44 research outputs found

    The Sex and Race Specific Relationship between Anthropometry and Body Fat Composition Determined from Computed Tomography: Evidence from the Multi-Ethnic Study of Atherosclerosis.

    Get PDF
    BackgroundFew studies have investigated the relationship of anthropometric measurements with computed tomography (CT) body fat composition, and even fewer determined if these relationships differ by sex and race.MethodsCT scans from 1,851 participants in the population based Multi-Ethnic Study of Atherosclerosis were assessed for visceral and subcutaneous fat areas by semi-automated segmentation of body compartments. Regression models were used to investigate relationships for anthropometry with visceral and subcutaneous fat separately by sex and race/ethnicity.ResultsParticipants were 50% female, 41% Caucasian, 13% Asian, 21% African American, and 25% Hispanic. For visceral fat, the positive relationship with weight (p = 0.028), waist circumference (p<0.001), waist to hip ratio (p<0.001), and waist to height ratio (p = 0.05) differed by sex, with a steeper slope for men. That is, across the range of these anthropometric measures the rise in visceral fat is faster for men than for women. Additionally, there were differences by race/ethnicity in the relationship with height (p<0.001), weight (p<0.001), waist circumference (p<0.001), hip circumference (p = 0.006), and waist to hip ratio (p = 0.001) with the Hispanic group having shallower slopes. For subcutaneous fat, interaction by sex was found for all anthropometric indices at p<0.05, but not for race/ethnicity.ConclusionThe relationship between anthropometry and underlying adiposity differs by sex and race/ethnicity. When anthropometry is used as a proxy for visceral fat in research, sex-specific models should be used

    Diabetes medication use and blood lactate level among participants with type 2 diabetes : the atherosclerosis risk in communities carotid MRI study

    Get PDF
    Background: The objective of this study is to compare lactate levels between users and non-users of diabetes medications under the hypothesis that the level of lactate is a marker of oxidative capacity. Methods: The cross-sectional data of 493 participants aged 61–84 with type 2 diabetes who participated in the Atherosclerosis Risk in Communities Carotid MRI study were analyzed using survey weighted linear regression. Results: Median plasma lactate level was 8.58 (95% CI: 8.23, 8.87) mg/dl. Comparing users of diabetic medications with nonusers, thiazolidinedione use was significantly associated with lower lactate level (7.57 (6.95–8.25) mg/dL vs. 8.78 (8.43–9.14) mg/dL), metformin use with a slightly higher lactate level (9.02 (8.51–9.58) mg/dL vs. 8.36 (7.96–8.77) mg/dL), and sulfonylurea and insulin use were not associated with lactate level. After adjustment for demographic and lifestyle factors, the plasma lactate level for thiazolidinedione users was 15.78% lower than that for non-users (p,0.001). Considering use of each medication separately and in combination did not change the results. Conclusion: In conclusion, thiazolidinedione use was associated with lower plasma lactate level compared to non-use and metformin use was only marginally associated with a slightly higher lactate level. These results are consistent with the previously demonstrated effects of diabetes medications on oxidative metabolism. Further investigation of the role that diabetes medications play in improvement of oxidative metabolism is warrante

    Diabetes Medication Use and Blood Lactate Level among Participants with Type 2 Diabetes: The Atherosclerosis Risk in Communities Carotid MRI Study

    Get PDF
    BackgroundThe objective of this study is to compare lactate levels between users and non-users of diabetes medications under the hypothesis that the level of lactate is a marker of oxidative capacity.MethodsThe cross-sectional data of 493 participants aged 61–84 with type 2 diabetes who participated in the Atherosclerosis Risk in Communities Carotid MRI study were analyzed using survey weighted linear regression.ResultsMedian plasma lactate level was 8.58 (95% CI: 8.23, 8.87) mg/dl. Comparing users of diabetic medications with non-users, thiazolidinedione use was significantly associated with lower lactate level (7.57 (6.95–8.25) mg/dL vs. 8.78 (8.43–9.14) mg/dL), metformin use with a slightly higher lactate level (9.02 (8.51–9.58) mg/dL vs. 8.36 (7.96–8.77) mg/dL), and sulfonylurea and insulin use were not associated with lactate level. After adjustment for demographic and lifestyle factors, the plasma lactate level for thiazolidinedione users was 15.78% lower than that for non-users (p<0.001). Considering use of each medication separately and in combination did not change the results.ConclusionIn conclusion, thiazolidinedione use was associated with lower plasma lactate level compared to non-use and metformin use was only marginally associated with a slightly higher lactate level. These results are consistent with the previously demonstrated effects of diabetes medications on oxidative metabolism. Further investigation of the role that diabetes medications play in improvement of oxidative metabolism is warranted

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Medium- and short-chain dehydrogenase/reductase gene and protein families: The MDR superfamily

    Get PDF
    The MDR superfamily with ~350-residue subunits contains the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase and many more forms. ADH is a dimeric zinc metalloprotein and occurs as five different classes in humans, resulting from gene duplications during vertebrate evolution, the first one traced to ~500 MYA (million years ago) from an ancestral formaldehyde dehydrogenase line. Like many duplications at that time, it correlates with enzymogenesis of new activities, contributing to conditions for emergence of vertebrate land life from osseous fish. The speed of changes correlates with function, as do differential evolutionary patterns in separate segments. Subsequent recognitions now define at least 40 human MDR members in the Uniprot database (corresponding to 25 genes when excluding close homologues), and in all species at least 10888 entries. Overall, variability is large, but like for many dehydrogenases, subdivided into constant and variable forms, corresponding to household and emerging enzyme activities, respectively. This review covers basic facts and describes eight large MDR families and nine smaller families. Combined, they have specific substrates in metabolic pathways, some with wide substrate specificity, and several with little known functions

    Loci influencing blood pressure identified using a cardiovascular gene-centric array

    Get PDF
    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.</p

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore