug (2005) or
Rockafellar and Uryasev (2000); Chekhlov et al. (2005) (see also www.aorda.

com). Unfortunately, such solutions are usually very problem-specific and do
not accommodate changes in the model formulation. How to use a heuristic
in portfolio selection will be discussed more thoroughly in Section 4.
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2.2 Model selection

Linear regression is a widely used technique in finance. A common application
are factor models where the returns of single assets are described as functions
of other variables. Then

r =
[

f1 · · · fk

]










β1

...

βk










+ ǫ (1)

where r is a vector of returns for a given asset, f are the vectors of factor re-
alisations, β are the factor loadings and ǫ contains the residual. Such models
are widely applied in practice, for instance to construct covariance matrices
or in attempts for forecast future returns. The factors f may be macroeco-
nomic quantities or firm specific characteristics; alternatively, the analyst may
use statistical factors, for instance extracted by principal components analy-
sis. In practice, observable factors are often preferred, in particular since they
are easier to interpret and to explain to clients. Given the vast amounts of
financial data available, these factors may have to be picked from hundreds
or thousands of available variables, in particular since one may also consider
lagged variables (Maringer, 2004). Hence, model selection becomes a critical
issue, as one wishes to only use a small number k of regressors from K pos-
sible ones, where K ≫ k. (The analyst may use an information criterion,
which penalises additional regressors, as the objective function; alternatively,
in practice the problem may often be formulated as maximising in-sample fit
under the restriction that k is smaller than a small fixed number.)

2.3 Robust/Resistant regression

Empirical evidence over the last decades has shown that the Capital Asset
Pricing Model (CAPM) explains asset returns in the cross-section rather badly
(Fama and French, 1993, 2004). However, when interpreting the CAPM as a
one-factor model (Luenberger, 1998, ch. 8), the β-estimates become useful
measures of a stock’s general correlation with the market, which may for in-
stance be used to construct covariance matrices (Chan et al., 1999).

The standard method to obtain parameter estimates in a linear regression
is Ordinary Least Squares (OLS). OLS has very appealing theoretical and
practical (numerical) properties, but obtained estimates are often unstable in
the presence of extreme observations which are rather common in financial
time series (Chan and Lakonishok, 1992; Knez and Ready, 1997; Genton and
Ronchetti, 2008). Some earlier contributions in the finance literature suggest
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some form of shrinkage of extreme β-estimates towards more reasonable levels,
with different theoretical justifications (see for example Blume (1971); Vasicek
(1973)). Alternatively, the usage of robust or resistant estimation methods to
obtain the regression parameters has been proposed (Chan and Lakonishok,
1992; Martin and Simin, 2003). Among the latter approaches, high breakdown
point estimators are often regarded as desirable. The breakdown point of an
estimator is the smallest percentage of contaminated (outlying) data that may
cause the estimator to be affected by a bias. The Least Median of Squares
(LMS) estimator, suggested by Rousseeuw (1984), ranks highly in this regard,
as its breakdown point is (almost) 50%. (Note that OLS may equivalently be
called Least Mean of Squares.)

There is of course a conceptual question as to what constitutes an outlier
in financial time series. Markets may well produce extreme returns, and dis-
regarding these by dropping or winsorising them may mean throwing away
information. Errors in the data, though, for example stock splits that have
not been accounted for, are clearly outliers. Such data errors seem to occur
on a wide scale, even when using commercial data providers (Ince and Porter,
2006). In particular then if large amounts of data are processed automatically,
resistant regression techniques may be advisable.

Unfortunately, LMS regression leads to non-convex optimisation models (Gilli
and Winker, 2008, section 5.2). A particular search space is shown in Figure 2.
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Fig. 2. LMS objective function.
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2.4 Agent-based models

Agent-based models (ABM) abandon the attempt to model markets and fi-
nancial decisions with one representative agent (Kirman, 1992). This results in
models which quickly become analytically intractable, hence researchers rely
on computer simulations to obtain results. ABM are capable of producing
many of the ‘stylised facts’ actually observed in financial markets like volatil-
ity clustering, jumps or fat tails. For overviews on ABM in finance, see for
example LeBaron (2000, 2006).

Unfortunately, the conclusion of many studies stops at asserting that these
models can in principal produce realistic market behaviour when parameters
(like preferences of agents) are specified appropriately. This leads to the ques-
tion what appropriate values should be like, and how different models compare
with one other when it comes to explaining market facts.

Gilli and Winker (2003) suggest to estimate the parameters of such models
by indirect inference. This requires an auxiliary model that can easily be
estimated, which in this case is simply a combination of several moments of
the actual price data. A given set of parameters for the ABM is evaluated by
measuring the distance between the average realised moments of the simulated
series and the moments obtained from real data. This distance is then to be
minimised by adjusting the parameters of the ABM.3 Figure 3 shows the
resulting search space for a particular ABM (see Kirman (1993)). The objective
function does not seem too irregular at all, but since the function was evaluated
by a stochastic simulation of the model, it is always noisy and does not allow
for the application of classical methods.

2.5 Calibration of option pricing models

Prices of options and other derivatives are usually modelled as functions of
the underlying securities’ characteristics (Madan, 2001). Parameters for such
models are often inferred by solving inverse problems, that is one tries to ob-
tain parameter values for which the model gives prices that are close to actual
market prices. In case of the Black–Scholes–Merton model only one parame-
ter, volatility, needs to be specified which can be done efficiently by utilising
Newton’s method (Manaster and Koehler, 1982). More recent option pricing
models (see for instance Bakshi et al. (1997); Bates (2003)) aim to gener-
ate prices that are consistent with the empirically observed implied volatility

3 See Winker et al. (2007) for a more detailed analysis of objective functions for
such problems.
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surface (Cont and da Fonseca, 2002). Calibrating these models generally re-
quires to set more parameters, and often leads to more difficult optimisation
problems.

One particular pricing model is the Heston model (Heston, 1993) which is
often used as it gives closed-form solutions for option prices. Under the Heston
model the stock price (S) and its variance (V ) dynamics are described by

dSt = µStdt +
√

VtStdW 1
t

dVt = κ(θ − Vt)dt + σ
√

VtdW 2
t

where the two Brownian motion processes are correlated, that is dW 1
t dW 2

t =
ρdt. As can be seen from the second equation, volatility is mean-reverting in
the Heston model. In total, the model requires the specification of 6 parameters
(Mikhailov and Nögel, 2003). Even though some of these parameters could be
estimated from the time series of the underlying, the general approach to fit
the model is to minimise the squared difference between the theoretical and
observed prices. Hence the objective function is

min
N∑

n=1

wn(CH

n − CM

n )2

where N is the number of option quotes available, CH and CM are the theo-
retical and actual option prices, respectively, and w are weights (Hamida and
Cont, 2005). (Sometimes the optimisation model also includes parameter re-
strictions, for example to enforce the parameters to be such that the volatility
cannot become negative.)

Figure 4 shows the resulting objective function values for two parameters
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(volatility of volatility and mean-reversion speed) with the remaining ones
fixed. As can be seen, in certain parts of the parameter domain the resulting
objective function is not convex, hence standard methods may not find the
global minimum.
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Fig. 4. Heston model objective function.

3 Heuristic optimisation methods

3.1 Definition & principles

The term ‘heuristic’ is used in many fields of science for different, though
related, purposes. To characterise the term as used for optimisation techniques,
Winker and Maringer (2007), following Barr et al. (1995), suggest several
criteria:

• The method method should give a ‘good’ stochastic approximation of the
true optimum.

• It should be robust to changes in the given problem’s objective function
and constraints. Furthermore, results should not vary too much with
changes in the parameter settings of the heuristic.

• The technique should be easy to implement.
• Implementation and application of the technique should not require sub-

jective elements.

A large and growing number of methods meets these demands. Still, it is
interesting to note that even though there exists considerable evidence for
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the good performance of such methods, they are still not widely applied in
research and practice.4

Heuristics maybe be divided into local search methods and constructive meth-
ods (Gilli and Winker, 2008). For local search methods, the algorithm moves
from solution to solution, that is in each iteration a complete existing solu-
tion is changed to obtain a new solution. The term ‘local’ should sometimes
not be taken too literally, as some methods (eg, Genetic Algorithms) are dis-
continuous in their creation of new solutions. Hence a new solution may be
significantly different from the old one; it will, however, usually share some
characteristics with its predecessor. Constructive methods on the other hand
build new solutions in a stepwise procedure, that is the algorithm starts with
an ‘empty’ solution and adds components iteratively. A standard example for
this approach comes from the Travelling Salesman Problem. Here solution
methods exist where an algorithm starts with one city and then adds the re-
maining cities one at a time until a complete tour is created. In this paper, we
will only consider local search methods. To simplify the presentation, we use a
rather coarse classification scheme that only differentiates between trajectory
methods and population-based methods, both terms to be explained below.
For a more complete classification system of heuristics, see Winker and Gilli
(2004).

The concept of local search is not new, but was often not regarded as a com-
plete method. Rather, it was considered a component within other techniques,
for example as a safeguard against saddlepoints in methods relying on mea-
sures of descent direction (Gill et al., 2004, p. 295). A classical local search
starts with a (possibly random) feasible solution xc and picks (usually again
randomly) a new solution xn close to the old one. This new solution is often
called the neighbour solution. If xn is better than xc, the new solution is ac-
cepted, if not, it is rejected. For a given objective function, a local search is
completely described by how it chooses a neighbour solution and its stopping
criterion. The latter may simply be a preset number of steps. Algorithm 1
describes the procedure.

Algorithm 1 Pseudocode for Local Search.
1: Initialise nSteps

2: Randomly generate current solution xc ∈ X
3: for i = 1 : nSteps do

4: Generate xn ∈ N (xc) and compute ∆ = f(xn) − f(xc)
5: if ∆ < 0 then xc = xn

6: end for

7: xsol = xc

4 Brandimarte (2006), a well-known textbook on financial optimisation, for example
devotes about 8 pages, of a total of more than 600 pages, to describe heuristic
methods.
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In a convex setting a local search will, for a suitable neighbourhood definition
and enough iterations, succeed in finding the global minimum, even though it
is certainly not the most efficient method. The compensation for this lack of
efficiency is that local search only requires that the objective function can be
evaluated for a given solution x; there is no need for the objective function
to be continuous or differentiable. Unfortunately, for problems with many
local minima, a local search will stop at the first local optimum it encounters.
Heuristic methods that build on local search employ different strategies to
overcome such local minima. A few of this methods will be outlined next.

3.2 Trajectory methods

3.2.1 Simulated Annealing

Trajectory methods evolve a single solution over time. By changing this so-
lution gradually, the algorithm follows some path (‘trajectory’) through the
search space. One of the oldest and best-known methods in this class is Sim-
ulated Annealing (SA), introduced in Kirkpatrick et al. (1983). Algorithm 2
gives the pseudocode of the procedure.

Algorithm 2 Pseudocode for Simulated Annealing.
1: Generate initial solution xc, initialise Rmax and T

2: for r = 1 to Rmax do

3: while stopping criteria not met do

4: Compute xn ∈ N (xc) (neighbour to current solution)
5: Compute △= f(xn) − f(xc) and generate u (uniform random variable)
6: if (△ < 0) or (e−△/T > u) then xc = xn

7: end while

8: Reduce T

9: end for

Like a local search, SA starts with a random solution xc and creates a new
solution xn by adding a small perturbation to xc. If the new solution is better
(△< 0), it is accepted. In case it is worse, though, SA applies a stochastic
acceptance criterion, thus there is still a chance that the new solution is ac-
cepted, albeit only with a certain probability. This probability is a decreasing
function of both the order of magnitude of the deterioration and the time
the algorithm has already run. The latter feature is controlled by the tem-
perature parameter T which is reduced over time; hence impairments in the
objective function become less likely to be accepted and eventually SA turns
into classical local search. The algorithm stops after a predefined number of
iterations Rmax.
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3.2.2 Threshold Accepting

Threshold Accepting (TA) was introduced by Dueck and Scheuer (1990) and
is very similar to SA. Algorithm 3 shows that the two methods differ mainly
in their acceptance criterion (line 6 in Algorithm 2, line 7 in Algorithm 3). In
fact, both SA and TA are sometimes referred to as threshold methods.

Algorithm 3 Pseudocode for Threshold Accepting.
1: Initialise nRounds and nSteps

2: Compute threshold sequence τr

3: Randomly generate current solution xc ∈ X
4: for r = 1 : nRounds do

5: for i = 1 : nSteps do

6: Generate xn ∈ N (xc) and compute ∆ = f(xn) − f(xc)
7: if ∆ < τr then xc = xn

8: end for

9: end for

10: xsol = xc

Whereas in SA solutions that worsen the objective function are accepted
stochastically, TA accepts deteriorations unless they are greater than some
threshold τr. The nRounds thresholds decrease over time, hence like SA the al-
gorithm turns into a local search.

For an in-depth description of TA, see Winker (2001). In Section 4 the appli-
cation of TA to a portfolio optimisation problem will be discussed.

3.2.3 Tabu Search

Most heuristics differ from classical methods by introducing an element of
chance (eg, by randomly picking neighbour solutions). Tabu Search (TS), at
least in its standard form, is an exception as it is deterministic for a given
starting value.5 TS is described in Glover and Laguna (1997) and detailed
in Algorithm 4. TS was designed for discrete search spaces; its strategy to
overcome local minima is to keep a ‘memory’ of recently visited solutions.
These are forbidden (‘tabu’) as long as they stay in the algorithm’s memory.
Thus, a TS can manage to walk away from a local minimum as it is temporarily
not allowed to revisit this solution.

5 One may of course easily alter the algorithm (line 4) to choose a neighbour solution
randomly.
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Algorithm 4 Pseudocode for Tabu Search.
1: Generate current solution xc and initialise tabu list T = ∅
2: while stopping criteria not met do

3: Compute V = {x|x ∈ N (xc)}\T
4: Select xn = min(V )
5: xc = xn and T = T ∪ xn

6: Update memory
7: end while

3.3 Population-based methods

3.3.1 Genetic Algorithms

For trajectory methods, the main strategy for escaping local minima was to
temporarily allow uphill-moves. Population-based methods employ the same
principle, but they do so by maintaining a whole collection of different so-
lutions at a time, some of which are worse than others. This property of
population-based methods also makes them good at exploration, that is they
often work well for large search spaces (eg, in combinatorial problems).

Probably the best-known technique in this category are Genetic Algorithms
(GA), first described by Holland in the 1970s (Holland, 1992); pseudocode
can be found in Algorithm 5. GA are inspired by evolutionary biology, hence
the procedure starts appropriately with a whole population of solutions; the
objective function becomes a fitness function. In standard GA, solutions are
coded as binary strings, that is like 0 1 1 1 0 0 0 1 . Such a string may be a
binary representation of an integer or real number; in many discrete problems
there is an even more ‘natural’ interpretation: for instance in a selection prob-
lem, a ‘1’ may indicate a selected item from an ordered list, a ‘0’ may stand
for an item that does not enter the solution. New candidate solutions, called
children or offspring, are created by crossover (ie, mixing existing solutions)
and mutation (ie, randomly changing components of solutions), as illustrated
here:

Two parents Original solution

0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1

1 1 0 0 1 1 1 0

. . . and children . . . and mutant

0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1

1 1 0 0 0 0 0 1

a) Crossover b) Mutation
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To keep the population size #{P} constant, at the end of each iteration (here
called generation), there is a selection among parents and children (line 10).
Different variations exist, for example only the #{P} fittest solutions may
stay in P , or the survival of a solution may be stochastic with the probability
of survival proportional to a solution’s fitness.

Algorithm 5 Pseudocode for Genetic Algorithms.
1: Generate initial population P of solutions
2: while stopping criteria not met do

3: Select P ′ ⊂ P (mating pool), initialise P ′′ = ∅ (set of children)
4: for i = 1 to n do

5: Select individuals xa and xb at random from P ′

6: Apply crossover to xa and xb to produce xchild

7: Randomly mutate produced child xchild

8: P ′′ = P ′′ ∪ xchild

9: end for

10: P = survive(P ′, P ′′)
11: end while

3.3.2 Differential Evolution

A more recent contribution to population-based methods is Differential Evo-
lution (DE) (Storn and Price, 1997). DE was developed for continuous func-
tions; Algorithm 6 assumes that nP solutions are stored in real-valued vectors
of length d. In each generation, the algorithm creates a candidate solution for
each existing solution P

(k)
·,i . This new solution is created by first adding the

difference, weighted by a parameter F, between two other solutions to a third
solution. Then an elementwise crossover takes place with probability CR be-
tween this ‘auxiliary’ solution P

(v)
·,i and the existing solution P

(k)
·,i . If this final

candidate solution f(P
(u)
·,i ) is better than P

(k)
·,i , it replaces it; if not, the old

solution is kept.

Algorithm 6 Pseudocode for Differential Evolution.
1: Initialise parameters nP, nG, F and CR

2: Initialise population P
(1)
j,i , j = 1, . . . , d, i = 1, . . . , nP

3: for k = 1 to nG do

4: P (0) = P (1)

5: for i = 1 to nP do

6: Generate r1, r2, r3 ∈ {1, . . . , nP}, r1 6= r2 6= r3 6= i

7: Compute P
(v)
·,i = P

(0)
·,r1

+ F× (P
(0)
·,r2

− P
(0)
·,r3

)
8: for j = 1 to d do

9: if u < CR then P
(u)
j,i = P

(v)
j,i else P

(u)
j,i = P

(0)
j,i

10: end for

11: if f(P
(u)
·,i ) < f(P

(0)
·,i ) then P

(1)
·,i = P

(u)
·,i else P

(1)
·,i = P

(0)
·,i

12: end for

13: end for
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3.3.3 Particle Swarm

While the metaphor for DE and GA was evolution, the narrative for Particle
Swarm (PS) is based on flocks of birds that search for food (Eberhart and
Kennedy, 1995). Like DE, PS works for continuous functions, the population
of nP solutions are stored in real-valued vectors. In each iteration, a solution is
updated by adding another vector called velocity vi. This velocity changes over
the course of the optimisation. More specifically, at the start of each iteration
the directions towards the best solution found so far by the particular solution,
Pbesti, and the best overall solution, Pbestgbest, are determined. The sum of
these two directions (which are the differences between the respective vectors,
see line 7) are perturbed by multiplication with a uniform random variable u

and a constant c. The vector so obtained is added to the previous vi; the
resulting updated velocity is added to the respective solution.

Algorithm 7 Pseudocode for Particle Swarm.
1: Initialise parameters nP, nG and c

2: Initialise particles P
(0)
i and velocity v

(0)
i , i = 1, . . . , nP

3: Evaluate objective function Fi = f(P
(0)
i ), i = 1, . . . , nP

4: Pbest = P (0), Fbest = F , Gbest = mini(Fi), gbest = argmini(Fi)
5: for k = 1 to nG do

6: for i = 1 to nP do

7: △vi = c u (Pbest i − P
(k−1)
i ) + c u (Pbestgbest − P

(k−1)
i )

8: v
(k)
i = v(k−1)+ △vi

9: P
(k)
i = P

(k−1)
i + v

(k)
i

10: end for

11: Evaluate objective function Fi = f(P
(k)
i ), i = 1, . . . , nP

12: for i = 1 to nP do

13: if Fi < Fbest i then Pbest i = P
(k)
i and Fbest i = Fi

14: if Fi < Gbest then Gbest = Fi and gbest = i

15: end for

16: end for

4 A case study—portfolio optimisation

In this section we move from the ‘recipe’ (the meta-heuristic) to the imple-
mentation to solve an actual problem. In particular, it will be discussed how
Threshold Accepting (TA) can be used to select optimal portfolios, a problem
introduced in Section 2. For more details, the reader is referred to Gilli and
Këllezi (2002a); Gilli et al. (2006). The optimisation algorithms, written in
Matlab 2007a, can be downloaded from www.comisef.eu.

The optimisation procedure described here is based on scenarios (Dembo,
1991; Hochreiter, 2008), and can thus be split into two stages. The first stage
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is the creation of the scenarios, the second one to find the optimal weights given
the set of scenarios. As we want to concentrate on the optimisation here, the
first stage will only be discussed briefly. It needs to be stressed, though, that for
empirical applications both stages probably demand equal attention. In fact,
the easiest way to obtain scenarios is to consider every historical return as one
scenario, hence explicitly modelling the data is not necessary for the algorithm.
There is, however, evidence that the method of scenario creation considerably
influences the out-of-sample performance of selected portfolios. The critical
decision is how much non-sample information one is willing to impose on
the scenario-generation process. Many approaches rely on resampling; simple
bootstrapping for instance keeps cross-sectional dependencies without making
assumptions about their functional form, but it destroys dependencies over
time.6 If one is willing to assume a data-generating process (DGP) for either
or both cross-sectional and serial dependence, one can estimate this DGP and
resample from the residuals of the model. Alternatively, bootstrapping whole
blocks is possible and does not require a DGP to be specified.

Here we construct (simple) regression models for the returns, for example

rit = αi + βi rMt + ǫit i = 1, . . . , nA

where rit is the return of asset i in period t, rMt is the return of a suitable
index in t, and ǫit is the remaining error. After estimating α and β for each of
the nA assets, one can resample from the index-returns and from the residuals
to obtain new return scenarios. More complex models, including higher order
terms and different regressors, can be used.

Being a local search method, implementing TA requires the analyst to specify
four issues: The objective function, a neighbourhood, an acceptance criterion
for new solutions (ie, a threshold sequence), and a stopping criterion.

4.1 The objective function

The objective function Φ is, at least conceptually, not problematic, but is
given by the problem at hand. In our case, Φ may be the average drawdown,
or the the ratio of lower semi-variance to the upper semi-variance, both to be
minimised. For a given set of scenarios and a given portfolio, this function can
easily be computed.

6 This weakness of bootstrapping is sometimes pointed out where it is not appropri-
ate. If, for example, one-period optimisation is considered where the optimisation
criterion does not take into account the intertemporal dependencies, there seems
little need to model them. In general, the scenario generation methods only needs
to capture the aspects of the data which are relevant for the given objective.
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Most heuristics methods are computationally intensive. The main part of run-
ning time is usually spent on evaluating the objective function. In practice
it therefore often pays (in terms of reduced computing time) to analyse and
profile the objective function extensively. Sometimes, the objective function
can also be updated; then it does not have to be evaluated completely for a
new solution, but certain results from prior iterations can be reused. To give
a more concrete example, assume there are nA assets and nS price scenarios
stored in an nS × nA matrix P . The matrix P can, for a given portfolio x, be
transformed into losses by

ℓ = v0ι − Px .

where ι is a vector of ones. Φ is then a function of ℓ.

Assume an algorithm started with an initial random portfolio xc and now
has to evaluate xn. This means that the product Pxc has already been com-
puted. As will be discussed below, a new portfolio will be created by a small
perturbation of the original portfolio, hence

xn = xc + x∆

where x∆ is a vector with few nonzero elements (usually only two). Then

Pxn = P (xc + x∆) = Pxc

︸ ︷︷ ︸

known

+Px∆.

Since many elements of x∆ are zero, the relevant part of P consists only of a
few columns. Hence, creating a matrix P∗ that only stores the columns where
x∆ is nonzero, and a vector x∆

∗ that consists only of the nonzero elements
of x∆, the matrix computation Px∆ can often be sped up considerably by
replacing it by P∗x

∆
∗ .

4.2 The neighbourhood function

To move from one to solution to the next, one needs to define a neighbourhood
from which new candidate solutions are chosen. In portfolio optimisation, there
exists a very natural way to create neighbour solutions: Pick one asset in
the portfolio randomly (this may also be the cash position), ‘sell’ a small
quantity of this asset, and ‘invest’ the amount obtained in another asset. If
short positions are allowed, the chosen asset to be sold does not have to be in
the portfolio. The small quantity may either be a random number, or a fixed
fraction (say, 0.2%). Experiments suggest that, for practical purposes, both
methods give relatively similar results.
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4.3 The threshold sequence

Having defined the neighbourhood, one can set the thresholds. Both elements
of TA are strongly connected. Larger neighbourhoods, which imply larger
changes from one candidate solution to the next, should be accompanied by
larger initial threshold values, et vice versa. Winker and Fang (1997) suggest a
data-driven method to obtain the thresholds; here we apply a variation of this
approach as used in Gilli et al. (2006). The basic idea is to have a random walk
through the data where the steps are made according to the neighbourhood
definition. At every iteration, the changes in the objective function value are
recorded. The thresholds are then a number of decreasing quantiles of these
changes. Algorithm 8 summarises the procedure.

Algorithm 8 Pseudocode for computation of threshold sequence.
1: Randomly choose xc ∈ X
2: for i = 1 : nDeltas do

3: Compute xn ∈ N (xc) and ∆i = |f(xc) − f(xn)|
4: xc = xn

5: end for

6: Compute empirical distribution F of ∆i, i = 1, . . . , nDeltas

7: Compute threshold sequence τr = F−1
(

nRounds−r

nRounds

)

, r = 1, . . . , nRounds

Many variations are possible. For example, the algorithm here uses equally-
spaced quantiles (eg, for nRounds = 5, the quantiles used are the 80th, 60th, 40th,
20th and 0th7 ). There is some evidence that the efficiency of the algorithm can
be increased by setting the starting quantile lower, say, the 50th. In general,
however, TA seems to be very robust to different settings of these parameters.

4.4 Constraints

There are several generic approaches to include constraints into the optimi-
sation. A first one used here is to create new solutions in such a way that
they conform with the given constraints. The budget constraint for example is
automatically enforced by the specification of the neighbourhood. Cardinality
constraints can be implemented in this way as well. An alternative technique
is to implement restrictions by penalty terms. If a constraint is violated, the
objective function is increased by an amount that increases with the magni-
tude of the violation. The penalty term often also increases over time, so to
allow the algorithm to move relatively freely initially.

7 Software packages like Matlab or R use the convention that the 0th quantile
equals the minimum of the sample. Hence the last threshold is not necessarily 0.
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In general, penalising the objective function to enforce constraints has several
advantages. First, the computational architecture has not to be changed, since
one only has to add a scalar to the objective function. Second, the approach
works very well if the search space is not convex, or even disconnected. A final
advantage is that penalties allow to incorporate soft constraints which can
sometimes be more appropriate then hard ones.

4.5 The stopping criterion

A stopping criterion is introduced by setting a fixed number of steps.

4.6 A few results

In an empirical application we used data given to us by DynaGest S.A., an
investment firm domiciled in Geneva. The data set consists of daily return
observations of stock prices of more than 500 European companies, all EUR-
denominated. The time series were filtered for sufficient market capitalisation
(no small caps); transaction costs were applied at any rebalancing date. Given
the data, we did a rolling-window backtest for various objective functions.
Thus we optimised the model at point in time t1, utilising data from t1 − H

to t1 − 1, where H was usually set to around 250 days (one year). Then, the
resulting portfolio was held until t1 +F , with F set to 3 months. At this point,
a new optimisation took place, using data from t2 − H until t2 − 1, holding
the portfolio until t2 +F , and so on. In other words, we contructed a portfolio
using data from the last year, held the portfolio for three months, and then
rebalanced.

t1−H t1 t1+F
H

Fperiod 1

period 2

t2−H t2 t2+F

rebalance

Figure 5 shows the out-of-sample results of such a ‘walk-forward’ for long-
only portfolios minimising Value-at-Risk, Expected Shortfall and the Omega-
function (the dotted lines indicate the dates when the portfolio was rebal-
anced).
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Fig. 5. Out-of-sample results for several selection criteria.

5 Stochastics and convergence of the solution

5.1 Stochastics and computational resources

Many heuristic methods deliberately include stochastic elements, for exam-
ple when creating a new candidate solution, or when deciding whether to
accept/keep new candidate solutions. Restarting the same algorithm with a
different seed value will in general not lead to the same solution. The results
of the optimisation can thus be regarded as realisations of a random variable
with some (unknown) distribution D (Gilli and Winker, 2008).8 This distri-
bution D is not symmetric, but bounded to the left (for minimisation) and
degenerates for increasing computational resources to a single point, namely
the global minimum. There exist convergence proofs for several heuristics, in-
cluding TA (Althöfer and Koschnick, 1991). Note that a related stochasticity
may occur also for classical methods in the case of non-convex problems; here
the obtained results may differ for different starting values.

As mentioned before, heuristics are usually conceptually simple, but compu-
tationally intensive. Computational cost can be measured by the total number
of function evaluations or iterations the algorithm takes. Let the total amount
of computational resources available be denoted by I, then

I = nRestarts × nSteps .

D will only depend on the total number of iterations per restart (nSteps); the
restarts are draws from D. The time an algorithm needs to produce a solution
is equivalent (proportional) to I in a serial environment, but this does not
hold for computations in parallel.

8 Usually we will consider the distribution of objective function values when we
investigate D, even though in practice, one may sometimes also be interested in
the distribution of the resulting choice variables to which the respective objective
function values map.
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For a given heuristic and a given problem, two issues arise. First, increasing I
should lead to better solutions, that is the average solution should decrease
while the variability of solutions should also decrease and eventually go to zero
as I goes to infinity. The speed of convergence for some increasing but finite
sequence I1, I2 . . .Ip can be estimated.

Second, for a fixed amount of computational resources available, it is important
to know how to allocate these resources among restarts and steps. Intuitively,
one may rather use less iterations and thus have a ‘worse’ distribution of
solutions, but still by using several restarts produce better results than just
doing one optimisation with many steps, see Winker (2001, pp. 129–134).

It is interesting to analyse how such considerations change in a parallel environ-
ment. To give a concrete example, we look again at the portfolio optimisation
problem described in the last section; for more details, the reader is referred
to Gilli and Schumann (2008).

5.2 Parallelisation

The stochastics of the solution can be exploited to inform how to distribute
computations for heuristic optimisation problems. The basic intuition is that
one may often trade off steps per restart with the number of restarts. That
is, one may choose to allow for less steps in each single optimisation run, but
simply generate more draws by restarting more often.

As TA is a trajectory method there is no natural way to parallelise a sin-
gle restart. There are approaches (often derived from parallel applications of
Simulated Annealing), but these implementations usually change the nature
of TA from a trajectory into a population-based technique. A simpler course
of action is to exploit the fact that the restarts are independent, and thus to
allocate them to different nodes in a distributed computing environment. This
has the further advantage of being very robust if a node breaks down, since
the solution does not require all nodes to give a result.

Figure 6 shows the distribution of the objective function in a portfolio opti-
misation problem. The particular Φ chosen here was the Omega-function in-
troduced by Keating and Shadwick (2002); the optimisation included several
constraints including sector weightings and cardinality.9 Formally, Φ is given

9 Strictly speaking, we minimised the ratio of the lower partial moment and upper
partial moment of order 1 where the threshold was a return of 0. This is not exactly
the same as Omega, as the latter requires the computation for varying thresholds.
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Fig. 6. Distribution of solutions for increasing number of iterations.

by
∫ rd

−∞(rd − r) g(r)dr
∫ ∞
rd

(r − rd) g(r)dr

where g(·) is the density of the portfolio’s returns. With discrete scenarios and
desired return rd = 0, this may be computed as

∑
ℓs 1{ℓs>0}

−
∑

ℓs 1{ℓs<0}

where 1 is an indicator function. The figure shows the distribution of outcomes
for a large number of draws when the number of steps was fixed at levels
between 100 000 and 10 000. It can be seen how the solutions converge towards
a suspected global minimum.

Given a desired quality of the solution, one may now explicitly quantify the
trade-off between steps and restarts. In our experiments, we set the desired
quality equal to the 99th quantile of the distribution of the solutions obtained
with the maximum number of iterations (100 000). This objective function
value, denoted f ∗, was to be achieved with a probability of at least 99%. In
the problem here, f ∗ is equal to 0.4538, as can be seen from Figure 6. For each
distribution corresponding to an optimisation run with fewer iterations, one
can compute the number of restarts nRestarts necessary to obtain at least one
result below f ∗ with the desired by probability.

Let CnRestarts
be the respective number of steps. Then the potential speedup

for nRestarts on different processors is

SnRestarts
=

C0

CnRestarts

where C0 is the computational resources employed for the most expensive run,
that is 100 000 steps. The efficiency EnRestarts

is given by

EnRestarts
=

SnRestarts

nRestarts

.
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The results are shown in Figure 7. For example, with 16 nodes the number
of iterations is decreased to below 20 000, which corresponds to a speedup of
more than 5.
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Fig. 7. Speedup (upper), efficiency (middle) and required iterations (lower) as a
function of the number of nodes.

6 Conclusion

Many optimisation problems in financial modelling and estimation are difficult
to solve as they are non-convex and often exhibit multiple local optima; several
examples have been presented in Section 2. In such cases an often observed
practice is to ‘convexify’ the problem by making additional assumptions, sim-
plifying the model (for instance by dropping constraints), or imposing prior
knowledge (eg, limiting the parameter domain). Even though this allows to
employ classical optimisation methods, the results obtained are not necessar-
ily good solutions to the original problem. An alternative possibility is the use
of optimisation heuristics like Simulated Annealing or Genetic Algorithms.
These methods are powerful enough to handle non-convex optimisation prob-
lems; they can flexibly include side constraints without restrictions on the
functional function of these constraints.

In their original description, heuristics are often not very precise in how
to specify particular components or set parameters (hence the term ‘meta-
heuristics’). Their implementation often requires some decisions, for instance
on how new candidate solutions are created, or how often certain operations
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(like mutation in Genetic Algorithms) are applied. Section 4 gave a brief case
study of such an implementation process for a portfolio selection model. This
showed that such specifications often follow quite naturally from the given
problem description (though they still often require some experimentation).

An aspect of heuristic techniques that differs from classical methods is the
stochastic nature of the obtained solutions. As was already pointed out in
the Introduction, this is usually not a concern for practical applications. In
fact, analysts who work with empirical data are normally used to uncertainty
around parameter estimates (though the source of this uncertainty here is a
different one). What is more, this stochasticity can even be exploited to inform
how to distribute optimisation problems to parallel machines.

In summary, heuristic optimisation techniques allow to approach many prob-
lems in financial modelling in their original form, without need to simplify
them. Thus they seem very useful instruments for research as well as applica-
tions in practice.
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