424 research outputs found

    Common Ground Over Common Water: Defining the Public Interest in the Milwaukee Watershed

    Get PDF
    My dissertation examines government and nongovernment entities’ attempts to restore and protect the use and health of the Milwaukee River and its watershed from 1960 to 2000. Under Mayor Henry Maier’s leadership, Milwaukee worked to reclaim the urban riverway to stimulate economic growth. However, state and federal representatives, after the passage of the 1965 Water Quality Act, demanded that the city government prioritize updating the combined storm and sewer system to lessen pollution in the Milwaukee River. At the same time, other groups worked to save rural areas from unplanned development and further degradation of the waterway. Influential groups included the Riveredge Nature Center members, the Southeastern Wisconsin Regional Planning Commission (SEWRPC), the Milwaukee River Restoration Council, and the Milwaukee River Revitalization Council. As these groups debated the best course of action, they recognized the benefits of a watershed approach to restoring the riverway’s health. However, arguments continued as the communities that purported a public interest in the waterway were often identified by boundaries that did not coincide with the watershed’s area. My research contributes to historical scholarship by investigating how these groups came to recognize the importance of a watershed approach to addressing water pollution problems and protecting private property from flood damage. However, searching for a shared public interest that reflected urban, suburban, and rural perspectives of the watershed’s future was more elusive as economic, social, and historical understandings of the watershed continued to divide people.Primary source materials were gathered through newspaper articles and archival sources. The Milwaukee Public Library funds the online storage of the Milwaukee Journal and Milwaukee Sentinel. Archival material was located through the University of Wisconsin-Milwaukee (UWM) Archives Department and the Wisconsin Historical Center. Also, I utilized materials stored by SEWRPC, Riveredge Nature Center, and the River Revitalization Foundation

    Deep learning to represent sub-grid processes in climate models

    Get PDF
    The representation of nonlinear sub-grid processes, especially clouds, has been a major source of uncertainty in climate models for decades. Cloud-resolving models better represent many of these processes and can now be run globally but only for short-term simulations of at most a few years because of computational limitations. Here we demonstrate that deep learning can be used to capture many advantages of cloud-resolving modeling at a fraction of the computational cost. We train a deep neural network to represent all atmospheric sub-grid processes in a climate model by learning from a multi-scale model in which convection is treated explicitly. The trained neural network then replaces the traditional sub-grid parameterizations in a global general circulation model in which it freely interacts with the resolved dynamics and the surface-flux scheme. The prognostic multi-year simulations are stable and closely reproduce not only the mean climate of the cloud-resolving simulation but also key aspects of variability, including precipitation extremes and the equatorial wave spectrum. Furthermore, the neural network approximately conserves energy despite not being explicitly instructed to. Finally, we show that the neural network parameterization generalizes to new surface forcing patterns but struggles to cope with temperatures far outside its training manifold. Our results show the feasibility of using deep learning for climate model parameterization. In a broader context, we anticipate that data-driven Earth System Model development could play a key role in reducing climate prediction uncertainty in the coming decade.Comment: View official PNAS version at https://doi.org/10.1073/pnas.181028611

    Systematic errors in ground heat flux estimation and their correction

    Get PDF
    Incoming radiation forcing at the land surface is partitioned among the components of the surface energy balance in varying proportions depending on the time scale of the forcing. Based on a land-atmosphere analytic continuum model, a numerical land surface model, and field observations we show that high-frequency fluctuations in incoming radiation (with period less than 6 h, for example, due to intermittent clouds) are preferentially partitioned toward ground heat flux. These higher frequencies are concentrated in the 0–1 cm surface soil layer. Subsequently, measurements even at a few centimeters deep in the soil profile miss part of the surface soil heat flux signal. The attenuation of the high-frequency soil heat flux spectrum throughout the soil profile leads to systematic errors in both measurements and modeling, which require a very fine sampling near the soil surface (0–1 cm). Calorimetric measurement techniques introduce a systematic error in the form of an artificial band-pass filter if the temperature probes are not placed at appropriate depths. In addition, the temporal calculation of the change in the heat storage term of the calorimetric method can further distort the reconstruction of the surface soil heat flux signal. A correction methodology is introduced which provides practical application as well as insights into the estimation of surface soil heat flux and the closure of surface energy balance based on field measurements

    Spectral behavior of the coupled land-atmosphere system

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 2010.Cataloged from PDF version of thesis.Includes bibliographical references.The main objective of this thesis is to understand the daily cycle of the energy coupling between the land and the atmosphere in response to a forcing of incoming radiation at their common boundary, the land surface. This is of fundamental importance as that the initial/ boundary conditions of the land-surface state variables (e.g. soil moisture, soil temperature) exert strong control at various temporal scales on hydrologic, climatic and weather related processes. Hence diagnosing these state variables is crucial for extreme hydrological forecasting (flood/ drought), agronomic crop management as well as weather and climatic forecasts. Consequently in this thesis, the daily behavior of a simple land-atmosphere model is examined. A conceptual and linearized land-atmosphere model is first introduced and its response to a daily input of incoming radiation at the land surface is investigated. The solution of the different state and fluxes in the Atmospheric Boundary Layer (ABL) and in the soil are expressed as temporal Fourier series with vertically dependent coefficients. These coefficients highlight the impact of both the surface parameters and the frequency of the radiation on the heat propagation in the ABL and in the soil. The simplified model is shown to compare well with field measurements thus accounting for the main emergent behaviors of the system. The first chapter of the thesis describes the theoretical background of the equations governing the evolution of temperature and humidity in the ABL and in the soil. In the second chapter, the pioneering work of Lettau (1951), which inspired our approach is summarized. In his work Lettau studied the response of a simplified linearized land-atmosphere model to a sinusoidal net radiation forcing at the land surface. The third chapter of the thesis describes the SUDMED project, which took place in Morocco in 2003. During this project a wheat field was fully instrumented with continuous measurements of soil moisture, radiative fluxes, turbulent heat fluxes and soil heat flux. This site will be taken as a reference for model comparison. The fourth chapter of the thesis presents the three studies with distinctive goals. In these studies our linearized land-atmosphere model is first introduced. Then the propagation of the land-surface diurnal heating is presented and the model is compared to observations from the SUDMED project. Finally the repercussion of a land-surface energy budget error noise is investigated. Finally in the last chapter of the thesis we discuss possible evolution and improvements of the analytical coupled model presented in this thesis. In particular, it is emphasized that the non-linearity of the the boundary-layer height is of great importance for the predictability of the ABL state.by Pierre Gentine.Ph.D
    • …
    corecore