205 research outputs found

    Impact of day/night time land surface temperature in soil moisture disaggregation algorithms

    Get PDF
    Since its launch in 2009, the ESA’s SMOS mission is providing global soil moisture (SM) maps at ~40 km, using the first L-band microwave radiometer on space. Its spatial resolution meets the needs of global applications, but prevents the use of the data in regional or local applications, which require higher spatial resolutions (~1-10 km). SM disaggregation algorithms based generally on the land surface temperature (LST) and vegetation indices have been developed to bridge this gap. This study analyzes the SM-LST relationship at a variety of LST acquisition times and its influence on SM disaggregation algorithms. Two years of in situ and satellite data over the central part of the river Duero basin and the Iberian Peninsula are used. In situ results show a strong anticorrelation of SM to daily maximum LST (R˜-0.5 to -0.8). This is confirmed with SMOS SM and MODIS LST Terra/Aqua at day time-overpasses (R˜-0.4 to -0.7). Better statistics are obtained when using MODIS LST day (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.06 m3 /m3 ) than LST night (R˜0.45 to 0.80; ubRMSD˜0.04 to 0.07 m3 /m3 ) in the SM disaggregation. An averaged ensemble of day and night MODIS LST Terra/Aqua disaggregated SM estimates also leads to robust statistics (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.07 m3 /m3 ) with a coverage improvement of ~10-20 %.Peer ReviewedPostprint (published version

    Synergistic optical and microwave remote sensing approaches for soil moisture mapping at high resolution

    Get PDF
    Aplicat embargament des de la data de defensa fins al dia 1 d'octubre de 2022Soil moisture is an essential climate variable that plays a crucial role linking the Earth’s water, energy, and carbon cycles. It is responsible for the water exchange between the Earth’s surface and the atmosphere, and provides key information about soil evaporation, plant transpiration, and the allocation of precipitation into runoff, surface flow and infiltration. Therefore, an accurate estimation of soil moisture is needed to enhance our current climate and meteorological forecasting skills, and to improve our current understanding of the hydrological cycle and its extremes (e.g., droughts and floods). L-band Microwave passive and active sensors have been used during the last decades to estimate soil moisture, since there is a strong relationship between this variable and the soil dielectric properties. Currently, there are two operational L-band missions specifically devoted to globally measure soil moisture: the ESA’s Soil Moisture and the Ocean Salinity (SMOS), launched in November 2009; and the NASA’s Soil Moisture Active Passive (SMAP), launched in January 2015. The spatial resolution of the SMOS and SMAP radiometers, in the order of tens of kilometers (~40 km), is adequate for global applications. However, to fulfill the needs of a growing number of applications at local or regional scale, higher spatial detail (< 1 km) is required. To bridge this gap and improve the spatial resolution of the soil moisture maps, a variety of spatial enhancement or spatial (sub-pixel) disaggregation approaches have been proposed. This Ph.D. Thesis focuses on the study of the Earth’s surface soil moisture from remotely sensed observations. This work includes the implementation of several soil moisture retrieval techniques and the development, implementation, validation and comparison of different spatial enhancement or downscaling techniques, applied at local, regional, and continental scale. To meet these objectives, synergies between several active/passive microwave sensors (SMOS, SMAP and Sentinel-1) and optical/thermal sensors (MODIS) have been explored. The results are presented as follows: - Spatially consistent downscaling approach for SMOS using an adaptive moving window A passive microwave/optical downscaling algorithm for SMOS is proposed to obtain fine-scale soil moisture maps (1 km) from the native resolution (~40 km) of the instrument. This algorithm introduces the concept of a shape-adaptive window as a central improvement of the disaggregation technique presented by Piles et al. (2014), allowing its application at continental scales. - Assessment of multi-scale SMOS and SMAP soil moisture products across the Iberian Peninsula The temporal and spatial characteristics of SMOS and SMAP soil moisture products at coarse- and fine-scales are assessed in order to learn about their distinct features and the rationale behind them, tracing back to the physical assumptions they are based upon. - Impact of incidence angle diversity on soil moisture retrievals at coarse and fine scales An incidence angle (32.5°, 42.5° and 52.5°)-adaptive calibration of radiative transfer effective parameters single scattering albedo and soil roughness has been carried out, highlighting the importance of such parameterization to accurately estimate soil moisture at coarse-resolution. Then, these parameterizations are used to examine the potential application of a physically-based active-passive downscaling approach to upcoming microwave missions, namely CIMR, ROSE-L and Sentinel-1 Next Generation. Soil moisture maps obtained for the Iberian Peninsula at the three different angles, and at coarse and fine scales are inter-compared using in situ measurements and model data as benchmarks.La humedad del suelo es una variable climática esencial que juega un papel crucial en la relación de los ciclos del agua, la energía y el carbono de la Tierra. Es responsable del intercambio de agua entre la superficie de la Tierra y la atmósfera, y proporciona información crucial sobre la evaporación del suelo, la transpiración de las plantas y la distribución de la precipitación en escorrentía, flujo superficial e infiltración. Por lo tanto, es necesaria una estimación precisa de la humedad del suelo para mejorar las predicciones climáticas y meteorológicas, y comprender mejor el ciclo hidrológico y sus extremos (v.g., sequías e inundaciones). Los sensores pasivos y activos en banda L se han usado durante las últimas décadas para estimar la humedad del suelo debido a la relación directa que existe entre esta variable y las propiedades dieléctricas del suelo. Actualmente, hay dos misiones operativas en banda L específicamente dedicadas a medir la humedad del suelo a escala global: la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, lanzada en noviembre de 2009; y la misión Soil Moisture Active Passive (SMAP) de la NASA, lanzada en enero de 2015. La resolución espacial de los radiómetros SMOS y SMAP, del orden de unas decenas de kilómetros (~40 km), es adecuada para aplicaciones a escala global. Sin embargo, para satisfacer las necesidades de un número creciente de aplicaciones a escala local o regional, se requiere más detalle espacial (<1 km). Para solventar esta limitación y mejorar la resolución espacial de los mapas de humedad, se han propuesto diferentes técnicas de mejora o desagregación espacial. Esta Tesis se centra en el estudio de la humedad de la superficie terrestre a partir de datos obtenidos a través de teledetección. Este trabajo incluye la implementación de distintos algoritmos de recuperación de la humedad del suelo y el desarrollo, implementación, validación y comparación de distintas técnicas de desagregación, aplicadas a escala local, regional y continental. Para cumplir estos objetivos, se han explorado sinergias entre diferentes sensores de microondas activos/pasivos (SMOS, SMAP y Sentinel-1) y sensores ópticos/térmicos. Los resultados se presentan de la siguiente manera: - Técnica de desagregación espacialmente consistente, basada en una ventana móvil adaptativa, aplicada a los datos SMOS Se propone un algoritmo de desagregación del píxel basado en datos obtenidos de medidas radiométricas de microondas en banda L y datos ópticos, para mejorar la resolución espacial de los mapas de humedad del suelo desde la resolución nativa del instrumento (~40 km) hasta resoluciones de 1 km. El algoritmo introduce el concepto de una ventana de contorno adaptativo, como mejora principal sobre la técnica de desagregación presentada en Piles et al. (2014), permitiendo su implementación a escala continental. - Análisis multiescalar de productos de humedad del suelo SMAP y SMOS sobre la Península Ibérica Se han evaluado las características temporales y espaciales de distintos productos de humedad del suelo SMOS y SMAP, a baja y a alta resolución, para conocer sus características distintivas y comprender las razones de sus diferencias. Para ello, ha sido necesario rastrear los supuestos físicos en los que se basan. - Impacto del ángulo de incidencia en la recuperación de la humedad del suelo a baja y a alta resolución Se ha llevado a cabo una calibración adaptada al ángulo de incidencia (32.5°, 42.5° y 52.5°) de los parámetros efectivos, albedo de dispersión simple y rugosidad del suelo, descritos en el modelo de transferencia radiativa � − �, incidiendo en la importancia de esta parametrización para estimar la humedad del suelo de forma precisa a baja resolución. El resultado de las mismas se ha utilizado para estudiar la potencial aplicación de un algoritmo activo/pasivo de desagregación basado en la física para las próximas misiones de microondas, llamadas CIMR, ROSE-L y Sentinel-1 Next Generation. Los mapas de humedad recuperados a los tres ángulos de incidencia, tanto a baja como a alta resolución, se han obtenido para la Península Ibérica y se han comparado entre ellos usando como referencia mediciones de humedad in situ.Postprint (published version

    A review of spatial downscaling of satellite remotely sensed soil moisture

    Get PDF
    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large résolution spatiale (25-50 km) n’en font pas un outil adéquat pour des applications hydrologiques à une échelle locale telles que la modélisation et la prévision hydrologiques. Dans de nombreuses études, une désagrégation d’échelle de l’humidité du sol des produits satellites micro-ondes est faite puis validée avec des mesures in-situ. Toutefois, l’utilisation de ces données issues d’une désagrégation d’échelle n’a pas encore été pleinement étudiée pour des applications en hydrologie. Ainsi, l’objectif de cette thèse est de proposer une méthode de désagrégation d’échelle de l’humidité du sol issue de données satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) à différentes résolutions spatiales afin d’évaluer leur apport sur l’amélioration potentielle des modélisations et prévisions hydrologiques. À partir d’un modèle de forêt aléatoire, une désagrégation d’échelle de l’humidité du sol de SMAP l’amène de 36-km de résolution initialement à des produits finaux à 9-, 3- et 1-km de résolution. Les prédicteurs utilisés sont à haute résolution spatiale et de sources différentes telles que Sentinel-1A, MODIS et SRTM. L'humidité du sol issue de cette désagrégation d’échelle est ensuite assimilée dans un modèle hydrologique distribué à base physique pour tenter d’améliorer les sorties de débit. Ces expériences sont menées sur les bassins versants des rivières Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situés aux États-Unis. De plus, le modèle assimile aussi des données d’humidité du sol en profondeur issue d’une extrapolation verticale des données SMAP. Par ailleurs, les données d’humidité du sol SMAP et les mesures in-situ sont combinées par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilé dans le modèle hydrologique pour tenter d’améliorer la prévision hydrologique sur le bassin versant Au Saumon situé au Québec. Les résultats montrent que l'utilisation de l’humidité du sol à fine résolution spatiale issue de la désagrégation d’échelle améliore la représentation de la variabilité spatiale de l’humidité du sol. En effet, le produit à 1- km de résolution fournit plus de détails que les produits à 3- et 9-km ou que le produit SMAP de base à 36-km de résolution. De même, l’utilisation du produit de fusion SMAP/ in-situ améliore la qualité et la représentation spatiale de l’humidité du sol. Sur le bassin versant Susquehanna, la modélisation hydrologique s’améliore avec l’assimilation du produit de désagrégation d’échelle à 9-km, sans avoir recours à des résolutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la résolution spatiale la plus fine à 1- km qui offre les meilleurs résultats de modélisation hydrologique. L’assimilation de l’humidité du sol en profondeur issue de l’extrapolation verticale des données SMAP n’améliore que peu la qualité du modèle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon améliore la qualité de la prévision du débit, même si celle-ci n’est pas très significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting

    Impact of day/night time land surface temperature in soil moisture disaggregation algorithms

    Get PDF
    18 pages, 5 figures, 1 tableSince its launch in 2009, the ESA’s SMOS mission is providing global soil moisture (SM) maps at ~40 km, using the first L-band microwave radiometer on space. Its spatial resolution meets the needs of global applications, but prevents the use of the data in regional or local applications, which require higher spatial resolutions (~1-10 km). SM disaggregation algorithms based generally on the land surface temperature (LST) and vegetation indices have been developed to bridge this gap. This study analyzes the SM-LST relationship at a variety of LST acquisition times and its influence on SM disaggregation algorithms. Two years of in situ and satellite data over the central part of the river Duero basin and the Iberian Peninsula are used. In situ results show a strong anticorrelation of SM to daily maximum LST (R≈0.5 to -0.8). This is confirmed with SMOS SM and MODIS LST Terra/Aqua at day time-overpasses (R≈-0.4 to -0.7). Better statistics are obtained when using MODIS LST day (R≈0.55 to 0.85; ubRMSD≈0.04 to 0.06 m/m) than LST night (R≈0.45 to 0.80; ubRMSD≈0.04 to 0.07 m/m) in the SM disaggregation. An averaged ensemble of day and night MODIS LST Terra/Aqua disaggregated SM estimates also leads to robust statistics (R≈0.55 to 0.85; ubRMSD≈0.04 to 0.07 m/m) with a coverage improvement of~10-20 %This work was supported by the Spanish Ministry of Economy and Competitiveness, through a Formación Personal Investigador (FPI) grant BES-2011-043322, the project PROMISES: ESP2015-67549-C3, ERDF (European Regional Development Fund) and the BBVA foundationPeer Reviewe

    Estimation de l'humidité du sol à haute résolution spatio-temporelle : une nouvelle approche basée sur la synergie des observations micro-ondes actives/passives et optiques/thermiques

    Get PDF
    Les capteurs micro-ondes passifs SMOS et SMAP fournissent des données d'humidité du sol (SM) à une résolution d'environ 40 km avec un intervalle de 2 à 3 jours à l' échelle mondiale et une profondeur de détection de 0 à 5 cm. Ces données sont très pertinentes pour les applications cli- matiques et météorologiques. Cependant, pour les applications à échelle régionales (l'hydrologie) ou locales (l'agriculture), des données de SM à une haute résolution spatiale (typiquement 100 m ou plus fine) seraient nécessaires. Les données collectées par les capteurs optiques/thermiques et les radars peuvent fournir des indicateurs de SM à haute résolution spatiale, mais ces deux approches alternatives ont des limites. En particulier, les données optiques/thermiques ne sont pas disponibles sous les nuages et sous les couverts végétaux. Quant aux données radar, elles sont sensibles à la rugosité du sol et à la structure de la végétation, qui sont tous deux difficiles à caractériser depuis l'espace. De plus, la résolution temporelle de ces données est d'environ 6 jours. Dans ce contexte, la ligne directrice de la thèse est de proposer une nouvelle approche qui combine pour la première fois des capteurs passifs micro-ondes, optiques/thermiques et actifs micro-ondes (radar) pour estimer SM sur de grandes étendues à une résolution de 100 m chaque jour. Notre hypothèse est d'abord de nous appuyer sur une méthode de désagrégation existante (DISPATCH) des données SMOS/SMAP pour atteindre la résolution cible obtenue par les radars. A l'origine, DISPATCH est basé sur l'efficacité d' évaporation du sol (SEE) estimée sur des pixels partiellement végétalisés à partir de données optiques/thermiques (généralement MODIS) de température de surface et de couverture végétale à résolution de 1 km. Les données désagrégées de SM sont ensuite combinées avec une méthode d'inversion de SM basée sur les données radar afin d'exploiter les capacités de détection des radars Sentinel-1. Enfin, les capacités de l'assimilation des donnés satellitaires de SM dans un modèle de bilan hydrique du sol sont évaluées en termes de prédiction de SM à une résolution de 100 m et à une échelle temporelle quotidienne.Dans une première étape, l'algorithme DISPATCH est amélioré par rapport à sa version actuelle, principalement 1) en étendant son applicabilité aux pixels optiques entièrement végétalisés en utilisant l'indice de sécheresse de la végétation basé sur la température et un produit de couverture végétale amélioré, et 2) en augmentant la résolution de désagrégation de 1 km à 100 m en utilisant les données optiques/thermiques de Landsat (en plus de MODIS). Le produit de SM désagrégé à la résolution de 100 m est validé avec des mesures in situ collectées sur des zones irriguées au Maroc, indiquant une corrélation spatiale quotidienne variant de 0,5 à 0,9. Dans un deuxième étape, un nouvel algorithme est construit en développant une synergie entre les données DISPATCH et radar à 100 m de résolution. En pratique, le produit SM issu de DISPATCH les jours de ciel clair est d'abord utilisé pour calibrer un modèle de transfert radiatif radar en mode direct. Ensuite, le modèle de transfert radiatif radar ainsi calibré est utilisé en mode inverse pour estimer SM à la résolution spatio-temporelle de Sentinel-1. Sur les sites de validation, les résultats indiquent une corrélation entre les mesures satellitaires et in situ, de l'ordre de 0,66 à 0,81 pour un indice de végétation inférieur à 0,6. Dans une troisième et dernière étape, une méthode d'assimilation optimale est utilisée pour interpoler dans le temps les données de SM à la résolution de 100 m. La dynamique du produit SM dérivé de l'assimilation de SM DISPATCH à 100 m de résolution est cohérente avec les événements d'irrigation. Cette approche peut être facilement appliquée sur de grandes zones, en considérant que toutes les données (télédétection et météorologique) requises en entrée sont disponibles à l' échelle globale.SMOS and SMAP passive microwave sensors provide soil moisture (SM) data at 40 km resolution every 2-3 days globally, with a 0-5 cm sensing depth relevant for climatic and meteorological applications. However, SM data would be required at a higher (typically 100 m or finer) spatial resolution for many other regional (hydrology) or local (agriculture) applications. Optical/thermal and radar sensors can be used for retrieving SM proxies at such high spatial resolution, but both techniques have limitations. In particular, optical/thermal data are not available under clouds and under plant canopies. Moreover, radar data are sensitive to soil roughness and vegetation structure, which are challenging to characterize from outer space, and have a repeat cycle of at least six days, limiting the observations' temporal frequency. In this context, the leading principle of the thesis is to propose a new approach that combines passive microwave, optical/thermal, and active microwave (radar) sensors for the first time to retrieve SM data at 100 m resolution on a daily temporal scale. Our assumption is first to rely on an existing disaggregation method (DISPATCH) of SMOS/SMAP SM data to meet the target resolution achieved by radars. DISPATCH is originally based on the soil evaporative efficiency (SEE) retrieved over partially vegetated pixels from 1 km resolution optical/thermal (typically MODIS) surface temperature and vegetation cover data. The disaggregated SM data is then combined with a radar-based SM retrieval method to exploit the sensing capabilities of the Sentinel-1 radars. Finally, the efficacy of the assimilation of satellite-based SM data in a soil water balance model is assessed in terms of SM predictions at the 100 m resolution and daily temporal scale. As a first step, the DISPATCH algorithm is improved from its current version by mainly 1) extending its applicability to fully vegetated optical pixels using the temperature vegetation dryness index and an enhanced vegetation cover product, and 2) increasing the targeted downscaling resolution from 1 km to 100 m using Landsat (in addition to MODIS) optical/thermal data. The 100 m resolution disaggregated SM product is validated with in situ measurements collected over irrigated areas in Morocco, showing a daily spatial correlation in the range of 0.5-0.9. As a second step, a new algorithm is built on a synergy between DISPATCH and radar 100 m resolution data. In practice, the DISPATCH SM product available on clear sky days is first used to calibrate a radar radiative transfer model in the direct mode. Then the calibrated radar radia- tive transfer model is used in the inverse mode to estimate SM at the spatio-temporal resolution of Sentinel-1. Results indicate a positive correlation between satellite and in situ measurements in the range of 0.66 to 0.81 for a vegetation index lower than 0.6. As a third and final step, an optimal assimilation method is used to interpolate 100 m resolution SM data in time. The assimilation exercise is undertaken over irrigated crop fields in Spain. The analyzed SM product derived from the assimilation of 100 m resolution DISPATCH SM is consistent with irrigation events. This approach can be readily applied over large areas, given that all the required input (remote sensing and meteorological) data are available globally

    An Initial Assessment of a SMAP Soil Moisture Disaggregation Scheme Using TIR Surface Evaporation Data over the Continental United States

    Get PDF
    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of the SMAP active radar within three months of becoming operational, an intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 0.47; bias of 0.022 and 0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain statistics, the highest percentage of SCAN sites with positive gains (>55%) was observed with the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-Downscaled performed similarly, however, gain statistics show that TIR-Downscaled SSM slightly outperformed SMAP-E

    Downscaling SMAP Soil Moisture Data Using MODIS Data

    Get PDF
    Soil moisture level is an important index in studying environmental changes. High resolution soil moisture data is in high demand for agricultural and weather forecasting purpose. Current daily large-scale soil moisture projects fail to provide sufficient resolution for medium or small region research. To acquire high-resolution soil moisture data, different kinds of methods are put into practice, including multivariate statistical regression, weight aggregation and so on. In this research, SMAP (Soil Moisture Active Passive) level 3 data with 36-km resolution are successfully downscaled by MODIS (Moderate Resolution Imaging Spectroradiometer) 1-km LST (Land Surface Temperature) product, NDVI (Difference Vegetation Index) product, SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model), and TWI (Topographic Wetness Index). Three regression models are built based on these supplemental indexes correlated with the SMAP retrieval. All downscaled results are validated with SMAPVEX15 field data. The research aims to establish and validate the multivariate regression method for downscaling low-resolution remote sensing image (such as SMAP) with local field observations. Based on the validation results, the research suggests the regression models have a decent fit. The downscaled soil moisture data indicating the method is applicable to small region research

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products &amp; Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula

    Get PDF
    In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth's surface soil moisture (SSM): the ESA's Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA's Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth's surface emission. These measurements (brightness temperatures TB) are then used to generate global maps of SSM every three days with a spatial resolution of about 30-40 km and a target accuracy of 0.04 m3/m3. To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP TB or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active-passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at TB or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation. Keywords: soil moisture; moisture variability; temporal dynamics; moisture patterns; spatial disaggregation; Soil Moisture Active Passive (SMAP); Soil Moisure and Ocean Salinity (SMOS); REMEDHUSSobre la continuidad de las misiones satelitales debanda L. Nuevos paradigmas en productos y aplicaciones, grant numbers ESP2017-89463-C3-2-R (UPC part) andESP2017-89463-C3-1-R (ICM part)Unidad de Excelencia María de Maeztu MDM-2016-060
    corecore